Knowledge (XXG)

Spectral phase interferometry for direct electric-field reconstruction

Source πŸ“

137: 72: 1988: 844: 22: 392: 1753: 611: 118:. Spectral shearing interferometry is similar in concept to lateral shearing interferometry, except the shearing is performed in the frequency domain. The spectral shear is typically generated by sum-frequency mixing the test pulse with two different quasi-monochromatic frequencies (usually derived by 1408: 1414:
The final exponential term, resulting from the delay between the two interfering fields, can be obtained and removed from a calibration trace, which is achieved by interfering two unsheared pulses with the same time delay (this is typically performed by measuring the interference pattern of the two
127:
at one frequency to be referenced to the spectral phase at a different frequency, separated by the spectral shear - the difference in frequency of the two monochromatic beams. In order to extract the phase information, a carrier fringe pattern is introduced, typically by delaying the two spectrally
1172:
are two 'alternating current' (ac) sidebands resulting from the interference of the two fields. The dc term contains information about the spectral intensity only, whereas the ac sidebands contain information about the spectral intensity and phase of the pulse (since the ac sidebands are Hermitian
1170: 2117:
The spectral intensity can be found via a quadratic equation using the intensity of the dc and ac terms (filtered independently via a similar method above) or more commonly from an independent measurement (typically the intensity of the dc term from the calibration trace), since this provides the
1562:
There are several methods to reconstruct the spectral phase from the SPIDER phase, the simplest, most intuitive and commonly used method is to note that the above equation looks similar to a finite difference of the spectral phase (for small shears) and thus can be integrated using the trapezium
2456:
Radunsky, Aleksander S.; Kosik Williams, Ellen M.; Walmsley, Ian A.; Wasylczyk, Piotr; Wasilewski, Wojciech; U'Ren, Alfred B.; Anderson, Matthew E. (2006). "Simplified spectral phase interferometry for direct electric-field reconstruction by using a thick nonlinear crystal".
150: 1556: 1983:{\displaystyle {\begin{aligned}\phi (\omega _{0}+N|\Omega |)&={\begin{cases}-\sum _{n=1}^{N}\theta (\omega _{0}+n\Omega )&{\text{if}}\,\Omega >0\\\sum _{n=0}^{N-1}\theta (\omega _{0}+n|\Omega |)&{\text{if}}\,\Omega <0\end{cases}}\end{aligned}}} 2517: 1737: 839:{\displaystyle {\begin{aligned}{\widetilde {S}}({\widetilde {t}})&={\mathfrak {F}}\\&={\widetilde {E}}^{dc}({\widetilde {t}})+{\widetilde {E}}^{ac}({\widetilde {t}}-\tau )+{\widetilde {E}}^{-ac}({\widetilde {t}}+\tau )\end{aligned}}} 1182: 988: 604:
The unknown spectral phase of the pulse can be extracted using a simple, direct algebraic algorithm first described by Takeda. The first step involves Fourier transforming the interferogram into the pseudo time domain:
122:
a copy of the pulse itself), although it can also be achieved by spectral filtering or even with linear electro-optic modulators for picosecond pulses. The interference between the two upconverted pulses allows the
954: 1743:
This method is exact for reconstructing group delay dispersion (GDD) and third order dispersion (TOD); the accuracy for higher order dispersion depends on the shear: smaller shear results in higher accuracy.
2113:
falls to a sufficiently low value at some point on the concatenation grid, then the extracted phase difference at that point is undefined and the relative phase between adjacent spectral points is lost.
601:; and any dispersion of the pulse results in minor deviations in the nominal fringe spacing. Effectively it is these deviations in the nominal phase spacing that yield the dispersion of the test pulse . 2082: 387:{\displaystyle {\begin{aligned}S(\omega )&=|E(\omega )+E(\omega -\Omega )e^{i\omega \tau }|^{2}\\&=I(\omega )+I(\omega -\Omega )+2{\sqrt {I(\omega )I(\omega -\Omega )}}\cos\end{aligned}}} 1758: 1426: 1415:
fundamental pulses which have the same time-delay as the upconverted pulses). This enables the SPIDER phase to be extracted simply by taking the argument of the calibrated interferometric term:
1187: 616: 155: 1421: 599: 526: 1569: 983: 555: 40: 2413:
Radunsky, Aleksander S.; Walmsley, Ian A.; Gorza, Simon-Pierre; Wasylczyk, Piotr (2006). "Compact spectral shearing interferometer for ultrashort pulse characterization".
