Knowledge

TEV protease

Source 📝

371: 298: 29: 2215: 289:(350 kDa). This is cleaved into functional units by the three proteases: P1 protease (1 cleavage site), helper-component protease (1 cleavage site) and TEV protease (7 cleavage sites). The native TEV protease also contains an internal self-cleavage site. This site is slowly cleaved to inactivate the enzyme (the physiological reason for this is unknown). 362:, split between the two barrels (Asp on β1 and His and Cys on β2). The substrate is held as a β-sheet, forming an antiparallel interaction with the cleft between the barrels and a parallel interaction with the C-terminal tail. The enzyme therefore forms a binding tunnel around the substrate and side chain interactions control specificity. 413:). The highest cleavage is of sequences closest to the consensus EXLYΦQ\φ where X is any residue, Φ is any large or medium hydrophobe and φ is any small hydrophobic or polar residue. Although this sequence is the optimal, sequences with disfavoured residues at some positions can still be cleaved if the rest of the sequence is optimal. 459:
However, TEV protease does have limitations as a biochemical tool. It is prone to deactivation by self-cleavage (autolysis), though this can be abolished through a single S219V mutation in the internal cleavage site. The protease expressed alone is also poorly soluble, however several attempts have
471:
TEV protease has been reported to show a 10-fold loss of activity at 4 °C. TEV protease shows loss of activity at temperatures above 34 °C. The original TEV protease required the presence of reducing agent for high activity, which could interfere with the function of proteins containing
428:
In particular, peptide side chain P6-Glu contacts a network of three hydrogen bonds; P5-Asn points into the solvent, making no specific interactions (hence the absence of substrate consensus at this position); P4-Leu is buried in a hydrophobic pocket; P3-Tyr is held in a hydrophobic pocket with a
424:
with only one or two pockets that bind the substrate side chains. Conversely, viral proteases such as TEV protease have a long C-terminal tail which completely covers the substrate to create a binding tunnel. This tunnel contains a set of tight binding pockets such that each side chain of the
408:
Studies have subsequently used sequencing of cleaved substrates from a pool of randomised sequences to determine preference patterns. Although ENLYFQ\S is the optimal sequence, the protease is active to a greater or lesser extent on a range of substrates (i.e. shows some
445:. The reason for the use of TEV protease as a biochemical tool is its high sequence specificity. This specificity allows for the controlled cleavage of proteins when the preference sequence is inserted into flexible loops. It also makes TEV protease relatively non-toxic 405:. Residues of the substrate are labelled P6 to P1 before the cut site and P1’ after the cut site. Early works also measured cleavage of an array of similar substrates to characterise how specific the protease was for the native sequence. 400:
The preferred, native cleavage sequence was first identified by examining the cut sites in the native polyprotein substrate for recurring sequence. The consensus for these native cut sites is ENLYFQ\S where ‘\’ denotes the
429:
short hydrogen bond at the end; P2-Phe is also surrounded by hydrophobes including the face of the triad histidine; P1-Gln forms four hydrogen bonds; and P1’-Ser is only partly enclosed in a shallow hydrophobic groove.
1412:
Correnti CE, Gewe MM, Mehlin C, Bandaranayake AD, Johnsen WA, Rupert PB, Brusniak MY, Clarke M, Burke SE, De Van Der Schueren W, Pilat K, Turnbaugh SM, May D, Watson A, Chan MK, Bahl CD, Olson JM, Strong RK (2018).
1320:
Nallamsetty S, Kapust RB, Tözsér J, Cherry S, Tropea JE, Copeland TD, Waugh DS (November 2004). "Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease
1034:
Parks TD, Leuther KK, Howard ED, Johnston SA, Dougherty WG (February 1994). "Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase".
188: 768:
Dougherty WG, Parks TD, Cary SM, Bazan JF, Fletterick RJ (September 1989). "Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase".
207: 472:
disulfide bonds. After incorporation of various mutations, later "superTEV protease" versions are highly active in the presence or absence of reducing agent.
