Knowledge (XXG)

Spectroscopic optical coherence tomography

Source 📝

1035:. In this case, the physical process can be considered as an array of band-filters with constant relative bandwidth to the center frequency, using short windows at high frequencies and long windows at low frequencies. Unlike the STFT, the WT method is not constrained by constraint bandwidth and may adapt the window size to a desired frequency. For this method the tradeoff is this between time and frequency resolutions. 25: 1212:
interference terms. Separation between the two overlapping signal terms is challenging as this information is contained within the interference terms. For time-frequency analysis, the WD effectively suppresses the interference terms and as a result compromises joint time-frequency resolution with the level of suppression of the interference terms.
136:. The general principles behind SOCT arise from the large optical bandwidths involved in OCT, where information on the spectral content of backscattered light can be obtained by detection and processing of the interferometric OCT signal. SOCT signal can be used to quantify depth-resolved spectra to retrieve the concentration of tissue 610:
is the Fourier transform. However, due to the wavelength dependence with depth for both scattering and absorption in tissue, direct Fourier transform cannot be applied to obtain localized spectroscopic information from the OCT signal. For this reason, a time-frequency analysis method must be applied.
1211:
can be used to extract structural knowledge of samples from time-localized information contained within the cross-terms. The Wigner distribution applies a Fourier transform to the autocorrelation of the OCT interferogram. The drawback of this method lies in its quadratic nature, contained in its
2238:
Similarly another common approach is simply though calibration measurements, if the absorption coefficient of a scattering sample can be obtained through a separate calibration measurement, then isolating the scattering coefficient is pretty straight forward. One problem with this method is it
991: 787: 1207: 1865: 2041:, where the scattering dependence on wavelength with a power law. In this approach the absorption spectrum is regarded as the total absorption contribution overall known chromophores, with a least-squares fitting to the measured attenuation values. 2142: 2262:
First the number of acquisitions – averaging and multiple integrations are critical for valid measurements due to the presence of speckle noise. But this value reduces with the square root of the number of independent scans in the
1927:
The backscattering coefficient may be experimentally determined as long as a full understanding of zeta. Commonly zeta is measured by separate calibration with a sample having a known backscattering coefficient defined by
315: 811:
is a spatially confined windowing function that extracts spatially-localized frequency information by suppressing information from outside of the window, commonly a Gaussian distribution, centered around
1386: 582: 1669: 2266:
Due to losses in spectral resolution sample inhomogeneity can be a factor, and there are sensitivity issues with system NA and spectrometer roll off that also affect both accuracy and resolution.
42: 2242:
Finally for certain applications, the real and imaginary part of the complex refractive index may be used to isolate the individual contributions from both absorption and scattering. using
1759: 867: 2239:
assumes that tissue scattering is equal across various tissue regions, but if different structures have different absorption parameters it would just throw off the measurements.
862:(WT) approach may also be considered. Using both a series of function localized in both real and Fourier space from the complex window function w, by translations and dilations 631: 413: 608: 2046: 1592: 1496: 2032: 1420: 1050: 2250:
showed it was possible to separate the necessary contributions from the real part of the refractive index from a nonlinear dispersion phase term in the OCT signal.
