Knowledge (XXG)

Thomas–Fermi screening

Source 📝

1726: 539:, see below) of a system of electrons describes how much energy is required to put an extra electron into the system, neglecting electrical potential energy. As the number of electrons in the system increases (with fixed temperature and volume), the internal chemical potential increases. This consequence is largely because electrons satisfy the 3080: 830: 2421: 1328: 2904:
electron fluid even for the non-interacting electron gas. It does not of course attempt to include electron-electron interaction effects. A simple form for an effective temperature which correctly recovers all the density-functional properties of even the
3205: 993:
is flat".) This balance requires that the variations in internal chemical potential are matched by equal and opposite variations in the electric potential energy. This gives rise to the "basic equation of nonlinear Thomas–Fermi theory":
2883:
In the effective temperature given above, the temperature is used to construct an effective classical model. However, this form of the effective temperature does not correctly recover the specific heat and most other properties of the
2936: 1522: 696: 2235: 368: 118: 1449: 3366: 2195: 1972: 1245: 2125: 246: 1678: 509: 2638: 1106: 2783: 1164: 905: 1609:
For the nonlinear Thomas–Fermi formula, solving these simultaneously can be difficult, and usually there is no analytical solution. However, the linearized formula has a simple solution (in
2556: 2468: 686: 2852: 1362: 3112: 1225: 3401: 1592: 966:
Nevertheless, the Thomas–Fermi model is likely to be a reasonably accurate approximation as long as the potential does not vary much over lengths comparable or smaller than 1 /
2509: 3496: 2230: 2036: 3430: 3255: 1791: 593: 3498:. Other mappings for the 3D case, and similar formulae for the effective temperature have been given for the classical map of the 2-dimensional electron gas as well. 628: 423: 3107: 2878: 2001: 1762: 1531:), the dielectric constant approaches infinity, reflecting the fact that charges get closer and closer to perfectly screened as you observe them from further away. 1454: 1188: 543:: only one electron may occupy an energy level and lower-energy electron states are already full, so the new electrons must occupy higher and higher energy states. 400: 1811: 3456: 3279: 2927: 2902: 2803: 564: 31:
when the wavevector (the reciprocal of the length-scale of interest) is much smaller than the Fermi wavevector, i.e. the long-distance limit. It is named after
289: 49: 1385: 3295: 1820: 171: 1616: 2561: 2930: 3075:{\displaystyle {\frac {T_{\rm {eff}}}{E_{\rm {F}}}}=\left({\frac {T^{2}}{E_{\rm {F}}^{2}}}+{\frac {T_{q}^{2}}{E_{\rm {F}}^{2}}}\right)^{1/2}} 997: 2643: 963:. Therefore, it cannot be possible to define a chemical potential at a single point, independent of the electron density at nearby points. 2130: 825:{\displaystyle n=2{\frac {1}{(2\pi )^{3}}}{\frac {4}{3}}\pi k_{\rm {F}}^{3}\quad ,\quad \mu ={\frac {\hbar ^{2}k_{\rm {F}}^{2}}{2m}}.} 1814: 3638: 2416:{\displaystyle {T_{\rm {eff}} \over T}={4 \over 3\Gamma (1/2)}{(E_{\rm {F}}/k_{\rm {B}}T)^{3/2} \over F_{-1/2}(\mu /k_{\rm {B}}T)}.} 2041: 1227:
at the points where the material is charge-neutral (the number of electrons is exactly equal to the number of ions), and similarly
428: 938: 1729:
Effective temperature for Thomas–Fermi screening. The approximate form is explained in the article, and uses the power p=1.8.