1567: 929:
Boulware KT, Jabaiah A, Daugherty PS (June 2010). "Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics".
1187:
Verhoeven KD, Altstadt OC, Savinov SN (March 2012). "Intracellular detection and evolution of site-specific proteases using a genetic selection system".
876:
Kapust, Rachel B.; Tözsér, József; Copeland, Terry D.; Waugh, David S. (2002-06-28). "The P1' specificity of tobacco etch virus protease".
1934: 1531: 200: 1560: 838:
Dougherty WG, Cary SM, Parks TD (August 1989). "Molecular genetic analysis of a plant virus polyprotein cleavage site: a model".
1232:"Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency" 711:"Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications" 604:"A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing" 328: 167: 143: 2090: 1718: 1713: 1553: 254:-like proteases. Due to its high sequence specificity, TEV protease is frequently used for the controlled cleavage of 2205: 803:
Tyndall JD, Nall T, Fairlie DP (March 2005). "Proteases universally recognize beta strands in their active sites".
442: 2075: 2191: 2178: 2165: 2152: 2139: 2126: 2113: 1587: 161: 2085: 2039: 1982: 1584: 228: 54: 148: 668:
Phan J, Zdanov A, Evdokimov AG, Tropea JE, Peters HK, Kapust RB, Li M, Wlodawer A, Waugh DS (December 2002).
1987: 1778: 1071:"Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries" 465: 564:
Kapust RB, Waugh DS (July 2000). "Controlled intracellular processing of fusion proteins by TEV protease".
475:
The molecular weight of this enzyme varies between 25 and 27 kDa depending on the specific construct used.
885: 212: 977:"Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay" 136: 2008: 1927: 410: 386:
tunnel (left). A cutaway (right) shows the complementary shape of the binding tunnel to the substrate. (
375: 316: 269:. The consensus sequence recognized by TEV protease is Glu-Asn-Leu-Tyr-Phe-Gln-|-Ser, where "|" denotes 2080: 71: 1462:
Keeble AH, Turkki P, Stokes S, Khairil Anuar IN, Rahikainen R, Hytönen VP, Howarth M (December 2019).
33:
TEV protease (white) complexed with peptide substrate (black) with active site triad residues (red). (
1475: 1141: 1082: 988: 722: 615: 355:
etc.), TEV protease uses a cysteine as its catalytic nucleophile (as do many other viral proteases).
301:
Structure of TEV protease. The double β-barrels that define the superfamily are highlighted in red. (
890: 164: 2044: 1871: 324: 88: 66: 2240: 2235: 1977: 1212: 954: 461: 453: 416:
Specificity is endowed by the large contact area between enzyme and substrate. Proteases such as
282: 243: 1415:"Screening, large-scale production and structure-based classification of cystine-dense peptides" 370: 1580: 1503: 1444: 1394: 1345: 1302: 1253: 1204: 1169: 1110: 1051: 1016: 946: 911: 903: 855: 820: 785: 750: 691: 643: 581: 543: 464:
and computational design. It has also been shown that expression can be improved by fusion to
388: 303: 239: 155: 35: 2023: 2018: 1992: 1920: 1891: 1783: 1773: 1768: 1763: 1758: 1545: 1493: 1483: 1434: 1426: 1384: 1376: 1337: 1292: 1284: 1243: 1196: 1159: 1149: 1100: 1090: 1043: 1006: 996: 938: 895: 847: 812: 777: 740: 730: 681: 633: 623: 573: 533: 525: 340: 124: 1738: 1230:
Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (December 2001).
297: 2070: 2054: 1967: 1535: 379: 359: 255: 100: 59: 1479: 1145: 1086: 992: 726: 619: 456:
has been used to change the preferred residue either before or after the cleavage site.