1999: 1972: 1752: 1725: 1698: 853: 433: 1013: 2233: 1552: 373: 345: 160:
The following discussion of techniques for quantitatively obtaining localized optical properties using SOCT is a summary of the concepts discussed in Bosscharrt
1896: 1525: 1460: 1291: 1922: 460: 2205: 2184: 2164: 1440: 1258: 1238: 1033: 830: 809: 484: 89: 61: 68: 2235:. A limitation of this method is that the localization of present chromophores and their absorption properties need to be known to be effective. 2406: 2292: 180: 75: 2246:. This is because the imaginary part of the refractive index can be tied to the absorption spectra using Kramer-Kronig relations. Robles 128:) is an optical imaging and sensing technique, which provides localized spectroscopic information of a sample based on the principles of 57: 108: 1302: 622:
allows for extraction of information of both time and frequency components of a signal. In most SOCT applications a continuous
46: 503: 1602: 149: 2243: 1042: 623: 129: 82: 855:. As a result, there exists an inherent trade-off between spatial and frequency resolution using the STFT method. 619: 2316: 35: 487: 2401: 1422:
is the OCT signal attenuation coefficient and the factor 2 accounts for the double pass attenuation from depth
1860:{\displaystyle \mu _{b,NA}=\mu _{s}\cdot 2\pi \textstyle \int _{\pi -NA}^{\pi }p(\theta )\sin \theta d\theta } 986:{\displaystyle {\text{WT}}(k,d)=\int _{-\infty }^{\infty }(d')w{\bigg (}{\frac {d-d'}{\kappa }}{\bigg )}d(d')} 1041:
may be applied, where under the right conditions have a reduced resolution penalty. For SOCT purposes the
1597:
From the experimentally determined value of the OCT attenuation coefficient can be further expressed as:
1294: 782:{\displaystyle {\text{STFT}}(k,d;w)=\int _{-\infty }^{\infty }i_{d}(d')w(d-d';\Delta d)e^{-ikd'}d(d')} 2343: 2258:
The overall accuracy of SOCT to isolate the localized optical spectra is limited by several factors:
1947:
Several approaches have been used to effectively isolate the individual contributions of absorption (
1220:
The time-frequency analysis methods described above, result in a wavelength resolved power spectrum
2332:"Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography" 463: 2137:{\displaystyle \mu _{OCT}=a\cdot \lambda ^{-b}\textstyle \sum _{i}\displaystyle (c_{i}\mu _{a,i})} 381: 2310: 1899: 1261: 1038: 1202:{\displaystyle {\text{WD}}(k,d)=\int _{-\infty }^{\infty }i_{d}(d+d')i_{d}*(d-d')e^{-ikd'}d(d')} 589: 2377: 2359: 2298: 2288: 859: 495: 172: 1561: 1465: 2367: 2351: 2004: 1392: 491: 1977: 1950: 1730: 1703: 1676: 835: 418: 998: 2347: 2372: 2331: 2211: 1929: 1530: 351: 323: 133: 2146:
The first term on the right represents the scattering component with a scaling factor
1872: 1754:. The backscattering coefficient is both sample and source dependent and defined as: 1501: 1445: 1267: 2395: 2038: 1904: 442: 2190: 2169: 2149: 1425: 1243: 1223: 1018: 815: 794: 469: 152:, and/or used as a functional contrast enhancement for conventional OCT imaging. 1555: 137: 24: 436: 376: 141: 2363: 2302: 2355: 145: 2381: 375:
are the fields returning from sample and reference arm, respectively, with
1554:
the source power spectrum incident on the sample and T the axial PSF. The
2186:, and the second term modeling the total absorption overall chromophores 1527:
at d = 0. These system-dependent parameters are defined such that with
310:{\displaystyle i_{d}=|E_{s}|^{2}+|E_{r}|^{2}+2\{E_{s}E_{r}\cos(k2d)\}} 2287:. Drexler, Wolfgang, Fujimoto, James G. (Second ed.). Cham. 2285:
Optical coherence tomography : technology and applications
1594:
is sample dependent and is discussed in further detail below.
