Knowledge

Talk:Normal matrix

Source 📝

1640:"The entire space is spanned by some orthonormal set of eigenvectors of A." I could not find any material stating this, but rather statements equivalent with the eigenvectors of A spanning the entire space. If so, the vectors are generating the space, thus a basis can be selected. If a basis can be selected, then via the Gram-Schmidt orthogonalization, an orthogonal set of vectors can be constructed, which are still the eigenvectors of the matrix, and normalizing them does not change that. Is this reasoning sound? If so, wouldn't it be better to elaborate a bit in the article? 84: 443:, he defines normal matrices as the matrices which have orthogonal eigenvectors, and then proves that these matrices are characterized by the property that they commute with their adjoint. This article does the reverse: it defines normal matrices as those matrices that commute with their adjoint, and then as a "consequence" show that these matrices have orthogonal eigenvectors. Neither approach is "right" or "wrong", but it may be worth checking other literature to see if there is a consensus. 74: 53: 22: 1601:"Normality is a convenient test for diagonalizability: every normal matrix can be converted to a diagonal matrix by a unitary transform, and every matrix which can be made diagonal by a unitary transform is also normal, but finding the desired transform requires much more work than simply testing to see whether the matrix is normal." -- 462:
There seems to be a problem with equivalence number 10: "A commutes with some normal matrix N with distinct eigenvalues" if and only if A is normal. I think this is only true if A has N distinct eigenvalues. If A is normal with some degeneracy, any matrix commuting with A will share its eigenspaces,
497:
Ok... I think I'm with you. Just checked the proof I was looking at. If A commutes with B and B is normal, then every k-dimensional eigenspace of A has to contain an orthogonal set of k eigenvectors for B. I interpreted that as eigenspace of B, which it obviously doesn't have to be. B could have N
716: 404:
I think the point is that a normal matrix is similar to a diagonal matrix with complex entries. If all of the entries are real/imag/unit/positive then the matrix itself is Hermitian/AnitHermitian/Unitary/Positive. Since addition and multiplication of diagonal matrices act individually on each
1837:
Thanks for spotting the error and sorry for the trouble. I got mixed up when I was writing the first paragraph... Is the set of normal matrices that are a subset of EP matrices. But looking back now and seeing the EP matrices article, I think this article is better without this contribution.
373:
The "analogy" section of this page states that it is "occasionally useful" to make the analogy with complex numbers - but it doesn't give any explanation of why or in what way it can be useful. Without such information the statement of the analogy doesn't seem very helpful.
269:(1) Such words are sometimes uncapitalized if they are being used intensively, by specialists in a particular area. But I don't think 'Hermitian' is usually in this category. In an encyclopaedia, I would leave the capital in. (Likewise with 'Laplacian', 'Lagrangian' etc.) 1407: 903: 478:
Distinct eigenvalues means N has one dimensional eigenspaces corresponding to each eigenvalue. So the statement is OK. The fact that two normal matrices commute say nothing about their kernels. Take, for example, the identity matrix and the zero matrix.
1616:
Normality is equivalent to unitary diagonalizability, which is stronger than diagonalizability. But to actually find the unitary transform that diagonalizes the matrix means to find the eigenvectors, which from what I hear can be numerically tricky.
1597:
How widely is normality used as a test for diagonalizability? I personally found the second paragraph confusing since it seems to imply that many or most diagonalizable matrices are normal, and normality is a quick and easy way to test for it.
419:
Perhaps something like above could be added to this section. There are already a few similar Propositions in the "Consequences" section, but they are separately stated and not tied together, which obscures the generality of the normal matrix
1813: 978:
Thanks. That's a good way of putting it. A is then diagonalisable in the unique basis that diagonalises B... but not necessarily uniquely. If A has any multiple eigenvalues then the diagonal form of A will contain blocks of
192:
Correction  : a positive definite matrix is not normal ! Take a small 2 by 2 example to see that : $ $ A=\left(\begin{array}{cc}5&1\\0&7\end{array})\right.$ $ The matrix $ A$ is positive definite but non normal.