2219: 2108: 2049: 1528: 1498: 1463: 1439: 1414: 1389: 1364: 1297: 1273:"Differential temperature dependence of tobacco etch virus and rhinovirus 3C proteases" 1272: 1164: 1129: 1105: 1070: 1011: 976: 538: 513: 421: 183: 1130:"A tobacco etch virus protease with increased substrate tolerance at the P1' position" 899: 745: 710: 638: 603: 2229: 2013: 1972: 958: 851: 781: 438: 1216: 420:
have specificity for one residue before and after the cleaved bond due to a shallow
28: 1962: 1830: 1826: 452:
Although rational design has had limited success in changing protease specificity,
251: 1464:"Approaching infinite affinity through engineering of peptide-protein interaction" 1540: 1154: 1001: 2186: 2121: 1957: 1901: 1896: 1866: 1850: 1845: 1840: 1835: 1821: 1816: 1811: 1806: 1801: 1248: 1231: 402: 383: 320: 286: 270: 2214: 1468:
Proceedings of the National Academy of Sciences of the United States of America
1365:"Enhancing the stability and solubility of TEV protease using in silico design" 670:"Structural basis for the substrate specificity of tobacco etch virus protease" 1881: 1695: 1664: 1659: 1654: 1649: 1430: 1341: 1200: 514:"MEROPS: the database of proteolytic enzymes, their substrates and inhibitors" 1363:
Cabrita LD, Gilis D, Robertson AL, Dehouck Y, Rooman M, Bottomley SP (2007).
1288: 907: 2160: 2134: 1886: 1793: 1748: 1743: 1733: 1723: 1690: 1644: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1488: 1095: 735: 628: 425:
substrate peptide (P6 to P1’) is bound in a complementary site (S6 to S1’).
1507: 1448: 1398: 1349: 1306: 1257: 1208: 1173: 1114: 1047: 1020: 950: 915: 824: 695: 686: 669: 585: 577: 547: 1055: 859: 789: 754: 647: 1876: 1576: 1523: 1380: 529: 495: 352: 348: 259: 231: 112: 1271:
Raran-Kurussi S, Tözsér J, Cherry S, Tropea JE, Waugh DS (15 May 2013).
1705: 1596: 417: 344: 332: 265: 247: 131: 1069:
Yi L, Gebhard MC, Li Q, Taft JM, Georgiou G, Iverson BL (April 2013).
942: 816: 392: 307: 39: 2173: 1943: 1753: 1685: 1680: 336: 195: 107: 95: 83: 2147: 1728: 296: 119: 1916: 1549: 1912: 449:
as the recognized sequence scarcely occurs in proteins.
2203: 437:
One of the main uses of this protein is for removing
358:
Covalent catalysis is performed with an Asp-His-Cys
236:
Tobacco Etch Virus nuclear-inclusion-a endopeptidase
2099: 2063: 2032: 2001: 1950: 1859: 1792: 1704: 1673: 1595: 878:
Biochemical and Biophysical Research Communications
512:Rawlings ND, Barrett AJ, Bateman A (January 2012). 206: 194: 182: 177: 154: 142: 130: 118: 106: 94: 82: 77: 65: 53: 48: 21: 468:(MBP) which acts a solubility-enhancing partner. 339:classification). Although homologous to cellular 315:The structure of TEV protease has been solved by 970: 968: 663: 661: 659: 657: 559: 557: 507: 505: 285:encodes its entire genome as a single massive 1928: 1561: 975:Kostallas G, Löfdahl PÅ, Samuelson P (2011). 