18: 1015:
is the scaling factor, which dilates or compress the wavelet
595: 539: 494:
descriptions of the collected OCT signal, can be related by
1381:{\displaystyle S(d)=\xi \cdot \mu _{b,NA}e^{-2\mu _{OCT}d}} 486:
is the assigned depth location in the tissue. Both the
2214: 2193: 2172: 2152: 2088: 2007: 1980: 1953: 1907: 1898:
is the scattering phase function, integrated over the
1875: 1804: 1733: 1706: 1679: 1564: 1533: 1504: 1468: 1448: 1428: 1395: 1270: 1246: 1226: 1021: 1001: 838: 818: 797: 592: 577:{\displaystyle i_{d}(2d)=|{\mathcal {F}}\{i_{d}(k)\}|} 472: 445: 421: 384: 354: 326: 2099: 2049: 1762: 1664:{\displaystyle \mu _{OCT}=\mu _{t}=\mu _{s}+\mu _{a}} 1605: 1305: 1053: 870: 634: 506: 183: 1700:, being the sum of both the scattering coefficient 49:. Unsourced material may be challenged and removed. 2227: 2199: 2178: 2158: 2136: 2026: 1993: 1966: 1916: 1890: 1859: 1746: 1719: 1692: 1663: 1586: 1546: 1519: 1490: 1454: 1434: 1414: 1380: 1285: 1252: 1232: 1201: 1027: 1007: 985: 847: 824: 803: 781: 602: 576: 478: 454: 427: 407: 367: 339: 309: 961: 931: 1216:Quantitative determination of optical properties 8: 566: 544: 304: 260: 58:"Spectroscopic optical coherence tomography" 2336:Journal of the Optical Society of America A 2001:) from the overall OCT signal attenuation ( 122:Spectroscopic optical coherence tomography 2371: 2330:Graf, Robert N.; Wax, Adam (2007-07-11). 2219: 2213: 2192: 2171: 2151: 2117: 2107: 2093: 2079: 2054: 2048: 2012: 2006: 1985: 1979: 1958: 1952: 1906: 1874: 1823: 1809: 1789: 1767: 1761: 1738: 1732: 1711: 1705: 1684: 1678: 1655: 1642: 1629: 1610: 1604: 1569: 1563: 1538: 1532: 1503: 1473: 1467: 1447: 1427: 1400: 1394: 1361: 1350: 1331: 1304: 1269: 1245: 1225: 1162: 1129: 1099: 1089: 1081: 1054: 1052: 1020: 1000: 960: 959: 936: 930: 929: 906: 898: 871: 869: 837: 817: 796: 742: 686: 676: 668: 635: 633: 594: 593: 591: 569: 551: 538: 537: 532: 511: 505: 471: 444: 420: 397: 383: 359: 353: 331: 325: 277: 267: 248: 243: 236: 227: 218: 213: 206: 197: 188: 182: 109:Learn how and when to remove this message 2276: 1673:with the total attenuation coefficient 2308: 171:The general form of the detected OCT 7: 47:adding citations to reliable sources 167:Localized spectroscopic information 1090: 1085: 907: 902: 839: 729: 677: 672: 14: 23: 1727:and the absorption coefficient 615:Time-frequency analysis methods 34:needs additional citations for 2129: 2100: 1885: 1879: 1838: 1832: 1514: 1508: 1315: 1309: 1280: 1274: 1196: 1185: 1155: 1138: 1122: 1105: 1071: 1059: 980: 969: 923: 912: 888: 876: 776: 765: 735: 709: 703: 692: 658: 640: 570: 563: 557: 533: 526: 517: 301: 289: 244: 228: 214: 198: 1: 2244:Kramers-Kronig (KK) relations 2208:with individual contribution 408:{\textstyle k=2\pi /\lambda } 2407:Optical coherence tomography 624:short-time Fourier transform 130:optical coherence tomography 1498:determine the amplitude of 603:{\textstyle {\mathcal {F}}} 2423: 16:Optical imaging technique 1587:{\textstyle \mu _{b,NA}} 1491:{\textstyle \mu _{b,NA}} 132:(OCT) and low coherence 2356:10.1364/josaa.24.002186 2027:{\textstyle \mu _{OCT}} 1415:{\textstyle \mu _{OCT}} 1240:as a function of depth 626:(STFT) method is used, 620:Time-frequency analysis 148:), characterize tissue 2315:: CS1 maint: others ( 2229: 2201: 2180: 2160: 2138: 2028: 1995: 1968: 1918: 1892: 1861: 1748: 1721: 1694: 1665: 1588: 1548: 1521: 1492: 1456: 1436: 1416: 1382: 1287: 1260:. Assuming the first 1254: 1234: 1203: 1029: 1009: 987: 849: 826: 805: 783: 604: 578: 496:Fourier transformation 480: 456: 429: 409: 369: 341: 311: 2230: 2202: 2181: 2161: 2139: 2039:least-squares fitting 2029: 1996: 1994:{\textstyle \mu _{s}} 1969: 1967:{\textstyle \mu _{a}} 1919: 1893: 1862: 1749: 1747:{\textstyle \mu _{a}} 1722: 1720:{\textstyle \mu _{s}} 1695: 1693:{\textstyle \mu _{t}} 1666: 1589: 1549: 1522: 1493: 1457: 1437: 1417: 1383: 1288: 1255: 1235: 1204: 1030: 1010: 988: 850: 848:{\textstyle \Delta d} 827: 806: 784: 605: 579: 481: 457: 430: 428:{\textstyle \lambda } 410: 370: 342: 312: 2212: 2191: 2170: 2150: 2047: 2005: 1978: 1951: 1905: 1873: 1760: 1731: 1704: 1677: 1603: 1562: 1531: 1502: 1466: 1446: 1426: 1393: 1303: 1268: 1244: 1224: 1051: 1019: 1008:{\textstyle \kappa } 999: 868: 836: 816: 795: 632: 590: 504: 470: 443: 419: 382: 352: 324: 181: 43:improve this article 2348:2007JOSAA..24.2186G 1828: 1094: 1043:Wigner distribution 1039:Bilinear transforms 911: 681: 466:difference so that 2228:{\textstyle c_{i}} 2225: 2197: 2176: 2166:and scatter power 2156: 2134: 2133: 2132: 2098: 2024: 1991: 1974:) and scattering ( 1964: 1914: 1900:numerical aperture 1888: 1857: 1856: 1805: 1744: 1717: 1690: 1661: 1584: 1547:{\textstyle S_{0}} 1544: 1517: 1488: 1452: 1432: 1412: 1378: 1283: 1264:, we can describe 1262:Born approximation 1250: 1230: 1199: 1077: 1025: 1005: 983: 894: 845: 822: 801: 779: 664: 600: 574: 476: 452: 425: 405: 368:{\textstyle E_{r}} 365: 340:{\textstyle E_{s}} 337: 307: 2294:978-3-319-06419-2 2089: 2037:One method is by 1891:{\textstyle p(y)} 1520:{\textstyle S(d)} 1455:{\textstyle \xi } 1442:. The parameters 1286:{\textstyle S(d)} 1057: 957: 874: 860:wavelet transform 638: 119: 118: 111: 93: 2414: 2386: 2385: 2375: 2327: 2321: 2320: 2314: 2306: 2281: 2234: 2232: 2231: 2226: 2224: 2223: 2206: 2204: 2203: 2198: 2185: 2183: 2182: 2177: 2165: 2163: 2162: 2157: 2143: 2141: 