563: 1951: 1469: 248: 1699:. Certainly a reader new to the subject might not see this immediately, but to me this point does not stand out as needing a citation among other statements of the same nature in the article. Tag removed. 300:. This led to the impression that the definition of Horn and Johnson is common, but not universal. Therefore, it's best to be explicit on Knowledge, instead of relying on the definition being used in 1145: 1655:
Orthonormality follows trivially from that unitary diagonalizability of a normal matrix. Having a set of eigenvectors which forms a basis (mere diagonalizability) is strictly weaker than normality.
161:
many terms in this stub are not defined. This article either needs expanding to explain the terms, to have the terms converted into links where they are explained or the be merged into the main
140: 1190: 1229: 1822:
There is an obvious misunderstanding of the terms "special case" and "sufficient". Since I am not an expert in this field, I decided to remove the contribution instead of rectifying it.
780: 405:
entry, normal matrices share the same properties as the corresponding complex numbers. This only works for more multiple matrices if they are simultaneously diagonalizable, however.
276:
of being positive definite. A misjudgment, surely? - it certainly confused me for a while. Note to self or request to others - check Knowledge's article on positive definiteness.
250:
is an even simpler example. I think the original author assumed positive definiteness implied symmetry. This isn't necessarily the case for real matrices. (See the article on
1547: 1498: 1224: 1007: 342:
is Hermitian, but this is not true in general for real matrices. perhaps Horn and Johnson required Hermiticity in both the real and complex cases to get a uniform definition?
1571: 1102: 1080: 1976:
I suggest getting rid of the fancy boxes. They contribute nothing to the article except a graphic design, which is unnecessary. (I find them intrusive.) Opinions?
946: 759: 1991:👍 I haven't checked out the boxes on this page, but on other pages I've seen colored boxes cause the equations to be illegible when viewed in dark mode on mobile. 1518: 1732: 272:(2) Positive definite. Horn and Johnson,'Matrix Analysis', p396, make being Hermitian (and therefore symmetric, in the case of real matrices) part of the 2020: 180:
Should "Hermitian" be written with a capital 'H'? I think it always is everywhere else I've seen it, but I don't know what accepted style is for this. --
130: 1035:
Can anybody link a proof (or references) of the statement "the columns of U* are eigenvectors of both A and B"? (last phrase of section "consequences")
711:{\displaystyle B={\begin{pmatrix}\lambda _{1}I_{k_{1}}&0&0\\0&\lambda _{2}I_{k_{2}}&0\\0&0&\lambda _{3}I_{k_{3}}\end{pmatrix}}} 2015: 304:. Anyway, the latter article does not say clearly whether Hermitian is required, precisely because the literature is confused about this issue. 106: 1823: 358:
is a rank-1 projection. for a similar finite dimensional example, consider the square matrix that is 1 on the superdiagonal and 0 elsewhere.