2111: 425: 2129:(SEA-SPIDER) is a variant of SPIDER. The spectral phase of an ultrashort laser pulse is encoded into a spatial fringe pattern rather than a spectral fringe pattern. 445: 2314:
Witting, T.; Austin, D.R.; Walmsley, I.A. (2009), "Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization.",
465: 2150:
is an implementation of SPIDER in which the spectral shear required for a SPIDER measurement is generated in a thick nonlinear crystal with a carefully engineered
1176:
One of the ac sidebands is filtered out and inverse Fourier transformed back into the frequency domain, where the interferometric spectral phase can be extracted:
2141: 2011: 1403:{\displaystyle {\begin{aligned}D(\omega ,\Omega )&={\mathfrak {F}}^{-1}\\&={\sqrt {I(\omega )I(\omega -\Omega )}}e^{i}e^{-i\omega \tau }\end{aligned}}} 2358:"Accuracy measurements and improvement for complete characterization of optical pulses from nonlinear processes via multiple spectral-shearing interferometry" 2183:
Takeda, Mitsuo; Ina, Hideki; Kobayashi, Seiji (1982). "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry".
1165:{\displaystyle {\widetilde {E}}^{\pm ac}({\widetilde {t}}\mp \tau )={\mathfrak {F}}\{{\sqrt {I(\omega )I(\omega -\Omega )}}e^{\pm i}e^{\pm i\omega \tau }\}} 2226:
Kosik, E.M.; Radunsky, A.; Walmsley, I.A.; Dorrer, C. (2005), "Interferometric technique for measuring broadband ultrashort pulses at the sampling limit",
2118:
best signal to noise and no distortion from the upconversion process (e.g. spectral filtering from the phase matching function of a 'thick' crystal).
2270:"Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction" 2084:. Note that in the absence of any noise, this would provide an exact reproduction of the spectral phase at the sampled frequencies. However, if 853: 2561:
Iaconis, C; Walmsley, I. A. (1998), "Spectral Phase Interferometry for Direct Electric-Field Reconstruction of Ultrashort Optical Pulses",
2631: 2515:, Ian A. Walmsley & Chris Iaconis, "Pulse measurement using frequency shifting techniques", issued 2003-8-26 2133: 58: 2016: 561:
pulse duration), the interference of the two time-delayed fields results in a cosine modulation with a nominal spacing of
2525:
Iaconis, C; Walmsley, I. A. (1999), "Self-Referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses",
1551:{\displaystyle {\begin{aligned}\theta (\omega )&=\angle \\&=\phi (\omega -\Omega )-\phi (\omega )\end{aligned}}} 564: 2657: 1732:{\displaystyle \phi (\omega _{N}-\Omega /2)\approxeq -\sum _{n=0}^{N}{\frac {\omega _{n+1}-\omega _{n}}{2\Omega }}} 2652: 470: 2647: 2356:
Wyatt, Adam S.; GrΓΌn, Alexander; Bates, Philip K.; Chalus, Olivier; Biegert, Jens; Walmsley, Ian A. (2011).
144:
The intensity of the interference pattern from two time-delayed spectrally sheared pulses can be written as
112: 2662: 2597:
Walmsley, I. A.; Wong, V. (1996), "Characterization of the Electric Field of Ultrashort Optical Pulses",
2357: 2269: 2512: 959: 2606: 2570: 2534: 2466: 2369: 2323: 2281: 2235: 2192: 111:
SPIDER is an interferometric ultrashort pulse measurement technique in the frequency domain based on
1811: 531: 136: 96: 2550: 2087: 401: 2586: 2490: 2482: 2438: 2430: 2395: 2387: 2339: 2297: 2251: 2208: 71: 430: 2614: 2578: 2542: 2474: 2422: 2377: 2331: 2289: 2243: 2200: 92: 80: 450: 2610: 2574: 2538: 2470: 2373: 2327: 2285: 2239: 2196: 2151: 1996: 124: 115: 2641: 2137: 2554: 427:
is the analytic signal representing the unknown (upconverted) field being measured,
2163: 100: 557:
is the spectral phase. For a sufficiently large delay (from 10 to 1000 times the
2486: 2434: 2391: 2212: 2618: 2590: 2494: 2442: 2399: 2343: 2301: 2255: 2204: 2582: 2478: 2426: 2382: 2335: 2293: 2247: 2144:(MIIPS), a method to characterize and manipulate the ultrashort pulse. 949:{\displaystyle {\widetilde {E}}^{dc}({\widetilde {t}})={\mathfrak {F}}} 85:
spectral phase interferometry for direct electric-field reconstruction
2546: 985:
with a width inversely proportional to the spectral bandwidth, and
135: 119: 70: 2268:
Wyatt, A.S.; Walmsley, I.A.; Stibenz, G.; Steinmeyer, G. (2006),
1747:
An alternative method us via concatenation of the SPIDER phase:
1173:
conjugates of each other, they contain the same information).