2140: 2135: 2128: 2127: 2112: 2111: 2097: 2087: 2086: 2065: 2064: 2033: 2031: 2030: 2025: 2023: 2022: 2000: 1998: 1997: 1992: 1990: 1989: 1973: 1971: 1970: 1965: 1963: 1962: 1923: 1921: 1920: 1915: 1897: 1895: 1894: 1889: 1866: 1864: 1863: 1858: 1827: 1822: 1794: 1793: 1781: 1780: 1753: 1751: 1750: 1745: 1743: 1742: 1726: 1724: 1723: 1718: 1716: 1715: 1699: 1697: 1696: 1691: 1689: 1688: 1670: 1668: 1667: 1662: 1660: 1659: 1647: 1646: 1634: 1633: 1621: 1620: 1593: 1591: 1590: 1585: 1583: 1582: 1553: 1551: 1550: 1545: 1543: 1542: 1526: 1524: 1523: 1518: 1497: 1495: 1494: 1489: 1487: 1486: 1461: 1459: 1458: 1453: 1441: 1439: 1438: 1433: 1421: 1419: 1418: 1413: 1411: 1410: 1387: 1385: 1384: 1379: 1377: 1376: 1372: 1371: 1345: 1344: 1292: 1290: 1289: 1284: 1259: 1257: 1256: 1251: 1239: 1237: 1236: 1231: 1208: 1206: 1205: 1200: 1195: 1181: 1180: 1179: 1154: 1134: 1133: 1121: 1104: 1103: 1093: 1088: 1058: 1055: 1034: 1032: 1031: 1026: 1014: 1012: 1011: 1006: 992: 990: 989: 984: 979: 965: 964: 958: 953: 952: 937: 935: 934: 922: 910: 905: 875: 872: 854: 852: 851: 846: 831: 829: 828: 823: 810: 808: 807: 802: 788: 786: 785: 780: 775: 761: 760: 759: 725: 702: 691: 690: 680: 675: 639: 636: 609: 607: 606: 601: 599: 598: 583: 581: 580: 575: 573: 556: 555: 543: 542: 536: 516: 515: 485: 483: 482: 477: 461: 459: 458: 453: 434: 432: 431: 426: 414: 412: 411: 406: 401: 374: 372: 371: 366: 364: 363: 346: 344: 343: 338: 336: 335: 316: 314: 313: 308: 282: 281: 272: 271: 253: 252: 247: 241: 240: 231: 223: 222: 217: 211: 210: 201: 193: 192: 150:light scattering 114: 107: 103: 100: 94: 92: 51: 27: 19: 2422: 2421: 2417: 2416: 2415: 2413: 2412: 2411: 2402:Optical imaging 2392: 2391: 2390: 2389: 2329: 2328: 2324: 2307: 2295: 2283: 2282: 2278: 2273: 2256: 2215: 2210: 2209: 2189: 2188: 2168: 2167: 2148: 2147: 2113: 2103: 2075: 2050: 2045: 2044: 2008: 2003: 2002: 1981: 1976: 1975: 1954: 1949: 1948: 1945: 1943: 1939: 1936:Separation of μ 1917:{\textstyle NA} 1903: 1902: 1871: 1870: 1785: 1763: 1758: 1757: 1734: 1729: 1728: 1707: 1702: 1701: 1680: 1675: 1674: 1651: 1638: 1625: 1606: 1601: 1600: 1565: 1560: 1559: 1534: 1529: 1528: 1500: 1499: 1469: 1464: 1463: 1444: 1443: 1424: 1423: 1396: 1391: 1390: 1357: 1346: 1327: 1301: 1300: 1266: 1265: 1242: 1241: 1222: 1221: 1218: 1188: 1172: 1158: 1147: 1125: 1114: 1095: 1049: 1048: 1017: 1016: 997: 996: 972: 945: 938: 915: 866: 865: 834: 833: 814: 813: 793: 792: 768: 752: 738: 718: 695: 682: 630: 629: 617: 588: 587: 547: 507: 502: 501: 492:spectral domain 468: 467: 462:is the optical 455:{\textstyle 2d} 441: 440: 417: 416: 380: 379: 355: 350: 349: 327: 322: 321: 273: 263: 242: 232: 212: 202: 184: 179: 178: 175:is written as: 169: 158: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 2420: 2418: 2410: 2409: 2404: 2394: 2393: 2388: 2387: 2342:(8): 2186–95. 