1888: 1042: 389:
I didn't add that section, but after reading it I found it useful. If nothing else, it helps understand what the defintions mean. :)
97: 58: 1417: 200: 1107: 1996: 33: 1402:{\displaystyle \sum _{j=1}^{n}A_{ij}(U^{*})_{jk}=\sum _{j=1}^{n}(U^{*})_{ij}{\Lambda }_{jk}=(U^{*})_{ik}{\lambda }_{k}} 1726:
are also a special case of normal matrices. EPness, however, is not a sufficient condition to normality. For example,
761:
denotes the k by k identity matrix. Now, in the same basis, a matrix A commutes with B if and only if A is of the form
297: 898:{\displaystyle A={\begin{pmatrix}M_{k_{1}}&0&0\\0&M_{k_{2}}&0\\0&0&M_{k_{3}}\end{pmatrix}}} 307:(3) I tend to agree, but I'm not totally sure what you mean and I don't fully grasp the concept of "normal matrix". 1150: 1863: 1827: 425: 410: 379: 301: 251: 21: 1046: 1992: 1858:
In the classification, Dirac and Pauli matrices should be in the same category, since they are so similar.--
1843: 1704: 314: 1645: 39: 83: 1700: 1582: 1523: 1474: 1200: 1038: 1014: 503: 468: 394: 318: 162: 1683:
be the matrix having the basis vectors as columns; it is unitary, by orthonormality. In the product
1859: 1641: 498:
distinct eigenvalues and still satisfy that condition. Thanks. (Let me know if I'm not getting it)
421: 406: 375: 1958: 1602: 982: 105:
on Knowledge. If you would like to participate, please visit the project page, where you can join
1839: 1554: 1085: 1063: 89: 73: 52: 1962: 1660: 1622: 1606: 957: 484: 310: 1981: 448: 348: 1808:{\displaystyle A={\begin{pmatrix}1&2&0\\3&4&0\\0&0&0\end{pmatrix}}} 1578: 1010: 924: 737: 499: 464: 390: 1009:, and any change of basis among the degenerate eigenvectors will also leave A diagonal. 181: 1503: 2009: 169: 1881:
but among 2×2 matrices, there are only ones that are multiples of unitary matrices.
1656: 1618: 953: 480: 359: 1953:
is a normal matrix, but its eigenvalues have unequal modulus 1.90211, 1.17557, so
520:
Let's look at it this way. Take a normal matrix B. If B has, say, 3 eigenvalues λ
1977: 444: 286: 102: 283:
normal would aid understanding. NTSORTO - insert some discussion accordingly.
255: 79: 1877:
I have doubts about the last sentence of comment in source in #Special cases
1723: 1679:
is unitary. Conversely, given an orthonormal basis of eigenvectors, let
463:
and therefore share its degeneracy. Can anyone check this for me please?
168:
My matrix stuff was too many years ago for me to be able to fix this. --
2000: 1985: 1966: 1867: 1847: 1831: 1708: 1664: 1649: 1626: 1610: 1586: 1050: 1018: 961: 507: 488: 472: 452: 429: 414: 398: 383: 362: 258: 1946:{\displaystyle A={\begin{bmatrix}1&-1\\1&1+i\end{bmatrix}}} 1464:{\displaystyle \mathbf {Au_{k}} =\lambda _{k}\mathbf {u_{k}} } 948:
is a k by k matrix. If B has distinct eigenvalues, then each k
243:{\displaystyle {\begin{bmatrix}1&1\\0&1\end{bmatrix}}} 15: 1719:
I have undone changes, which introduced the following text:
544:
respectively. So in some orthonormal basis, B takes the form
952:
is 1, i.e. A is unitarily diagonalizable, hence normal.
354:
is an example of a non-normal operator. the commutator
1903: 1747: 1140:{\displaystyle \mathbf {UAU^{*}} =\mathbf {\Lambda } } 795: 578: 209: 1891: 1873:
2×2 normal matrices are multiples of unitary matrices
1735: 1557: 1526: 1506: 1477: 1420: 1232: 1203: 1153: 1110: 1088: 1066: 985: 927: 783: 740: 566: 203: 101:, a collaborative effort to improve the coverage of 279:(3) Some more simple examples of matrices that are 1945: 1807: 1565: 1541: 1512: 1492: 1463: 1401: 1218: 1184: 1139: 1096: 1074: 1001: 940: 897: 753: 710: 242: 1671:The article already mentions that the columns of 1687:every column is scaled by its eigenvalue, i.e., 1721: 1675:are eigenvectors. They are orthonormal because 8: 1185:{\displaystyle {\Lambda }_{ii}=\lambda _{i}} 264: 19: 1226:, and using its unitary property, we have 47: 1898: 1890: 1742: 1734: 1558: 1556: 1532: 1527: 1525: 1505: 1483: 1478: 1476: 1454: 1449: 1443: 1429: 1421: 1419: 1393: 1388: 1378: 1368: 1349: 1344: 1334: 1324: 1311: 1300: 1284: 1274: 1258: 1248: 1237: 1231: 1209: 1204: 1202: 1176: 1160: 1155: 1152: 1132: 1122: 1111: 1109: 1089: 1087: 1067: 1065: 1031:Eigenvectors of commuting normal matrices 993: 984: 932: 926: 879: 874: 843: 838: 807: 802: 790: 782: 745: 739: 692: 687: 677: 646: 641: 631: 600: 595: 585: 573: 565: 204: 202: 296:(2) I had some discussion about this on 49: 1957:is not a multiple of unitary matrix. 7: 1082:is diagonizable by a unitary matrix 95:This article is within the scope of 38:It is of interest to the following 1345: 1156: 14: 2021:Mid-priority mathematics articles 115:Knowledge:WikiProject Mathematics 2016:Start-Class mathematics articles 1818:is an EP matrix, but not normal. 1559: 1542:{\displaystyle \mathbf {U^{*}} } 1533: 1529: 1493:{\displaystyle \mathbf {u_{k}} } 1484: 1480: 1455: 1451: 1430: 1426: 1422: 1219:{\displaystyle \mathbf {U^{*}} } 1210: 1206: 1133: 1123: 1119: 1115: 1112: 1090: 1068: 439:In Joel Franklin's classic 1968 118:Template:WikiProject Mathematics 82: 72: 51: 20: 1854:Matrix Classes panel at the end 1636:Orthonormal set of eigenvectors 1414:This is an eigenvalue equation 265:'Hermitian' vs 'hermitian' etc. 135:This article has been rated as 1375: 1361: 1331: 1317: 1281: 1267: 325:(2) for complex matrices, < 1: 1967:23:06, 28 November 2022 (UTC) 1848:20:39, 20 February 2021 (UTC) 1051:13:56, 22 December 2011 (UTC) 1002:{\displaystyle \lambda I_{k}} 109:and see a list of open tasks. 