75:
Concept of experimental implementation of conventional SPIDER.
15: 1972: 2077:{\displaystyle \{\omega _{N}\}=\{\omega _{0}+N|\Omega |\}} 140:
Flow chart describing the SPIDER reconstruction algorithm
36: 2090: 2019: 1999: 1756: 1572: 1424: 1185: 991: 962: 856: 614: 567: 534: 473: 453: 433: 404: 153: 31:
may be too technical for most readers to understand
2105: 2076: 2005: 1982: 1731: 1550: 1402: 1164: 977: 948: 838: 593: 549: 520: 459: 439: 419: 386: 2142:multiphoton intrapulse interference phase scan 594:{\displaystyle \delta \omega \sim 2\pi /\tau } 95:measurement technique originally developed by 8: 2071: 2039: 2033: 2020: 1159: 1051: 128:sheared copies with respect to one another. 956:is a 'direct current' (dc) term centred at 521:{\displaystyle I(\omega )=|E(\omega )|^{2}} 2381: 2185:Journal of the Optical Society of America 2089: 2066: 2058: 2046: 2027: 2018: 1998: 1959: 1954: 1944: 1936: 1924: 1902: 1891: 1873: 1868: 1848: 1832: 1821: 1806: 1791: 1783: 1771: 1757: 1755: 1711: 1689: 1659: 1640: 1633: 1627: 1616: 1595: 1583: 1571: 1477: 1458: 1425: 1423: 1381: 1332: 1294: 1261: 1260: 1248: 1237: 1236: 1223: 1217: 1216: 1186: 1184: 1144: 1092: 1054: 1045: 1044: 1021: 1020: 1005: 994: 993: 990: 964: 963: 961: 901: 900: 883: 882: 870: 859: 858: 855: 812: 811: 796: 785: 784: 760: 759: 747: 736: 735: 717: 716: 704: 693: 692: 657: 656: 635: 634: 620: 619: 615: 613: 583: 566: 533: 512: 507: 489: 472: 452: 432: 403: 292: 237: 232: 219: 177: 154: 152: 59:Learn how and when to remove this message 43:, without removing the technical details. 2127:Spatially encoded arrangement for SPIDER 2175: 41:make it understandable to non-experts 7: 2140:with picosecond response times, and 1218: 1046: 902: 658: 2063: 1960: 1941: 1874: 1860: 1788: 1670: 1592: 1523: 1492: 1448: 1366: 1320: 1202: 1129: 1080: 937: 434: 362: 318: 280: 209: 14: 2134:frequency-resolved optical gating 978:{\displaystyle {\widetilde {t}}} 20: 2634:includes links to example code 2100: 2094: 2067: 2059: 1949: 1945: 1937: 1917: 1863: 1841: 1796: 1792: 1784: 1764: 1726: 1723: 1704: 1695: 1682: 1676: 1603: 1576: 1541: 1535: 1526: 1514: 1498: 1495: 1483: 1470: 1464: 1451: 1438: 1432: 1372: 1369: 1357: 1348: 1342: 1336: 1323: 1311: 1305: 1299: 1281: 1278: 1257: 1232: 1205: 1193: 1135: 1132: 1120: 1111: 1105: 1099: 1083: 1071: 1065: 1059: 1038: 1017: 943: 940: 928: 919: 913: 907: 894: 879: 829: 808: 777: 756: 728: 713: 678: 675: 669: 663: 646: 631: 550:{\displaystyle \phi (\omega )} 544: 538: 528:is the spectral intensity and 508: 503: 497: 490: 483: 477: 414: 408: 377: 365: 353: 344: 338: 332: 321: 309: 303: 297: 283: 271: 262: 256: 233: 212: 200: 191: 185: 178: 167: 161: 1: 2679: 2106:{\displaystyle D(\omega )} 420:{\displaystyle E(\omega )} 2527:IEEE J. Quantum Electron. 