597: 595: 8: 460:been made to improve its solubility through 323:and a flexible C-terminal tail and displays 1935: 1921: 1913: 1568: 1554: 1546: 174: 1497: 1487: 1438: 1388: 1296: 1247: 1163: 1153: 1128:Renicke C, Spadaccini R, Taxis C (2013). 1104: 1094: 1010: 1000: 889: 744: 734: 709:Bazan JF, Fletterick RJ (November 1988). 685: 637: 627: 537: 602:Carrington JC, Dougherty WG (May 1988). 374:Surface model of TEV bound to uncleaved 369: 2210: 483: 18: 871: 869: 382:(red). The substrate binds inside an 7: 489: 487: 14: 1541:National Cancer Institute TEV FAQ 433:Application as a biochemical tool 22:nuclear-inclusion-a endopeptidase 2213: 238:) is a highly sequence-specific 27: 1: 900:10.1016/S0006-291X(02)00574-0 246:(TEV). It is a member of the 1155:10.1371/journal.pone.0067915 1075:Proc. Natl. Acad. Sci. U.S.A 1002:10.1371/journal.pone.0016136 852:10.1016/0042-6822(89)90603-X 782:10.1016/0042-6822(89)90132-3 715:Proc. Natl. Acad. Sci. U.S.A 608:Proc. Natl. Acad. Sci. U.S.A 524:(Database issue): D343–50. 443:recombinant fusion proteins 2257: 1524:TEV polyprotein on UniProt 493:UniProt: TEV polyprotein: 378:(black), also showing the 2091:Michaelis–Menten kinetics 1431:10.1038/s41594-018-0033-9 1342:10.1016/j.pep.2004.08.016 1249:10.1093/protein/14.12.993 1201:10.1007/s12010-011-9522-6 1189:Appl. Biochem. Biotechnol 173: 26: 1983:Diffusion-limited enzyme 1289:10.1016/j.ab.2013.01.031 319:. It is composed of two 16:Highly specific protease 1489:10.1073/pnas.1909653116 1277:Analytical Biochemistry 1096:10.1073/pnas.1215994110 736:10.1073/pnas.85.21.7872 629:10.1073/pnas.85.10.3391 466:maltose binding protein 1529:TEV protease on MEROPS 1048:10.1006/abio.1994.1060 687:10.1074/jbc.M207224200 578:10.1006/prep.2000.1251 397: 312: 293:Structure and function 2076:Eadie–Hofstee diagram 2009:Allosteric regulation 411:substrate promiscuity 373: 317:X-ray crystallography 300: 2086:Lineweaver–Burk plot 1381:10.1110/ps.072822507 403:cleaved peptide bond 327:to the chymotrypsin 271:cleaved peptide bond 1872:Cancer procoagulant 1480:2019PNAS..11626523K 1474:(52): 26523–26533. 1419:Nat Struct Mol Biol 1330:Protein Expr. Purif 1146:2013PLoSO...867915R 1087:2013PNAS..110.7229Y 993:2011PLoSO...616136K 727:1988PNAS...85.7872B 620:1988PNAS...85.3391C 566:Protein Expr. Purif 325:structural homology 2045:Enzyme superfamily 1978:Enzyme promiscuity 1581:cysteine proteases 1534:2016-03-03 at the 931:Biotechnol. Bioeng 530:10.1093/nar/gkr987 462:directed evolution 454:directed evolution 398: 313: 283:tobacco etch virus 244:Tobacco Etch Virus 2201: 2200: 1910: 1909: 943:10.1002/bit.22693 817:10.1021/cr040669e 518:Nucleic Acids Res 240:cysteine protease 222: 221: 218: 217: 137:metabolic pathway 2248: 2218: 2217: 2209: 2081:Hanes–Woolf plot 2024:Enzyme activator 2019:Enzyme inhibitor 1993:Enzyme catalysis 1937: 1930: 1923: 1914: 1892:3C-like protease 1570: 1563: 1556: 1547: 1512: 1511: 1501: 1491: 1459: 1453: 1452: 1442: 1409: 1403: 1402: 1392: 1360: 1354: 1353: 1317: 1311: 1310: 1300: 1268: 1262: 1261: 1251: 1242:(12): 993–1000. 