2001:07:00, 4 December 2023 (UTC) 1986:10:36, 3 December 2023 (UTC) 1868:04:55, 7 February 2022 (UTC) 1566:{\displaystyle \mathbf {B} } 1097:{\displaystyle \mathbf {U} } 1075:{\displaystyle \mathbf {A} } 430:04:50, 7 February 2022 (UTC) 415:04:50, 7 February 2022 (UTC) 399:20:01, 10 October 2009 (UTC) 384:17:13, 10 October 2009 (UTC) 1665:02:08, 5 January 2013 (UTC) 1650:01:58, 5 January 2013 (UTC) 1587:01:44, 6 January 2012 (UTC) 298:Talk:Cholesky decomposition 2037: 1709:17:05, 23 March 2014 (UTC) 1593:Test for diagonalizability 453:19:12, 15 April 2010 (UTC) 1832:01:20, 20 July 2019 (UTC) 1695:. Multiply both sides by 1551:You can do the same with 1147:, with non-zero elements 1019:10:15, 31 July 2011 (UTC) 962:05:07, 31 July 2011 (UTC) 508:18:42, 30 July 2011 (UTC) 489:12:19, 30 July 2011 (UTC) 473:22:32, 28 July 2011 (UTC) 363:10:37, 7 March 2007 (UTC) 319:09:58, 7 March 2007 (UTC) 259:04:17, 13 July 2006 (UTC) 184:16:22, 19 Jun 2005 (UTC) 172:22:19 Jan 17, 2003 (UTC) 134: 67: 46: 1627:03:30, 15 May 2012 (UTC) 1611:20:49, 14 May 2012 (UTC) 1520:th column of the matrix 302:positive-definite matrix 252:positive definite matrix 141:project's priority scale 98:WikiProject Mathematics 1947: 1820: 1809: 1567: 1543: 1514: 1494: 1465: 1403: 1316: 1253: 1220: 1186: 1141: 1098: 1076: 1003: 942: 899: 755: 712: 244: 28:This article is rated 1948: 1810: 1568: 1544: 1515: 1495: 1466: 1404: 1296: 1233: 1221: 1187: 1142: 1099: 1077: 1004: 943: 941:{\displaystyle M_{k}} 900: 756: 754:{\displaystyle I_{k}} 713: 532:with multiplicities k 245: 188:Positive definiteness 1889: 1733: 1715:EPness and normality 1555: 1524: 1504: 1475: 1418: 1230: 1201: 1151: 1108: 1086: 1064: 983: 925: 781: 738: 564: 201: 121:mathematics articles 1197:Pre-multiplying by 1993:The-erinaceous-one 1943: 1937: 1805: 1799: 1563: 1539: 1510: 1490: 1461: 1399: 1216: 1182: 1137: 1094: 1072: 999: 938: 895: 889: 751: 708: 702: 240: 234: 90:Mathematics portal 34:content assessment 1513:{\displaystyle k} 1041:comment added by 155: 154: 151: 150: 147: 146: 2028: 1952: 1950: 1949: 1944: 1942: 1941: 1814: 1812: 1811: 1806: 1804: 1803: 1572: 1570: 1569: 1564: 1562: 1548: 1546: 1545: 1540: 1538: 1537: 1536: 1519: 1517: 1516: 1511: 1499: 1497: 1496: 1491: 1489: 1488: 1487: 1470: 1468: 1467: 1462: 1460: 1459: 1458: 1448: 1447: 1435: 1434: 1433: 1408: 1406: 1405: 1400: 1398: 1397: 1392: 1386: 1385: 1373: 1372: 1357: 1356: 1348: 1342: 1341: 1329: 1328: 1315: 1310: 1292: 1291: 1279: 1278: 1266: 1265: 1252: 1247: 1225: 1223: 1222: 1217: 1215: 1214: 1213: 1191: 1189: 1188: 1183: 1181: 1180: 1168: 1167: 1159: 1146: 1144: 1143: 1138: 1136: 1128: 1127: 1126: 1103: 1101: 1100: 1095: 1093: 1081: 1079: 1078: 1073: 1071: 1053: 1008: 1006: 1005: 1000: 998: 997: 947: 945: 944: 939: 937: 936: 904: 902: 901: 896: 894: 893: 886: 885: 884: 883: 850: 849: 848: 847: 814: 813: 812: 811: 760: 758: 757: 752: 750: 749: 717: 715: 714: 709: 707: 706: 699: 698: 697: 696: 682: 681: 653: 652: 651: 650: 636: 635: 607: 606: 605: 604: 590: 589: 349:unilateral shift 249: 247: 246: 241: 239: 238: 123: 122: 119: 