2322: 2293: 2275: 2274: 2272: 2269: 2268: 2267: 2264: 2255: 2252: 2222: 2218: 2200:{\textstyle i} 2196: 2179:{\textstyle b} 2175: 2159:{\textstyle a} 2155: 2131: 2126: 2123: 2120: 2116: 2110: 2106: 2102: 2096: 2092: 2085: 2082: 2078: 2074: 2071: 2068: 2063: 2060: 2057: 2053: 2021: 2018: 2015: 2011: 1988: 1984: 1961: 1957: 1944: 1941: 1937: 1934: 1913: 1910: 1887: 1884: 1881: 1878: 1855: 1852: 1849: 1846: 1843: 1840: 1837: 1834: 1831: 1826: 1821: 1818: 1815: 1812: 1808: 1803: 1800: 1797: 1792: 1788: 1784: 1779: 1776: 1773: 1770: 1766: 1741: 1737: 1714: 1710: 1687: 1683: 1658: 1654: 1650: 1645: 1641: 1637: 1632: 1628: 1624: 1619: 1616: 1613: 1609: 1581: 1578: 1575: 1572: 1568: 1556:backscattering 1541: 1537: 1516: 1513: 1510: 1507: 1485: 1482: 1479: 1476: 1472: 1451: 1435:{\textstyle d} 1431: 1409: 1406: 1403: 1399: 1375: 1370: 1367: 1364: 1360: 1356: 1353: 1349: 1343: 1340: 1337: 1334: 1330: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1282: 1279: 1276: 1273: 1253:{\textstyle d} 1249: 1233:{\textstyle S} 1229: 1217: 1214: 1198: 1194: 1191: 1187: 1184: 1178: 1175: 1171: 1168: 1165: 1161: 1157: 1153: 1150: 1146: 1143: 1140: 1137: 1132: 1128: 1124: 1120: 1117: 1113: 1110: 1107: 1102: 1098: 1092: 1087: 1084: 1080: 1076: 1073: 1070: 1067: 1064: 1061: 1028:{\textstyle w} 1024: 1004: 982: 978: 975: 971: 968: 963: 956: 951: 948: 944: 941: 933: 928: 925: 921: 918: 914: 909: 904: 901: 897: 893: 890: 887: 884: 881: 878: 844: 841: 825:{\textstyle d} 821: 804:{\textstyle w} 800: 778: 774: 771: 767: 764: 758: 755: 751: 748: 745: 741: 737: 734: 731: 728: 724: 721: 717: 714: 711: 708: 705: 701: 698: 694: 689: 685: 679: 674: 671: 667: 663: 660: 657: 654: 651: 648: 645: 642: 616: 613: 597: 572: 568: 565: 562: 559: 554: 550: 546: 541: 535: 531: 528: 525: 522: 519: 514: 510: 488:spatial domain 479:{\textstyle d} 475: 451: 448: 424: 404: 400: 396: 393: 390: 387: 362: 358: 334: 330: 306: 303: 300: 297: 294: 291: 288: 285: 280: 276: 270: 266: 262: 259: 256: 251: 246: 239: 235: 230: 226: 221: 216: 209: 205: 200: 196: 191: 187: 168: 165: 157: 154: 134:interferometry 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2419: 2408: 2405: 2403: 2400: 2399: 2397: 2383: 2379: 2374: 2369: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2323: 2318: 2312: 2304: 2300: 2296: 2290: 2286: 2280: 2277: 2270: 2265: 2261: 2260: 2259: 2253: 2251: 2249: 2245: 2240: 2236: 2220: 2216: 2207: 2194: 2173: 2153: 2144: 2124: 2121: 2118: 2114: 2108: 2104: 2094: 2090: 2083: 2080: 2076: 2072: 2069: 2066: 2061: 2058: 2055: 