1227: 1221: 1220: 1184: 1178: 1177: 1167: 1157: 1125: 1119: 1118: 1108: 1098: 1066: 1060: 1059: 1031: 1025: 1024: 1014: 1004: 972: 963: 962: 926: 920: 919: 893: 873: 864: 863: 835: 829: 828: 800: 794: 793: 765: 759: 758: 748: 738: 706: 700: 699: 689: 680:(52): 50564–72. 665: 652: 651: 641: 631: 599: 590: 589: 561: 552: 551: 541: 509: 500: 499: 491: 395: 341:serine proteases 310: 175: 42: 31: 19: 2256: 2255: 2251: 2250: 2249: 2247: 2246: 2245: 2226: 2225: 2224: 2212: 2204: 2202: 2197: 2109:Oxidoreductases 2095: 2071:Enzyme kinetics 2059: 2055:List of enzymes 2028: 1997: 1968:Catalytic triad 1946: 1941: 1911: 1906: 1855: 1788: 1700: 1669: 1591: 1574: 1536:Wayback Machine 1520: 1515: 1461: 1460: 1456: 1411: 1410: 1406: 1362: 1361: 1357: 1319: 1318: 1314: 1270: 1269: 1265: 1229: 1228: 1224: 1186: 1185: 1181: 1127: 1126: 1122: 1081:(18): 7229–34. 1068: 1067: 1063: 1033: 1032: 1028: 974: 973: 966: 928: 927: 923: 891:10.1.1.375.4271 875: 874: 867: 837: 836: 832: 802: 801: 797: 767: 766: 762: 708: 707: 703: 667: 666: 655: 601: 600: 593: 563: 562: 555: 511: 510: 503: 494: 492: 485: 481: 435: 387: 380:catalytic triad 368: 335:, C4 family by 302: 295: 279: 256:fusion proteins 44: 34: 17: 12: 11: 5: 2254: 2252: 2244: 2243: 2238: 2228: 2227: 2223: 2222: 2199: 2198: 2196: 2195: 2182: 2169: 2156: 2143: 2130: 2117: 2103: 2101: 2097: 2096: 2094: 2093: 2088: 2083: 2078: 2073: 2067: 2065: 2061: 2060: 2058: 2057: 2052: 2047: 2042: 2036: 2034: 2033:Classification 2030: 2029: 2027: 2026: 2021: 2016: 2011: 2005: 2003: 1999: 1998: 1996: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1954: 1952: 1948: 1947: 1942: 1940: 1939: 1932: 1925: 1917: 1908: 1907: 1905: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1863: 1861: 1857: 1856: 1854: 1853: 1848: 1843: 1838: 1833: 1824: 1819: 1814: 1809: 1804: 1798: 1796: 1790: 1789: 1787: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1710: 1708: 1702: 1701: 1699: 1698: 1693: 1688: 1683: 1677: 1675: 1671: 1670: 1668: 1667: 1662: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1601: 1599: 1593: 1592: 1575: 1573: 1572: 1565: 1558: 1550: 1544: 1543: 1538: 1526: 1519: 1518:External links 1516: 1514: 1513: 1454: 1425:(3): 270–278. 1404: 1375:(11): 2360–7. 1355: 1336:(1): 108–115. 1312: 1283:(2): 142–144. 1263: 1222: 1195:(5): 1340–54. 1179: 1120: 1061: 1026: 964: 921: 884:(5): 949–955. 865: 830: 795: 760: 721:(21): 7872–6. 701: 653: 614:(10): 3391–5. 