116: 113: 92: 87: 86: 76: 69: 68: 63: 55: 48: 31: 25: 24: 16: 2036: 2035: 2031: 2030: 2029: 2027: 2026: 2025: 2006: 2005: 1974: 1936: 1935: 1924: 1918: 1917: 1909: 1899: 1887: 1886: 1875: 1856: 1824:209.141.188.140 1798: 1797: 1792: 1787: 1781: 1780: 1775: 1770: 1764: 1763: 1758: 1753: 1743: 1731: 1730: 1717: 1638: 1595: 1553: 1552: 1528: 1522: 1521: 1502: 1501: 1479: 1473: 1472: 1450: 1439: 1425: 1416: 1415: 1387: 1374: 1364: 1343: 1330: 1320: 1280: 1270: 1254: 1228: 1227: 1205: 1199: 1198: 1172: 1154: 1149: 1148: 1118: 1106: 1105: 1084: 1083: 1062: 1061: 1036: 1033: 989: 981: 980: 951: 928: 923: 922: 888: 887: 875: 870: 868: 863: 857: 856: 851: 839: 834: 832: 826: 825: 820: 815: 803: 798: 791: 779: 778: 741: 736: 735: 701: 700: 688: 683: 673: 671: 666: 660: 659: 654: 642: 637: 627: 625: 619: 618: 613: 608: 596: 591: 581: 574: 562: 561: 543: 539: 535: 531: 527: 523: 460: 437: 376:Nathaniel Virgo 371: 369:Analogy section 267: 233: 232: 227: 221: 220: 215: 205: 199: 198: 190: 178: 120: 117: 114: 111: 110: 88: 81: 61: 32:on Knowledge's 29: 12: 11: 5: 2034: 2032: 2024: 2023: 2018: 2008: 2007: 2004: 2003: 1973: 1970: 1940: 1934: 1931: 1928: 1925: 1923: 1920: 1919: 1916: 1913: 1910: 1908: 1905: 1904: 1902: 1897: 1894: 1883: 1882: 1874: 1871: 1860:Chris2crawford 1855: 1852: 1851: 1850: 1816: 1815: 1802: 1796: 1793: 1791: 1788: 1786: 1783: 1782: 1779: 1776: 1774: 1771: 1769: 1766: 1765: 1762: 1759: 1757: 1754: 1752: 1749: 1748: 1746: 1741: 1738: 1716: 1713: 1712: 1711: 1668: 1667: 1637: 1634: 1632: 1630: 1629: 1594: 1591: 1590: 1589: 1575: 1574: 1561: 1549: 1535: 1531: 1509: 1486: 1482: 1457: 1453: 1446: 1442: 1438: 1432: 1428: 1424: 1411: 1410: 1396: 1391: 1384: 1381: 1377: 1371: 1367: 1363: 1360: 1355: 1352: 1347: 1340: 1337: 1333: 1327: 1323: 1319: 1314: 1309: 1306: 1303: 1299: 1295: 1290: 1287: 1283: 1277: 1273: 1269: 1264: 1261: 1257: 1251: 1246: 1243: 1240: 1236: 1212: 1208: 1194: 1193: 1179: 1175: 1171: 1166: 1163: 1158: 1135: 1131: 1125: 1121: 1117: 1114: 1092: 1070: 1056: 1032: 1029: 1028: 1027: 1026: 1025: 1024: 1023: 1022: 1021: 996: 992: 988: 969: 968: 967: 966: 965: 964: 949: 935: 931: 914: 913: 912: 911: 910: 909: 908: 907: 906: 905: 892: 882: 878: 873: 869: 867: 864: 862: 859: 858: 855: 852: 846: 842: 837: 833: 831: 828: 827: 824: 821: 819: 816: 810: 806: 801: 797: 796: 794: 789: 786: 767: 766: 765: 764: 763: 762: 748: 744: 727: 726: 725: 724: 723: 722: 721: 720: 719: 718: 705: 695: 691: 686: 680: 676: 672: 670: 667: 665: 662: 661: 658: 655: 649: 645: 640: 634: 630: 626: 624: 621: 620: 617: 614: 612: 609: 603: 599: 594: 588: 584: 580: 579: 577: 572: 569: 550: 549: 548: 547: 546: 545: 541: 537: 533: 529: 525: 521: 513: 512: 511: 510: 492: 491: 459: 456: 436: 435:chicken vs egg 433: 422:Chris2crawford 407:Chris2crawford 402: 401: 370: 367: 366: 365: 344: 343: 322: 321: 308: 305: 294: 266: 263: 