559:Fourier transform limited 2619:10.1364/JOSAB.13.002453 2013:and concatenation grid 447:is the spectral shear, 440:{\displaystyle \Omega } 2205:10.1364/JOSA.72.000156 2122:Alternative techniques 2107: 2078: 2007: 1984: 1913: 1837: 1733: 1632: 1552: 1404: 1166: 979: 950: 840: 595: 551: 522: 461: 441: 421: 388: 141: 76: 2513:US patent 6611336 2132:Other techniques are 2108: 2079: 2008: 1985: 1887: 1817: 1734: 1612: 1553: 1405: 1167: 980: 951: 841: 596: 552: 523: 462: 460:{\displaystyle \tau } 442: 422: 389: 139: 74: 2583:10.1364/OL.23.000792 2479:10.1364/OL.31.001008 2427:10.1364/OL.32.000181 2383:10.1364/OE.19.025355 2336:10.1364/OL.34.000881 2294:10.1364/OL.31.001914 2248:10.1364/OL.30.000326 2088: 2017: 1997: 1754: 1570: 1422: 1183: 989: 960: 854: 612: 565: 532: 471: 451: 431: 402: 151: 2611:1996JOSAB..13.2453W 2575:1998OptL...23..792I 2539:1999IJQE...35..501I 2471:2006OptL...31.1008R 2374:2011OExpr..1925355W 2328:2009OptL...34..881W 2286:2006OptL...31.1914W 2240:2005OptL...30..326K 2197:1982JOSA...72..156T 467:is the time delay, 2599:J. Opt. Soc. Am. B 2103: 2074: 2003: 1980: 1978: 1971: 1729: 1548: 1546: 1400: 1398: 1162: 975: 946: 836: 834: 591: 547: 518: 457: 437: 417: 384: 382: 142: 77: 2658:Optical metrology 2605:(11): 2453–2463, 2280:(12): 1914–1916, 2006:{\displaystyle N} 1957: 1871: 1674: 1461: 1326: 1269: 1245: 1086: 1029: 1002: 972: 891: 867: 820: 793: 768: 744: 725: 701: 643: 628: 324: 113:spectral shearing 69: 68: 61: 2670: 2653:Nonlinear optics 2621: 2593: 2557: 2547:10.1109/3.753654 2521: 2520: 2516: 2499: 2498: 2453: 2447: 2446: 2410: 2404: 2403: 2385: 2368:(25): 25355–66. 2353: 2347: 2346: 2311: 2305: 2304: 2265: 2259: 2258: 2223: 2217: 2216: 2180: 2112: 2110: 2109: 2104: 2083: 2081: 2080: 2075: 2070: 2062: 2051: 2050: 2032: 2031: 2012: 2010: 2009: 2004: 1989: 1987: 1986: 1981: 1979: 1975: 1974: 1958: 1955: 1948: 1940: 1929: 1928: 1912: 1901: 1872: 1869: 1853: 1852: 1836: 1831: 1795: 1787: 1776: 1775: 1738: 1736: 1735: 1730: 1722: 1721: 1694: 1693: 1675: 1673: 1665: 1664: 1663: 1651: 1650: 1634: 1631: 1626: 1599: 1588: 1587: 1557: 1555: 1554: 1549: 1547: 1504: 1482: 1481: 1463: 1462: 1459: 1409: 1407: 1406: 1401: 1399: 1395: 1394: 1376: 1375: 1327: 1295: 1287: 1271: 1270: 1262: 1256: 1255: 1247: 1246: 1238: 1231: 1230: 1222: 1221: 1171: 1169: 1168: 1163: 1158: 1157: 1139: 1138: 1087: 1055: 1050: 1049: 1031: 1030: 1022: 1016: 1015: 1004: 1003: 995: 984: 982: 981: 976: 974: 973: 965: 955: 953: 952: 947: 906: 905: 893: 892: 884: 878: 877: 869: 868: 860: 845: 843: 842: 837: 835: 822: 821: 813: 807: 806: 795: 794: 786: 770: 769: 761: 755: 754: 746: 745: 737: 727: 726: 718: 712: 711: 703: 702: 694: 684: 662: 661: 645: 644: 636: 630: 629: 621: 600: 598: 597: 592: 587: 556: 554: 553: 548: 527: 525: 524: 519: 517: 516: 511: 493: 466: 464: 463: 458: 446: 444: 443: 438: 426: 424: 423: 418: 393: 391: 390: 385: 383: 325: 293: 246: 242: 241: 236: 230: 229: 181: 93:ultrashort pulse 81:ultrafast optics 64: 57: 53: 