2051: 2042: 2040: 2035: 2019: 2016: 2013: 2009: 1986: 1982: 1959: 1955: 1935: 1933: 1931: 1925: 1911: 1908: 1901: 1882: 1876: 1867: 1853: 1850: 1847: 1844: 1841: 1835: 1829: 1824: 1819: 1816: 1813: 1810: 1806: 1801: 1798: 1795: 1790: 1786: 1782: 1777: 1774: 1771: 1768: 1764: 1755: 1739: 1735: 1712: 1708: 1685: 1681: 1671: 1656: 1652: 1648: 1643: 1639: 1635: 1630: 1626: 1622: 1617: 1614: 1611: 1607: 1598: 1595: 1579: 1576: 1573: 1570: 1566: 1558:coefficient, 1557: 1539: 1535: 1511: 1505: 1483: 1480: 1477: 1474: 1470: 1449: 1429: 1407: 1404: 1401: 1397: 1388: 1373: 1368: 1365: 1362: 1358: 1354: 1351: 1347: 1341: 1338: 1335: 1332: 1328: 1324: 1321: 1318: 1312: 1306: 1298: 1296: 1277: 1271: 1263: 1247: 1227: 1215: 1213: 1209: 1192: 1189: 1182: 1176: 1173: 1169: 1166: 1163: 1159: 1151: 1148: 1144: 1141: 1135: 1130: 1126: 1118: 1115: 1111: 1108: 1100: 1096: 1082: 1078: 1074: 1068: 1065: 1062: 1046: 1044: 1040: 1036: 1022: 1002: 993: 976: 973: 966: 954: 949: 946: 942: 939: 926: 919: 916: 899: 895: 891: 885: 882: 879: 863: 861: 856: 842: 819: 798: 789: 772: 769: 762: 756: 753: 749: 746: 743: 739: 732: 726: 722: 719: 715: 712: 706: 699: 696: 687: 683: 669: 665: 661: 655: 652: 649: 646: 643: 627: 625: 621: 614: 612: 584: 560: 552: 548: 529: 523: 520: 512: 508: 499: 497: 493: 489: 473: 465: 449: 446: 438: 422: 402: 398: 394: 391: 388: 385: 378: 360: 356: 347: 332: 328: 317: 298: 295: 292: 286: 283: 278: 274: 268: 264: 257: 254: 249: 237: 233: 224: 219: 207: 203: 194: 189: 185: 176: 174: 173:interferogram 166: 164: 163: 155: 153: 151: 147: 143: 139: 135: 131: 127: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 2339: 2335: 2325: 2284: 2279: 2257: 2247: 2241: 2237: 2187: 2145: 2043: 2036: 1946: 1926: 1868: 1756: 1672: 1599: 1596: 1389: 1299: 1219: 1210: 1047: 1037: 994: 864: 857: 790: 628: 618: 585: 500: 320: 318: 177: 170: 161: 159: 138:chromophores 125: 121: 120: 105: 99:October 2020 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 832:with width 464:path length 439:. Further, 2396:Categories 2271:References 2263:averaging. 1930:Mie theory 1295:Beer's law 437:wavelength 377:wavenumber 142:hemoglobin 69:newspapers 2364:1084-7529 2311:cite book 2303:912287126 2115:μ 2091:∑ 2081:− 2077:λ 2073:⋅ 2052:μ 2010:μ 1983:μ 1956:μ 1854:θ 1848:θ 1845:⁡ 1836:θ 1825:π 1814:− 1811:π 1807:∫ 1802:π 1796:⋅ 1787:μ 1765:μ 1736:μ 1709:μ 1682:μ 1653:μ 1640:μ 1627:μ 1608:μ 1567:μ 1471:μ 1450:ξ 1398:μ 1359:μ 1352:− 1329:μ 1325:⋅ 1322:ξ 1164:− 1145:− 1136:∗ 1091:∞ 1086:∞ 1083:− 1079:∫ 1003:κ 955:κ 943:− 908:∞ 903:∞ 900:− 896:∫ 840:Δ 744:− 730:Δ 716:− 678:∞ 673:∞ 670:− 666:∫ 423:λ 403:λ 395:π 287:⁡ 146:bilirubin 2382:17621322 2254:Accuracy 1193:′ 