591: 553: 501: 482: 480: 477: 441:from purified 434: 431: 367: 364: 331:of proteases ( 294: 291: 278: 275: 220: 219: 216: 215: 210: 204: 203: 198: 192: 191: 186: 180: 179: 171: 170: 159: 152: 151: 146: 140: 139: 134: 128: 127: 122: 116: 115: 110: 104: 103: 98: 92: 91: 86: 80: 79: 75: 74: 69: 63: 62: 57: 51: 50: 46: 45: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 2253: 2242: 2239: 2237: 2234: 2233: 2231: 2221: 2216: 2211: 2207: 2193: 2189: 2188: 2183: 2180: 2176: 2175: 2170: 2167: 2163: 2162: 2157: 2154: 2150: 2149: 2144: 2141: 2137: 2136: 2131: 2128: 2124: 2123: 2118: 2115: 2111: 2110: 2105: 2104: 2102: 2098: 2092: 2089: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2068: 2066: 2062: 2056: 2053: 2051: 2050:Enzyme family 2048: 2046: 2043: 2041: 2038: 2037: 2035: 2031: 2025: 2022: 2020: 2017: 2015: 2014:Cooperativity 2012: 2010: 2007: 2006: 2004: 2000: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1973:Oxyanion hole 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1955: 1953: 1949: 1945: 1938: 1933: 1931: 1926: 1924: 1919: 1918: 1915: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1864: 1862: 1858: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1799: 1797: 1795: 1791: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1711: 1709: 1707: 1703: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1678: 1676: 1674:Fruit-derived 1672: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1602: 1600: 1598: 1594: 1589: 1586: 1582: 1578: 1571: 1566: 1564: 1559: 1557: 1552: 1551: 1548: 1542: 1539: 1537: 1533: 1530: 1527: 1525: 1522: 1521: 1517: 1509: 1505: 1500: 1495: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1458: 1455: 1450: 1446: 1441: 1436: 1432: 1428: 1424: 1420: 1416: 1408: 1405: 1400: 1396: 1391: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1313: 1308: 1304: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1267: 1264: 1259: 1255: 1250: 1245: 1241: 1237: 1233: 1226: 1223: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1183: 1180: 1175: 1171: 1166: 1161: 1156: 1151: 1147: 1143: 1140:(6): e67915. 1139: 1135: 1131: 1124: 1121: 1116: 1112: 1107: 1102: 1097: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1036:Anal. Biochem 1030: 1027: 1022: 1018: 1013: 1008: 1003: 998: 994: 990: 987:(1): e16136. 986: 982: 978: 971: 969: 965: 960: 956: 952: 948: 944: 940: 937:(3): 339–46. 936: 932: 925: 922: 917: 913: 909: 905: 901: 897: 892: 887: 883: 879: 872: 870: 866: 861: 857: 853: 849: 846:(2): 356–64. 845: 841: 834: 831: 826: 822: 818: 814: 811:(3): 973–99. 810: 806: 799: 796: 791: 787: 783: 779: 776:(1): 302–10. 775: 771: 764: 761: 756: 752: 747: 742: 737: 732: 728: 724: 720: 716: 712: 705: 702: 697: 693: 688: 683: 679: 675: 674:J. Biol. Chem 671: 664: 662: 660: 658: 654: 649: 645: 640: 635: 630: 625: 621: 617: 613: 609: 605: 598: 596: 592: 587: 583: 579: 575: 571: 567: 560: 558: 554: 549: 545: 540: 535: 531: 527: 523: 519: 515: 508: 506: 502: 497: 490: 488: 484: 478: 476: 473: 469: 467: 463: 457: 455: 450: 448: 444: 440: 439:affinity tags 432: 430: 426: 423: 422:binding cleft 419: 414: 412: 406: 404: 394: 390: 385: 381: 377: 372: 