50: 44: 24: 23: 16: 2678: 2677: 2673: 2672: 2671: 2669: 2668: 2667: 2638: 2637: 2632:new SPIDER page 2628: 2596: 2569:(10): 792–794, 2560: 2524: 2518: 2511: 2508: 2506:Further reading 2503: 2502: 2455: 2454: 2450: 2412: 2411: 2407: 2355: 2354: 2350: 2313: 2312: 2308: 2267: 2266: 2262: 2225: 2224: 2220: 2182: 2181: 2177: 2172: 2160: 2124: 2086: 2085: 2042: 2023: 2015: 2014: 1995: 1994: 1977: 1976: 1970: 1969: 1952: 1920: 1884: 1883: 1866: 1844: 1807: 1799: 1767: 1752: 1751: 1707: 1685: 1666: 1655: 1636: 1635: 1579: 1568: 1567: 1545: 1544: 1502: 1501: 1473: 1454: 1441: 1420: 1419: 1397: 1396: 1377: 1328: 1285: 1284: 1235: 1215: 1208: 1181: 1180: 1140: 1088: 992: 987: 986: 958: 957: 857: 852: 851: 833: 832: 783: 734: 691: 682: 681: 649: 610: 609: 563: 562: 530: 529: 506: 469: 468: 449: 448: 429: 428: 400: 399: 381: 380: 244: 243: 231: 215: 170: 149: 148: 134: 109: 65: 54: 48: 45: 37:help improve it 34: 25: 21: 12: 11: 5: 2676: 2674: 2666: 2665: 2660: 2655: 2650: 2648:Interferometry 2640: 2639: 2636: 2635: 2627: 2626:External links 2624: 2623: 2622: 2594: 2558: 2533:(4): 501–509, 2522: 2507: 2504: 2501: 2500: 2465:(7): 1008–10. 2459:Optics Letters 2448: 2415:Optics Letters 2405: 2362:Optics Express 2348: 2322:(7): 881–883, 2316:Optics Letters 2306: 2274:Optics Letters 2260: 2234:(3): 326–328, 2228:Optics Letters 2218: 2174: 2173: 2171: 2168: 2167: 2166: 2159: 2156: 2152:phase-matching 2123: 2120: 2102: 2099: 2096: 2093: 2073: 2069: 2065: 2061: 2057: 2054: 2049: 2045: 2041: 2038: 2035: 2030: 2026: 2022: 2002: 1991: 1990: 1973: 1968: 1965: 1962: 1953: 1951: 1947: 1943: 1939: 1935: 1932: 1927: 1923: 1919: 1916: 1911: 1908: 1905: 1900: 1897: 1894: 1890: 1886: 1885: 1882: 1879: 1876: 1867: 1865: 1862: 1859: 1856: 1851: 1847: 1843: 1840: 1835: 1830: 1827: 1824: 1820: 1816: 1813: 1812: 1810: 1805: 1802: 1800: 1798: 1794: 1790: 1786: 1782: 1779: 1774: 1770: 1766: 1763: 1760: 1759: 1741: 1740: 1728: 1725: 1720: 1717: 1714: 1710: 1706: 1703: 1700: 1697: 1692: 1688: 1684: 1681: 1678: 1672: 1669: 1662: 1658: 1654: 1649: 1646: 1643: 1639: 1630: 1625: 1622: 1619: 1615: 1611: 1608: 1605: 1602: 1598: 1594: 1591: 1586: 1582: 1578: 1575: 1560: 1559: 1543: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1516: 1513: 1510: 1507: 1505: 1503: 1500: 1497: 1494: 1491: 1488: 1485: 1480: 1476: 1472: 1469: 1466: 1457: 1453: 1450: 1447: 1444: 1442: 1440: 1437: 1434: 1431: 1428: 1427: 1412: 1411: 1393: 1390: 1387: 1384: 1380: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1338: 1335: 1331: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1293: 1290: 1288: 1286: 1283: 1280: 1277: 1274: 1268: 1265: 1259: 1254: 1251: 1244: 1241: 1234: 1229: 1226: 1220: 1214: 1211: 1209: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1188: 1161: 1156: 1153: 1150: 1147: 1143: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1091: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1053: 