Knowledge

Talk:Parity function

Source πŸ“

84: 74: 53: 1001:. Yes, I can see how this is horribly non-constructive. To build E, I need to somehow pick uncountably many real numbers, and do so in such a way that no two of them differ by a dyadic fraction. Ouch. Anyway, I think that this is what the above paragraph was trying to telegraph. It took me a while to figure this out. That paragraph should be expanded into something less concise, and easier to understand. A reference would be nice, too. 22: 1059:. This too should be mentioned in the article. Anyway, this is all "original research" on my part, but it seems obvious in retrospect, and surely there is some publication that actually spells all of this out in detail. 690: 140: 517: 975:
is unambiguous (because x and y differ in only finitely many places, and there are only countably many different y grand total.) And this can be done for any other equivalence class
457: 270: 231: 609: 1057: 1035: 720: 631: 805: 547: 348: 322: 302: 999: 944: 918: 883: 857: 831: 973: 769: 749: 408: 388: 368: 696:. This cleans up four things: first, it avoids having to blather too much about the equivalence relation. Second, it allows one to make statements about the 722:
is the set of all finite-length binary strings, it allows the construction of the quotient space to resemble that of the construction of open sets in the
1087: 130: 172:
back in 1969, or at least in the controversy surrounding the book. I'd love to write a bit more about this, but I'm not too familiar with the subject.
1082: 106: 1060: 97: 58: 1009: 726:: specifically, by identifying all of the open sets in Baire space. Or perhaps, better yet, the same construction, but on the 777:
for binary strings) and the tree basis topology for the same (which only uses prefixes of finite-length binary strings).
33: 640: 166:, and recall that the inability of linear models to learn XOR (parity of two inputs) was a major point in the book 469: 723: 390:
differ at finite number of coordinates. Having such representatives, we can map all of them to 0; the rest of
21: 1064: 417: 39: 83: 236: 207: 833:
contains only a countable number of representatives (because m and n are countable). Next, for each
552: 105:
on Knowledge. If you would like to participate, please visit the project page, where you can join
1040: 1018: 703: 614: 181: 168: 162:
Parity functions have received some interest in (theoretical) machine learning as well; see e.g.
89: 783: 73: 52: 526: 414:
The first sentence is fine- we have lots of parity functions f. The second sentence introduces
327: 697: 307: 275: 978: 923: 888: 862: 836: 810: 1013: 634: 201: 949: 807:
such equivalence classes; the cardinality of E is the continuum. Each equivalence class
693: 754: 734: 393: 373: 353: 1076: 173: 774: 727: 464: 460: 102: 1005: 611:
for some integers m,n. OK, so far. It would be a lot cleaner to just say that
79: 463:. The second sentence then seems to be saying that one should construct the 304:. It is enough to take one representative per equivalence class of relation 1008:, or rather, it's homeomorphic to it. The homeomorphism is provided by the 520: 1068: 186: 204:
it can be easily proved that parity functions exist and there are
549:
where if x,y are the binary expansions of real numbers x,y with
637:, aka the set of all finite-length binary strings. Then define 523:
string idea. That's fine, too. Intuitively, it is saying that
15: 1004:
Oh, duhh! The collection of equivalence classes is just the
196:
I'm having trouble making sense of the following paragraph:
233:
many of them - as many as the number of all functions from
163: 1012:, which provides a one-to-one and onto mapping between 1043: 1021: 981: 952: 926: 891: 865: 839: 813: 786: 757: 737: 706: 643: 617: 555: 529: 472: 420: 396: 376: 356: 330: 310: 278: 239: 210: 192:
equivalence classes of the infinite parity function?
101:, a collaborative effort to improve the coverage of 1051: 1029: 993: 967: 938: 912: 877: 851: 825: 799: 763: 743: 714: 684: 625: 603: 541: 511: 451: 402: 382: 362: 342: 316: 296: 264: 225: 730:. Fourth, it cleans up the relationship between 685:{\displaystyle E=\{0,1\}^{\omega }/\mathbb {D} } 459:without naming it. But it has a name, its the 8: 663: 650: 512:{\displaystyle E=\{0,1\}^{\omega }/\approx } 492: 479: 440: 427: 291: 279: 253: 240: 19: 47: 1045: 1044: 1042: 1023: 1022: 1020: 980: 951: 925: 890: 864: 838: 812: 791: 785: 756: 736: 708: 707: 705: 678: 677: 672: 666: 642: 619: 618: 616: 595: 586: 554: 528: 501: 495: 471: 443: 419: 395: 375: 355: 329: 309: 277: 256: 238: 216: 215: 209: 49: 771:differ at finite number of coordinates 7: 95:This article is within the scope of 920:. OK, so far. For all of the other 452:{\displaystyle E=\{0,1\}^{\omega }} 217: 38:It is of interest to the following 410:values are deducted unambiguously. 14: 1088:Low-priority mathematics articles 265:{\displaystyle \{0,1\}^{\omega }} 226:{\displaystyle 2^{\mathfrak {c}}} 115:Knowledge:WikiProject Mathematics 1083:Start-Class mathematics articles 1010:Minkowski question mark function 604:{\displaystyle x-y=(2m+1)/2^{n}} 118:Template:WikiProject Mathematics 82: 72: 51: 20: 135:This article has been rated as 962: 956: 901: 895: 583: 568: 1: 1069:08:51, 27 November 2023 (UTC) 109:and see a list of open tasks. 1052:{\displaystyle \mathbb {Q} } 1030:{\displaystyle \mathbb {D} } 715:{\displaystyle \mathbb {D} } 626:{\displaystyle \mathbb {D} } 800:{\displaystyle 2^{\omega }} 187:01:38, 4 January 2014 (UTC) 1104: 542:{\displaystyle x\approx y} 343:{\displaystyle w\approx v} 134: 67: 46: 859:pick one representative 780:Anyway, there are still 724:Baire space (set theory) 317:{\displaystyle \approx } 141:project's priority scale 700:. Third, Since the set 297:{\displaystyle \{0,1\}} 98:WikiProject Mathematics 1053: 1031: 995: 994:{\displaystyle a\in E} 969: 940: 939:{\displaystyle y\in e} 914: 913:{\displaystyle p(x)=0} 879: 878:{\displaystyle x\in e} 853: 852:{\displaystyle e\in E} 827: 826:{\displaystyle e\in E} 801: 765: 745: 716: 686: 627: 605: 543: 513: 453: 404: 384: 364: 344: 318: 298: 266: 227: 28:This article is rated 1054: 1032: 996: 970: 941: 915: 880: 854: 828: 802: 766: 746: 717: 687: 628: 606: 544: 514: 454: 405: 385: 365: 345: 319: 299: 267: 228: 1041: 1019: 979: 968:{\displaystyle p(y)} 950: 924: 889: 863: 837: 811: 784: 755: 735: 704: 641: 615: 553: 527: 470: 418: 394: 374: 354: 328: 324:defined as follows: 308: 276: 237: 208: 164:John Langford's blog 121:mathematics articles 1049: 1027: 991: 965: 936: 910: 875: 849: 823: 797: 761: 741: 712: 682: 623: 601: 539: 509: 449: 400: 380: 360: 340: 314: 294: 262: 223: 90:Mathematics portal 34:content assessment 764:{\displaystyle v} 744:{\displaystyle w} 698:quotient topology 403:{\displaystyle f} 383:{\displaystyle v} 363:{\displaystyle w} 185: 177: 155: 154: 151: 150: 147: 146: 1095: 1058: 1056: 1055: 1050: 1048: 1036: 1034: 1033: 1028: 1026: 1014:dyadic rationals 1000: 998: 997: 992: 974: 972: 971: 966: 945: 943: 942: 937: 919: 917: 916: 911: 884: 882: 881: 876: 858: 856: 855: 850: 832: 830: 829: 824: 806: 804: 803: 798: 796: 795: 770: 768: 767: 762: 750: 748: 747: 742: 721: 719: 718: 713: 711: 691: 689: 688: 683: 681: 676: 671: 670: 635:dyadic rationals 632: 630: 629: 624: 622: 610: 608: 607: 602: 600: 599: 590: 548: 546: 545: 540: 518: 516: 515: 510: 505: 500: 499: 458: 456: 455: 450: 448: 447: 409: 407: 406: 401: 389: 387: 386: 381: 369: 367: 366: 361: 349: 347: 346: 341: 323: 321: 320: 315: 303: 301: 