1131: 848: 634:, the internal chemical potential. The exact functional form depends on the system. For example, for a three-dimensional 1323:{\displaystyle \rho ^{\text{induced}}(\mathbf {r} )\approx -e^{2}{\frac {\partial n}{\partial \mu }}\phi (\mathbf {r} )} 916: 532: 1701:
the screening discussed here; for example due to the polarization of immobile core electrons. In that case, replace
3507: 2514: 2426: 986: 540: 3403:
or less, electron-electron interactions become negligible compared to the Fermi energy, then, using a value of
982: 641: 20: 3258: 2808: 1333: 514:
For more details and discussion, including the one-dimensional and two-dimensional cases, see the article on
275:). Such an approximation is valid for metals at room temperature, and the Thomas–Fermi screening wavevector 3281:
is the number of electrons in a unit volume using atomic units where the unit of length is the Bohr, viz.,
1193: 922: 3371: 1566: 3562: 2473: 842: 3461: 2200: 2006: 1375: 1116:) is the function discussed above (electron density as a function of internal chemical potential), 1234:
is defined as the internal chemical potential at the points where the material is charge-neutral.
3406: 3231: 1767: 834:(in this context—i.e., absolute zero—the internal chemical potential is more commonly called the 569: 373: 125: 981:
Finally, the Thomas–Fermi model assumes that the electrons are in equilibrium, meaning that the
3200:{\displaystyle {\frac {T_{q}}{E_{\rm {F}}}}={\frac {1}{a+b{\sqrt {r_{\rm {s}}}}+cr_{\rm {s}}}}} 3588: 3580: 1121: 141: 604: 3570: 1691: 1598: 566:, the highest occupied momentum state (at zero temperature) is known as the Fermi momentum, 408: 32: 3085: 2857: 1979: 1740: 1173: 378: 1796: 515: 403: 28: 24: 3435: 3566: 1242:
If the chemical potential does not vary too much, the above equation can be linearized:
3264: 2912: 2887: 2788: 1610: 1602: 1379: 599: 549: 43: 3632: 960: 147:
For the example of semiconductors that are not too heavily doped, the charge density
989:
of electrons is the same at all points". In semiconductor physics terminology, "the
835: 283: 261: 36: 1552:
in a solid, what field will it produce, taking electron screening into account?
990: 536: 129: 3575: 3550: 3261:
corresponding to a sphere in atomic units containing one electron. That is, if
1725: 638:, a noninteracting electron gas, at absolute zero temperature, the relation is 1517:{\displaystyle k_{0}={\sqrt {4\pi e^{2}{\frac {\partial n}{\partial \mu }}}}.} 942: 3584: 1734: 635: 3592: 1559:
The Thomas–Fermi screening formula gives the charge density at each point
959:
is the Fermi wavenumber, i.e. a typical wavenumber for the states at the
272: 363:{\displaystyle k_{\rm {TF}}^{2}=4\left({\frac {3n}{\pi }}\right)^{1/3}.} 113:{\displaystyle k_{0}^{2}=4\pi e^{2}{\frac {\partial n}{\partial \mu }},} 1605:) relates the second derivative of the potential to the charge density. 1444:{\displaystyle \varepsilon (\mathbf {q} )=1+{\frac {k_{0}^{2}}{q^{2}}}} 2805:. A value that gives decent agreement with the exact result for all 941:. No electron can exist at a single point; each is spread out into a 1764:
can be expressed as a function of both temperature and Fermi energy
3361:{\displaystyle r_{\rm {s}}=\left({\frac {3}{4\pi n}}\right)^{1/3}.} 2909:
electron gas, including the pair-distribution functions at finite
2190:{\displaystyle k_{\rm {B}}T_{\rm {eff}}=n\partial \mu /\partial n} 1724: 985:
is the same at all points. (In electrochemistry terminology, "the
23:
by electrons in a solid. It is a special case of the more general
2640:
A simple approximate form that recovers both limits correctly is
1793:. The first step is calculating the internal chemical potential 527:
Relation between electron density and internal chemical potential
3618:
François Perrot and M. W. C. Dharma-wardana, Phys. Rev. Lett.
1967:{\displaystyle {\frac {\mu }{k_{\rm {B}}T}}=F_{1/2}^{-1}\left.} 1717:
is the relative permittivity due to these other contributions.