365: 363: 361: 356: 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 309: 305: 299: 292: 290: 288: 284: 276: 274: 272: 268: 267: 262: 261: 257: 253: 249: 245: 241: 237: 233: 230: 226: 214: 211: 209: 205: 202: 199: 197: 193: 190: 187: 185: 181: 176: 172: 169: 166: 163: 160: 157: 153: 150: 147: 145: 141: 138: 135: 133: 129: 126: 123: 121: 117: 114: 113:NiceZyme view 111: 109: 105: 102: 99: 97: 93: 90: 87: 85: 81: 76: 73: 70: 68: 64: 61: 58: 56: 52: 47: 41: 37: 30: 25: 20: 2187:Translocases 2184: 2171: 2158: 2145: 2132: 2122:Transferases 2119: 2106: 1963:Binding site 1471: 1467: 1457: 1422: 1418: 1407: 1372: 1368: 1358: 1333: 1329: 1325: 1321: 1315: 1280: 1276: 1266: 1239: 1235: 1225: 1192: 1188: 1182: 1137: 1133: 1123: 1078: 1074: 1064: 1042:(2): 413–7. 1039: 1035: 1029: 984: 980: 934: 930: 924: 881: 877: 843: 839: 833: 808: 804: 798: 773: 769: 763: 718: 714: 704: 677: 673: 611: 607: 572:(2): 312–8. 569: 565: 521: 517: 474: 470: 458: 451: 446: 436: 427: 415: 407: 399: 357: 314: 280: 264: 258: 252:chymotrypsin 235: 225:TEV protease 224: 223: 101:BRENDA entry 72:139946-51-3 1958:Active site 1902:Gingipain K 1897:Gingipain R 1867:Clostripain 1369:Protein Sci 1236:Protein Eng 384:active site 366:Specificity 329:superfamily 287:polyprotein 89:IntEnz view 49:Identifiers 2230:Categories 2161:Isomerases 2135:Hydrolases 2002:Regulation 1882:Autophagin 1696:Actinidain 1665:Caspase 14 1660:Caspase 13 1655:Caspase 12 1650:Caspase 10 479:References 158:structures 125:KEGG entry 2241:Proteases 2236:EC 3.4.22 2040:EC number 1887:Cruzipain 1794:Cathepsin 1691:Bromelain 1645:Caspase 9 1640:Caspase 8 1635:Caspase 7 1630:Caspase 6 1625:Caspase 5 1620:Caspase 4 1615:Caspase 3 1610:Caspase 2 1605:Caspase 1 1577:Proteases 959:205499859 908:0006-291X 886:CiteSeerX 805:Chem. Rev 376:substrate 343:(such as 321:β-barrels 232:3.4.22.44 78:Databases 60:3.4.22.44 2064:Kinetics 1988:Cofactor 1951:Activity 1877:Separase 1532:Archived 1508:31822621 1449:29483648 1399:17905838 1350:15477088 1326:in vitro 1307:23395976 1258:11809930 1217:36583382 1209:22270548 1174:23826349 1134:PLOS ONE 1115:23589865 1021:21267463 981:PLOS ONE 951:20148412 916:12074568 840:Virology 825:15755082 770:Virology 696:12377789 586:10873547 548:22086950 496:"P04517" 396:​) 353:thrombin 349:elastase 311:​) 260:in vitro 213:proteins 201:articles 189:articles 162:RCSB PDB 43:​) 2220:Biology 2174:Ligases 1944:Enzymes 1706:Calpain 1597:Caspase 1499:6936558 1476:Bibcode 1440:5840021 1390:2211701 1322:in vivo 1298:4196241 1165:3691164 1142:Bibcode 1106:3645551 1083:Bibcode 1056:8179197 1012:3022733 989:Bibcode 860:2669323 790:2475971 755:3186696 723:Bibcode 648:3285343 616:Bibcode 539:3245014 447:in vivo 418:trypsin 345:trypsin 333:PA clan 266:in vivo 248:PA clan 149:profile 132:MetaCyc 67:CAS no. 2206:Portal 2148:Lyases 1784:CAPNS2 1779:CAPNS1 1774:CAPN14 1769:CAPN13 