300: 295: 271: 269: 268: 263: 261: 260: 232: 230: 229: 224: 222: 221: 220: 179: 175: 158:Machine learning 123: 122: 119: 116: 113: 92: 87: 86: 76: 69: 68: 63: 55: 48: 31: 25: 24: 16: 1103: 1102: 1098: 1097: 1096: 1094: 1093: 1092: 1073: 1072: 1039: 1038: 1017: 1016: 977: 976: 948: 947: 946:, the value of 922: 921: 887: 886: 861: 860: 835: 834: 809: 808: 787: 782: 781: 753: 752: 733: 732: 702: 701: 662: 639: 638: 613: 612: 591: 551: 550: 525: 524: 491: 468: 467: 439: 416: 415: 392: 391: 372: 371: 352: 351: 326: 325: 306: 305: 274: 273: 252: 235: 234: 211: 206: 205: 202:axiom of choice 194: 160: 120: 117: 114: 111: 110: 88: 81: 61: 32:on Knowledge's 29: 12: 11: 5: 1101: 1099: 1091: 1090: 1085: 1075: 1074: 1047: 1037:and rationals 1025: 990: 987: 984: 964: 961: 958: 955: 935: 932: 929: 909: 906: 903: 900: 897: 894: 874: 871: 868: 848: 845: 842: 822: 819: 816: 794: 790: 760: 740: 710: 694:quotient space 680: 675: 669: 665: 661: 658: 655: 652: 649: 646: 633:is the set of 621: 598: 594: 589: 585: 582: 579: 576: 573: 570: 567: 564: 561: 558: 538: 535: 532: 508: 504: 498: 494: 490: 487: 484: 481: 478: 475: 446: 442: 438: 435: 432: 429: 426: 423: 412: 411: 399: 379: 359: 339: 336: 333: 313: 293: 290: 287: 284: 281: 259: 255: 251: 248: 245: 242: 219: 214: 193: 190: 159: 156: 153: 152: 149: 148: 145: 144: 133: 127: 126: 124: 107:the discussion 94: 93: 77: 65: 64: 56: 44: 43: 37: 26: 13: 10: 9: 6: 4: 3: 2: 1100: 1089: 1086: 1084: 1081: 1080: 1078: 1071: 1070: 1066: 1062: 1015: 1011: 1007: 1002: 988: 985: 982: 959: 953: 933: 930: 927: 907: 904: 898: 892: 872: 869: 866: 846: 843: 840: 820: 817: 814: 792: 788: 778: 776: 772: 758: 738: 729: 725: 699: 695: 673: 667: 659: 656: 653: 647: 644: 636: 596: 592: 587: 580: 577: 574: 571: 565: 562: 559: 556: 536: 533: 530: 522: 506: 502: 496: 488: 485: 482: 476: 473: 466: 462: 444: 436: 433: 430: 424: 421: 397: 377: 357: 337: 334: 331: 311: 288: 285: 282: 257: 249: 246: 243: 212: 203: 199: 198: 197: 191: 189: 188: 183: 178: 171: 170: 165: 157: 142: 138: 132: 129: 128: 125: 108: 104: 100: 99: 91: 85: 80: 78: 75: 71: 70: 66: 60: 57: 54: 50: 45: 41: 35: 27: 23: 18: 17: 1061:67.198.37.16 1003: 779: 775:cylinder set 731: 728:Cantor space 465:quotient set 461:Cantor space 413: 195: 167: 161: 137:Low-priority 136: 96: 62:Low‑priority 40:WikiProjects 169:Perceptrons 112:Mathematics 103:mathematics 59:Mathematics 30:Start-class 1077:Categories 1006:Vitali set 885:, and set 519:with this 773:(aka the 200:Assuming 521:cofinite 176:VVERTYVS 692:as the 139:on the 36:scale. 1065:talk 751:and 370:and 350:if 272:to 182:hm? 131:Low 1079:: 1067:) 986:∈ 931:∈ 870:∈ 844:∈ 818:∈ 793:Ο‰ 668:Ο‰ 560:βˆ’ 534:β‰ˆ 507:β‰ˆ 497:Ο‰ 445:Ο‰ 335:β‰ˆ 312:β‰ˆ 258:Ο‰ 1063:( 1046:Q 1024:D 989:E 983:a 963:) 960:y 957:( 954:p 934:e 928:y 908:0 905:= 902:) 899:x 896:( 893:p 873:e 867:x 847:E 841:e 821:E 815:e 789:2 759:v 739:w 709:D 679:D 674:/ 664:} 660:1 657:, 654:0 651:{ 648:= 645:E 620:D 597:n 593:2 588:/ 584:) 581:1 578:+ 575:m 572:2 569:( 566:= 563:y 557:x 537:y 531:x 503:/ 493:} 489:1 486:, 483:0 480:{ 477:= 474:E 441:} 437:1 434:, 431:0 428:{ 425:= 422:E 398:f 378:v 358:w 338:v 332:w 292:} 289:1 286:, 283:0 280:{ 254:} 250:1 247:, 244:0 241:{ 218:c 213:2 184:) 180:( 174:Q 143:. 42::

Index


content assessment
WikiProjects
WikiProject icon
Mathematics
WikiProject icon
icon
Mathematics portal
WikiProject Mathematics
mathematics
the discussion
Low
project's priority scale
John Langford's blog
Perceptrons
QVVERTYVS
hm?
01:38, 4 January 2014 (UTC)
axiom of choice
Cantor space
quotient set
cofinite
dyadic rationals
quotient space
quotient topology
Baire space (set theory)
Cantor space
cylinder set
Vitali set
Minkowski question mark function

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