1177:′ 1152:′ 1119:′ 977:′ 950:′ 920:′ 773:′ 757:′ 723:′ 700:′ 2373:2676227 2344:Bibcode 319:Where, 140:(e.g., 83:scholar 2380:  2370:  2362:  2301:  2291:  2248:et al. 1869:Where 1293:using 995:Where 791:where 586:where 162:et al. 156:Theory 85:  78:  71:  64:  56:  1940:and μ 415:with 90:JSTOR 76:books 2378:PMID 2360:ISSN 2317:link 2299:OCLC 2289:ISBN 1462:and 637:STFT 490:and 435:the 348:and 144:and 126:SOCT 62:news 2368:PMC 2352:doi 1842:sin 284:cos 45:by 2398:: 2376:. 2366:. 2358:. 2350:. 2340:24 2338:. 2334:. 2313:}} 2309:{{ 2297:. 2034:) 1932:. 1924:. 1297:: 1056:WD 1045:: 873:WT 858:A 498:: 2384:. 2354:: 2346:: 2319:) 2305:. 2221:i 2217:c 2195:i 2174:b 2154:a 2130:) 2125:i 2122:, 2119:a 2109:i 2105:c 2101:( 2095:i 2084:b 2070:a 2067:= 2062:T 2059:C 2056:O 2020:T 2017:C 2014:O 1987:s 1960:a 1942:a 1938:s 1912:A 1909:N 1886:) 1883:y 1880:( 1877:p 1851:d 1839:) 1833:( 1830:p 1820:A 1817:N 1799:2 1791:s 1783:= 1778:A 1775:N 1772:, 1769:b 1740:a 1713:s 1686:t 1657:a 1649:+ 1644:s 1636:= 1631:t 1623:= 1618:T 1615:C 1612:O 1580:A 1577:N 1574:, 1571:b 1540:0 1536:S 1515:) 1512:d 1509:( 1506:S 1484:A 1481:N 1478:, 1475:b 1430:d 1408:T 1405:C 1402:O 1374:d 1369:T 1366:C 1363:O 1355:2 1348:e 1342:A 1339:N 1336:, 1333:b 1319:= 1316:) 1313:d 1310:( 1307:S 1281:) 1278:d 1275:( 1272:S 1248:d 1228:S 1197:) 1190:d 1186:( 1183:d 1174:d 1170:k 1167:i 1160:e 1156:) 1149:d 1142:d 1139:( 1131:d 1127:i 1123:) 1116:d 1112:+ 1109:d 1106:( 1101:d 1097:i 1075:= 1072:) 1069:d 1066:, 1063:k 1060:( 1023:w 981:) 974:d 970:( 967:d 962:) 947:d 940:d 932:( 927:w 924:) 917:d 913:( 892:= 889:) 886:d 883:, 880:k 877:( 843:d 820:d 799:w 777:) 770:d 766:( 763:d 754:d 750:k 747:i 740:e 736:) 733:d 727:; 720:d 713:d 710:( 707:w 704:) 697:d 693:( 688:d 684:i 662:= 659:) 656:w 653:; 650:d 647:, 644:k 641:( 596:F 571:| 567:} 564:) 561:k 558:( 553:d 549:i 545:{ 540:F 534:| 530:= 527:) 524:d 521:2 518:( 513:d 509:i 474:d 450:d 447:2 399:/ 392:2 389:= 386:k 361:r 357:E 333:s 329:E 305:} 302:) 299:d 296:2 293:k 290:( 279:r 275:E 269:s 265:E 261:{ 258:2 255:+ 250:2 245:| 238:r 234:E 229:| 225:+ 220:2 215:| 208:s 204:E 199:| 195:= 190:d 186:i 124:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Spectroscopic optical coherence tomography"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
optical coherence tomography
interferometry
chromophores
hemoglobin
bilirubin
light scattering
interferogram
wavenumber
wavelength
path length
spatial domain
spectral domain
Fourier transformation
Time-frequency analysis
short-time Fourier transform
wavelet transform
Bilinear transforms
Wigner distribution
Born approximation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.