1048: 1043: 1040: 1037: 1034: 1028: 1025: 1019: 1014: 1011: 1008: 1001: 998: 971: 968: 945: 942: 939: 936: 933: 930: 927: 924: 921: 918: 915: 912: 909: 904: 899: 896: 890: 887: 881: 876: 873: 866: 863: 848: 847: 831: 828: 825: 819: 816: 810: 805: 802: 799: 792: 789: 782: 779: 776: 773: 767: 764: 758: 753: 750: 743: 740: 733: 730: 724: 721: 715: 710: 707: 700: 697: 690: 687: 685: 683: 680: 677: 674: 671: 668: 665: 660: 655: 652: 650: 648: 642: 639: 633: 627: 624: 618: 617: 590: 586: 582: 579: 576: 573: 570: 546: 543: 540: 537: 515: 510: 505: 502: 499: 496: 492: 488: 485: 482: 479: 476: 456: 436: 416: 413: 410: 407: 396: 395: 379: 376: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 291: 288: 285: 282: 279: 276: 273: 270: 267: 264: 261: 258: 255: 252: 249: 247: 245: 240: 235: 228: 225: 222: 218: 214: 211: 208: 205: 202: 199: 196: 193: 190: 187: 184: 180: 176: 173: 171: 169: 166: 163: 160: 157: 156: 133: 130: 125:spectral phase 116:interferometry 108: 105: 67: 66: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 2675: 2664: 2663:Laser science 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2645: 2643: 2633: 2630: 2629: 2625: 2620: 2616: 2612: 2608: 2604: 2600: 2595: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2564: 2559: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2528: 2523: 2514: 2510: 2509: 2505: 2496: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2452: 2449: 2444: 2440: 2436: 2432: 2428: 2424: 2420: 2416: 2409: 2406: 2401: 2397: 2393: 2389: 2384: 2379: 2375: 2371: 2367: 2363: 2359: 2352: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2310: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2264: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2222: 2219: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2179: 2176: 2169: 2165: 2162: 2161: 2157: 2155: 2153: 2149: 2145: 2143: 2139: 2138:streak camera 2135: 2130: 2128: 2121: 2119: 2115: 2097: 2091: 2055: 2052: 2047: 2043: 2036: 2028: 2024: 2000: 1966: 1963: 1933: 1930: 1925: 1921: 1914: 1909: 1906: 1903: 1898: 1895: 1892: 1888: 1880: 1877: 1857: 1854: 1849: 1845: 1838: 1833: 1828: 1825: 1822: 1818: 1814: 1808: 1803: 1801: 1780: 1777: 1772: 1768: 1761: 1750: 1749: 1748: 1745: 1718: 1715: 1712: 1708: 1701: 1698: 1690: 1686: 1679: 1667: 1660: 1656: 1652: 1647: 1644: 1641: 1637: 1628: 1623: 1620: 1617: 1613: 1609: 1606: 1600: 1596: 1589: 1584: 1580: 1573: 1566: 1565: 1564: 1538: 1532: 1529: 1520: 1517: 1511: 1508: 1506: 1489: 1486: 1478: 1474: 1467: 1455: 1445: 1443: 1435: 1429: 1418: 1417: 1416: 1391: 1388: 1385: 1382: 1378: 1363: 1360: 1354: 1351: 1345: 1339: 1333: 1329: 1317: 1314: 1308: 1302: 1296: 1291: 1289: 1275: 1272: 1266: 1263: 1252: 1249: 1242: 1239: 1227: 1224: 1212: 1210: 1199: 1196: 1190: 1179: 1178: 1177: 1174: 1154: 1151: 1148: 1145: 1141: 1126: 1123: 1117: 1114: 1108: 1102: 1096: 1093: 