262: 261: 237: 231: 228: 226: 223: 222: 219: 216: 214: 211: 210: 208: 189: 186: 177: 176:Capitalization 174: 157: 153: 152: 149: 148: 145: 144: 133: 127: 126: 124: 107:the discussion 94: 93: 77: 65: 64: 56: 44: 43: 37: 26: 13: 10: 9: 6: 4: 3: 2: 2033: 2022: 2019: 2017: 2014: 2013: 2011: 2002: 1998: 1994: 1990: 1989: 1988: 1987: 1983: 1979: 1971: 1969: 1968: 1964: 1960: 1956: 1938: 1932: 1929: 1926: 1921: 1914: 1911: 1906: 1900: 1895: 1892: 1880: 1879: 1878: 1872: 1870: 1869: 1865: 1861: 1853: 1849: 1845: 1841: 1840:Saung Tadashi 1836: 1835: 1834: 1833: 1829: 1825: 1819: 1800: 1794: 1789: 1784: 1777: 1772: 1767: 1760: 1755: 1750: 1744: 1739: 1736: 1729: 1728: 1727: 1725: 1720: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1669: 1666: 1662: 1658: 1654: 1653: 1652: 1651: 1647: 1643: 1635: 1633: 1628: 1624: 1620: 1615: 1614: 1613: 1612: 1608: 1604: 1599: 1592: 1588: 1584: 1580: 1577: 1576: 1550: 1507: 1444: 1440: 1436: 1413: 1412: 1394: 1389: 1382: 1379: 1369: 1365: 1358: 1353: 1350: 1338: 1335: 1325: 1321: 1312: 1307: 1304: 1301: 1297: 1293: 1288: 1285: 1275: 1271: 1262: 1259: 1255: 1249: 1244: 1241: 1238: 1234: 1196: 1195: 1177: 1173: 1169: 1164: 1161: 1129: 1059: 1058: 1057: 1054: 1052: 1048: 1044: 1043:77.168.20.183 1040: 1030: 1020: 1016: 1012: 994: 990: 986: 977: 976: 975: 974: 973: 972: 971: 970: 963: 959: 955: 933: 929: 920: 919: 918: 917: 916: 915: 890: 880: 876: 871: 865: 860: 853: 844: 840: 835: 829: 822: 817: 808: 804: 799: 792: 787: 784: 777: 776: 775: 774: 773: 772: 771: 770: 769: 768: 746: 742: 733: 732: 731: 730: 729: 728: 703: 693: 689: 684: 678: 674: 668: 663: 656: 647: 643: 638: 632: 628: 622: 615: 610: 601: 597: 592: 586: 582: 575: 570: 567: 560: 559: 558: 557: 556: 555: 554: 553: 552: 551: 519: 518: 517: 516: 515: 514: 509: 505: 501: 496: 495: 494: 493: 490: 486: 482: 477: 476: 475: 474: 470: 466: 457: 455: 454: 450: 446: 442: 441:Matrix Theory 434: 432: 431: 427: 423: 417: 416: 412: 408: 400: 396: 392: 388: 387: 386: 385: 381: 377: 368: 364: 361: 357: 353: 350: 346: 345: 341: 338:implies that 337: 332: 328: 324: 323: 320: 316: 312: 309: 306: 303: 299: 295: 292: 291: 290: 289:7 March 2007 288: 284: 282: 277: 275: 270: 260: 257: 253: 235: 229: 224: 217: 212: 206: 196: 195: 194: 187: 185: 183: 175: 173: 171: 166: 164: 160: 142: 138: 132: 129: 128: 125: 108: 104: 100: 99: 91: 85: 80: 78: 75: 71: 70: 66: 60: 57: 54: 50: 45: 41: 35: 27: 23: 18: 17: 1975: 1954: 1884: 1876: 1857: 1821: 1817: 1722: 1718: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1639: 1631: 1600: 1596: 1055: 1037:— Preceding 1034: 461: 458:Equivalences 440: 438: 418: 403: 372: 355: 351: 339: 335: 334:≥ 0 for all 330: 326: 311:Jitse Niesen 293:(1) I agree. 