1764:CAPN12 1759:CAPN11 1754:CAPN10 1686:Ficain 1681:Papain 1588:3.4.22 1506:  1496:  1447:  1437:  1397:  1387:  1348:  1305:  1295:  1256:  1215:  1207:  1172:  1162:  1113:  1103:  1054:  1019:  1009:  957:  949:  914:  906:  888:  858:  823:  788:  753:  746:282299 743:  694:  646:  639:280215 636:  584:  546:  536:  337:MEROPS 277:Origin 196:PubMed 178:Search 168:PDBsum 108:ExPASy 96:BRENDA 84:IntEnz 55:EC no. 2100:Types 1860:Other 1749:CAPN9 1744:CAPN8 1739:CAPN7 1734:CAPN6 1729:CAPN5 1724:CAPN3 1719:CAPN2 1714:CAPN1 1213:S2CID 955:S2CID 360:triad 242:from 144:PRIAM 2192:list 2185:EC7 2179:list 2172:EC6 2166:list 2159:EC5 2153:list 2146:EC4 2140:list 2133:EC3 2127:list 2120:EC2 2114:list 2107:EC1 1504:PMID 1445:PMID 1395:PMID 1346:PMID 1324:and 1303:PMID 1254:PMID 1205:PMID 1170:PMID 1111:PMID 1052:PMID 1017:PMID 947:PMID 912:PMID 904:ISSN 856:PMID 821:PMID 786:PMID 751:PMID 692:PMID 644:PMID 582:PMID 544:PMID 393:1lvb 308:1lvm 281:The 263:and 208:NCBI 165:PDBe 120:KEGG 40:1lvb 1494:PMC 1484:doi 1472:116 1435:PMC 1427:doi 1385:PMC 1377:doi 1338:doi 1328:". 1293:PMC 1285:doi 1281:436 1244:doi 1197:doi 1193:166 1160:PMC 1150:doi 1101:PMC 1091:doi 1079:110 1044:doi 1040:216 1007:PMC 997:doi 939:doi 935:106 896:doi 882:294 848:doi 844:171 813:doi 809:105 778:doi 774:172 741:PMC 731:doi 682:doi 678:277 634:PMC 624:doi 574:doi 534:PMC 526:doi 389:PDB 304:PDB 250:of 184:PMC 156:PDB 36:PDB 2232:: 1831:L2 1827:L1 1585:EC 1579:: 1502:. 1492:. 1482:. 1470:. 1466:. 1443:. 1433:. 1423:25 1421:. 1417:. 1393:. 1383:. 1373:16 1371:. 1367:. 1344:. 1334:38 1332:. 1301:. 1291:. 1279:. 1275:. 1252:. 1240:14 1238:. 1234:. 1211:. 1203:. 1191:. 1168:. 1158:. 1148:. 1136:. 1132:. 1109:. 1099:. 1089:. 1077:. 1073:. 1050:. 1038:. 1015:. 1005:. 995:. 983:. 979:. 967:^ 953:. 945:. 933:. 910:. 902:. 894:. 880:. 868:^ 854:. 842:. 819:. 807:. 784:. 772:. 749:. 739:. 729:. 719:85 717:. 713:. 690:. 676:. 672:. 656:^ 642:. 632:. 622:. 612:85 610:. 606:. 594:^ 580:. 570:19 568:. 556:^ 542:. 532:. 522:40 520:. 516:. 504:^ 486:^ 391:: 351:, 347:, 306:: 273:. 234:, 229:EC 38:: 2208:: 2194:) 2190:( 2181:) 2177:( 2168:) 2164:( 2155:) 2151:( 2142:) 2138:( 2129:) 2125:( 2116:) 2112:( 1936:e 1929:t 1922:v 1851:Z 1846:W 1841:S 1836:O 1829:/ 1822:K 1817:H 1812:F 1807:C 1802:B 1590:) 1583:( 1569:e 1562:t 1555:v 1510:. 1486:: 1478:: 1451:. 1429:: 1401:. 1379:: 1352:. 1340:: 1309:. 1287:: 1260:. 1246:: 1219:. 1199:: 1176:. 1152:: 1144:: 1138:8 1117:. 1093:: 1085:: 1058:. 1046:: 1023:. 999:: 991:: 985:6 961:. 941:: 918:. 898:: 862:. 850:: 827:. 815:: 792:. 780:: 757:. 733:: 725:: 698:. 684:: 650:. 626:: 618:: 588:. 576:: 550:. 528:: 498:. 227:(

Index


PDB
1lvb
EC no.
3.4.22.44
CAS no.
139946-51-3
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
PMC
articles
PubMed
articles
NCBI
proteins
EC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.