1089: 1077: 1074: 1068: 1062: 1056: 1041: 1035: 1032: 1026: 1023: 1012: 1009: 1006: 999: 996: 969: 966: 934: 931: 925: 922: 916: 910: 897: 888: 885: 874: 871: 864: 861: 826: 823: 817: 814: 803: 800: 797: 790: 787: 780: 774: 771: 765: 762: 751: 748: 741: 738: 731: 722: 719: 708: 705: 698: 695: 688: 686: 672: 666: 653: 651: 640: 637: 625: 622: 608: 607: 606: 602: 588: 584: 580: 577: 574: 571: 568: 560: 541: 535: 513: 500: 494: 486: 480: 474: 454: 411: 405: 374: 371: 368: 359: 356: 350: 347: 341: 335: 329: 326: 315: 312: 306: 300: 294: 289: 286: 277: 274: 268: 265: 259: 253: 250: 248: 238: 226: 223: 220: 216: 206: 203: 197: 194: 188: 182: 174: 172: 164: 158: 147: 146: 145: 138: 131: 129: 126: 121: 117: 114: 106: 104: 102: 98: 97:Chris Iaconis 94: 90: 86: 82: 73: 63: 60: 52: 42: 38: 32: 29:This article 27: 18: 17: 2602: 2598: 2566: 2562: 2530: 2526: 2462: 2458: 2451: 2421:(2): 181–3. 2418: 2414: 2408: 2365: 2361: 2351: 2319: 2315: 2309: 2277: 2273: 2263: 2231: 2227: 2221: 2188: 2184: 2178: 2164:Spectroscopy 2148:Micro-SPIDER 2147: 2146: 2131: 2126: 2125: 2116: 1993:for integer 1992: 1746: 1742: 1561: 1413: 1175: 849: 603: 558: 397: 143: 110: 101:Ian Walmsley 88: 84: 78: 55: 46: 30: 2642:Categories 2563:Opt. Lett. 2191:(1): 156. 2170:References 2154:function. 107:The basics 2487:0146-9592 2435:0146-9592 2392:1094-4087 2213:0030-3941 2098:ω 2064:Ω 2044:ω 2025:ω 1961:Ω 1942:Ω 1922:ω 1915:θ 1907:− 1889:∑ 1875:Ω 1861:Ω 1846:ω 1839:θ 1819:∑ 1815:− 1789:Ω 1769:ω 1762:ϕ 1709:ω 1702:θ 1687:ω 1680:θ 1671:Ω 1657:ω 1653:− 1638:ω 1614:∑ 1610:− 1607:≊ 1593:Ω 1590:− 1581:ω 1574:ϕ 1539:ω 1533:ϕ 1530:− 1524:Ω 1521:− 1518:ω 1512:ϕ 1493:Ω 1487:ω 1479:∗ 1468:ω 1449:∠ 1436:ω 1430:θ 1392:τ 1389:ω 1383:− 1367:Ω 1364:− 1361:ω 1355:ϕ 1352:− 1346:ω 1340:ϕ 1321:Ω 1318:− 1315:ω 1303:ω 1276:τ 1273:− 1267:~ 1243:~ 1225:− 1203:Ω 1197:ω 1155:τ 1152:ω 1146:± 1130:Ω 1127:− 1124:ω 1118:ϕ 1115:− 1109:ω 1103:ϕ 1094:± 1081:Ω 1078:− 1075:ω 1063:ω 1036:τ 1033:∓ 1027:~ 1007:± 1000:~ 970:~ 938:Ω 935:− 932:ω 917:ω 889:~ 865:~ 827:τ 818:~ 798:− 791:~ 775:τ 772:− 766:~ 742:~ 723:~ 699:~ 673:ω 641:~ 626:~ 589:τ 581:π 575:∼ 572:ω 569:δ 542:ω 536:ϕ 501:ω 481:ω 455:τ 435:Ω 412:ω 375:τ 372:ω 369:− 363:Ω 360:− 357:ω 351:ϕ 348:− 342:ω 336:ϕ 330:⁡ 319:Ω 316:− 313:ω 301:ω 281:Ω 278:− 275:ω 260:ω 227:τ 224:ω 210:Ω 207:− 204:ω 189:ω 165:ω 2591:18087344 2555:55097406 2495:16599239 2443:17186057 2400:22273927 2344:19340158 2302:16729113 2256:15751900 2158:See also 120:chirping 91:) is an 49:May 2017 2607:Bibcode 2571:Bibcode 2535:Bibcode 2467:Bibcode 2370:Bibcode 2324:Bibcode 2282:Bibcode 2236:Bibcode 2193:Bibcode 35:Please 2589:  2553:  2519:  2493:  2485:  2441:  2433:  2398:  2390:  2342:  2300:  2254:  2211:  1563:rule: 850:where 398:where 132:Theory 89:SPIDER 2551:S2CID 2587:PMID 2491:PMID 2483:ISSN 2439:PMID 2431:ISSN 2396:PMID 2388:ISSN 2340:PMID 2298:PMID 2252:PMID 2209:ISSN 1964:< 1878:> 99:and 2615:doi 2579:doi 2543:doi 2475:doi 2423:doi 2378:doi 2332:doi 2290:doi 2244:doi 2201:doi 1460:cal 327:cos 79:In 39:to 2644:: 2613:, 2603:13 2601:, 2585:, 2577:, 2567:23 2565:, 2549:, 2541:, 2531:35 2529:, 2489:. 