285: 280: 278: 273: 271: 268: 191: 179: 167: 158: 156: 137:Mid-priority 136: 96: 62:Mid‑priority 40:WikiProjects 1972:Fancy boxes 1885:The matrix 1724:EP matrices 197:The matrix 112:Mathematics 103:mathematics 59:Mathematics 30:Start-class 2010:Categories 1701:Styrofoams 1579:Bobathon71 1011:Bobathon71 500:Bobathon71 465:Bobathon71 391:Shreevatsa 274:definition 356:T*T - TT* 182:DudeGalea 1642:Andorxor 1471:, where 1039:unsigned 420:analogy. 347:(3) the 170:SGBailey 1959:Hbghlyj 1657:Mct mht 1619:Mct mht 1603:Aluchko 1500:is the 1104:, then 954:Mct mht 540:, and k 528:, and λ 481:Mct mht 360:Mct mht 139:on the 1978:Zaslav 921:where 734:where 445:Lavaka 287:Rwb001 165:page. 163:matrix 36:scale. 333:: --> 256:Lunch 1997:talk 1982:talk 1963:talk 1864:talk 1844:talk 1828:talk 1705:talk 1661:talk 1646:talk 1623:talk 1607:talk 1583:talk 1047:talk 1015:talk 958:talk 504:talk 485:talk 469:talk 449:talk 426:talk 411:talk 395:talk 380:talk 315:talk 254:.) 1060:If 536:, k 524:, λ 281:not 159:Too 131:Mid 2012:: 1999:) 1984:) 1965:) 1912:− 1866:) 1846:) 1830:) 1707:) 1693:UΛ 1691:= 1689:AU 1685:AU 1663:) 1648:) 1625:) 1609:) 1585:) 1534:∗ 1441:λ 1390:λ 1370:∗ 1346:Λ 1326:∗ 1298:∑ 1276:∗ 1235:∑ 1211:∗ 1174:λ 1157:Λ 1134:Λ 1124:∗ 1049:) 1017:) 987:λ 960:) 675:λ 629:λ 583:λ 506:) 487:) 471:) 451:) 428:) 413:) 397:) 382:) 329:, 327:Ax 317:) 1995:( 1980:( 1961:( 1955:A 1939:] 1933:i 1930:+ 1927:1 1922:1 1915:1 1907:1 1901:[ 1896:= 1893:A 1862:( 1842:( 1826:( 1801:) 1795:0 1790:0 1785:0 1778:0 1773:4 1768:3 1761:0 1756:2 1751:1 1745:( 1740:= 1737:A 1703:( 1697:U 1681:U 1677:U 1673:U 1659:( 1644:( 1621:( 1605:( 1581:( 1573:. 1560:B 1530:U 1508:k 1485:k 1481:u 1456:k 1452:u 1445:k 1437:= 1431:k 1427:u 1423:A 1409:. 1395:k 1383:k 1380:i 1376:) 1366:U 1362:( 1359:= 1354:k 1351:j 1339:j 1336:i 1332:) 1322:U 1318:( 1313:n 1308:1 1305:= 1302:j 1294:= 1289:k 1286:j 1282:) 1272:U 1268:( 1263:j 1260:i 1256:A 1250:n 1245:1 1242:= 1239:j 1207:U 1192:. 1178:i 1170:= 1165:i 1162:i 1130:= 1120:U 1116:A 1113:U 1091:U 1069:A 1045:( 1013:( 995:k 991:I 956:( 950:i 934:k 930:M 891:) 881:3 877:k 872:M 866:0 861:0 854:0 845:2 841:k 836:M 830:0 823:0 818:0 809:1 805:k 800:M 793:( 788:= 785:A 747:k 743:I 704:) 694:3 690:k 685:I 679:3 669:0 664:0 657:0 648:2 644:k 639:I 633:2 623:0 616:0 611:0 602:1 598:k 593:I 587:1 576:( 571:= 568:B 542:3 538:2 534:1 530:3 526:2 522:1 502:( 483:( 467:( 447:( 424:( 409:( 393:( 378:( 352:T 340:A 336:x 331:x 313:( 236:] 230:1 225:0 218:1 213:1 207:[ 143:. 42::

Index


content assessment
WikiProjects
WikiProject icon
Mathematics
WikiProject icon
icon
Mathematics portal
WikiProject Mathematics
mathematics
the discussion
Mid
project's priority scale
matrix
SGBailey
DudeGalea
positive definite matrix
Lunch
04:17, 13 July 2006 (UTC)
Rwb001
Talk:Cholesky decomposition
positive-definite matrix
Jitse Niesen
talk
09:58, 7 March 2007 (UTC)
unilateral shift
Mct mht
10:37, 7 March 2007 (UTC)
Nathaniel Virgo
talk

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.