2481:. 2473:. 2463:31 2461:. 2437:. 2429:. 2419:32 2417:. 2394:. 2386:. 2376:. 2366:19 2364:. 2360:. 2338:, 2330:, 2320:34 2318:, 2296:, 2288:, 2278:31 2276:, 2272:, 2250:, 2242:, 2232:30 2230:, 2207:. 2199:. 2189:72 2187:. 2136:, 1956:if 1870:if 103:. 83:, 2617:: 2609:: 2581:: 2573:: 2545:: 2537:: 2497:. 2477:: 2469:: 2445:. 2425:: 2402:. 2380:: 2372:: 2334:: 2326:: 2292:: 2284:: 2246:: 2238:: 2215:. 2203:: 2195:: 2101:) 2095:( 2092:D 2072:} 2068:| 2060:| 2056:N 2053:+ 2048:0 2040:{ 2037:= 2034:} 2029:N 2021:{ 2001:N 1967:0 1950:) 1946:| 1938:| 1934:n 1931:+ 1926:0 1918:( 1910:1 1904:N 1899:0 1896:= 1893:n 1881:0 1864:) 1858:n 1855:+ 1850:0 1842:( 1834:N 1829:1 1826:= 1823:n 1809:{ 1804:= 1797:) 1793:| 1785:| 1781:N 1778:+ 1773:0 1765:( 1739:. 1727:] 1724:) 1719:1 1716:+ 1713:n 1705:( 1699:+ 1696:) 1691:n 1683:( 1677:[ 1668:2 1661:n 1648:1 1645:+ 1642:n 1629:N 1624:0 1621:= 1618:n 1604:) 1601:2 1597:/ 1585:N 1577:( 1558:. 1542:) 1536:( 1527:) 1515:( 1509:= 1499:] 1496:) 1490:, 1484:( 1475:D 1471:) 1465:( 1456:D 1452:[ 1446:= 1439:) 1433:( 1410:. 1386:i 1379:e 1373:] 1370:) 1358:( 1349:) 1343:( 1337:[ 1334:i 1330:e 1324:) 1312:( 1309:I 1306:) 1300:( 1297:I 1292:= 1282:] 1279:) 1264:t 1258:( 1253:c 1250:a 1240:E 1233:[ 1228:1 1219:F 1213:= 1206:) 1200:, 1194:( 1191:D 1160:} 1149:i 1142:e 1136:] 1133:) 1121:( 1112:) 1106:( 1100:[ 1097:i 1090:e 1084:) 1072:( 1069:I 1066:) 1060:( 1057:I 1052:{ 1047:F 1042:= 1039:) 1024:t 1018:( 1013:c 1010:a 997:E 967:t 944:] 941:) 929:( 926:I 923:+ 920:) 914:( 911:I 908:[ 903:F 898:= 895:) 886:t 880:( 875:c 872:d 862:E 846:, 830:) 824:+ 815:t 809:( 804:c 801:a 788:E 781:+ 778:) 763:t 757:( 752:c 749:a 739:E 732:+ 729:) 720:t 714:( 709:c 706:d 696:E 689:= 679:] 676:) 670:( 667:S 664:[ 659:F 654:= 647:) 638:t 632:( 623:S 585:/ 578:2 545:) 539:( 514:2 509:| 504:) 498:( 495:E 491:| 487:= 484:) 478:( 475:I 415:) 409:( 406:E 394:, 378:] 366:) 354:( 345:) 339:( 333:[ 322:) 310:( 307:I 304:) 298:( 295:I 290:2 287:+ 284:) 272:( 269:I 266:+ 263:) 257:( 254:I 251:= 239:2 234:| 221:i 217:e 213:) 201:( 198:E 195:+ 192:) 186:( 183:E 179:| 175:= 168:) 162:( 159:S 87:( 62:) 56:( 51:) 47:( 33:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message

ultrafast optics
ultrashort pulse
Chris Iaconis
Ian Walmsley
spectral shearing
interferometry
chirping
spectral phase

frequency-resolved optical gating
streak camera
multiphoton intrapulse interference phase scan
phase-matching
Spectroscopy
Bibcode
1982JOSA...72..156T
doi
10.1364/JOSA.72.000156
ISSN
0030-3941
Bibcode
2005OptL...30..326K
doi
10.1364/OL.30.000326
PMID
15751900

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