3432:
close to unity, we see that the CHNC effective temperature at
2120:{\displaystyle k_{0}^{2}=4\pi e^{2}n/k_{\rm {B}}T_{\rm {eff}}} 925:
is that there is an internal chemical potential at each point
241:{\displaystyle k_{0}^{2}={\frac {4\pi e^{2}n}{k_{\rm {B}}T}},} 2929:, has been given using the classical map hyper-netted-chain ( 1673:{\displaystyle \phi (\mathbf {r} )={\frac {Q}{r}}e^{-k_{0}r}} 973:. This length usually corresponds to a few atoms in metals. 598:
Then the required relationship is described by the electron
504:{\displaystyle k_{0}^{2}=k_{\rm {TF}}^{2}(m_{e}/\hbar ^{2})} 27:; in particular, Thomas–Fermi screening is the limit of the 1374:
This relation can be converted into a wavevector-dependent
2633:{\displaystyle k_{\rm {B}}T_{\rm {eff}}=(2/3)E_{\rm {F}}.} 1737:(noninteracting electron gas), the screening wavevector 264:. In the opposite extreme, in the low-temperature limit 1555:
One seeks a self-consistent solution to two equations:
1101:{\displaystyle \rho ^{\text{induced}}(\mathbf {r} )=-e} 937:. This behaviour cannot be exactly true because of the 19:
is a theoretical approach to calculate the effects of
3464: 3438: 3409: 3374: 3298: 3267: 3234: 3115: 3088: 2939: 2915: 2890: 2860: 2811: 2791: 2778:{\displaystyle k_{\rm {B}}T_{\rm {eff}}=\left^{1/p},} 2646: 2564: 2517: 2476: 2429: 2238: 2203: 2133: 2044: 2009: 1982: 1823: 1799: 1770: 1743: 1619: 1569: 1457: 1388: 1336: 1248: 1196: 1176: 1134: 1000: 851: 699: 644: 607: 572: 552: 431: 411: 381: 292: 174: 52: 3549:
Stanton, Liam G.; Murillo, Michael S. (2016-04-08).
1159:{\displaystyle \rho ^{\text{induced}}(\mathbf {r} )} 900:{\displaystyle n(\mu )\propto e^{\mu /k_{\rm {B}}T}} 2880:, which has a maximum relative error of < 2.3%. 3490: 3450: 3424: 3395: 3360: 3273: 3249: 3199: 3101: 3074: 2921: 2896: 2872: 2846: 2797: 2777: 2632: 2550: 2503: 2462: 2415: 2224: 2189: 2119: 2030: 1995: 1966: 1805: 1785: 1756: 1672: 1586: 1516: 1443: 1356: 1322: 1219: 1182: 1158: 1100: 899: 824: 680: 622: 587: 558: 503: 417: 394: 362: 240: 112: 933:on the electron concentration at the same point 425:, the screening wavevector in Gaussian units is 3551:"Ionic transport in high-energy-density matter" 1697:Note that there may be dielectric permittivity 3561:(4). American Physical Society (APS): 043203. 8: 977:Electrons in equilibrium, nonlinear equation 2551:{\displaystyle k_{\rm {B}}T\ll E_{\rm {F}}} 2463:{\displaystyle k_{\rm {B}}T\gg E_{\rm {F}}} 845:at low to moderate electron concentration, 3531: 3529: 3527: 3525: 3523: 1690:(no screening), this becomes the familiar 3574: 3480: 3473: 3472: 3463: 3437: 3415: 3414: 3408: 3380: 3379: 3373: 3345: 3341: 3319: 3304: 3303: 3297: 3266: 3240: 3239: 3233: 3187: 3186: 3167: 3166: 3160: 3145: 3133: 3132: 3122: 3116: 3114: 3093: 3087: 3062: 3058: 3045: 3039: 3038: 3028: 3023: 3017: 3006: 3000: 2999: 2989: 2983: 2965: 2964: 2947: 2946: 2940: 2938: 2914: 2889: 2859: 2837: 2836: 2827: 2817: 2816: 2810: 2790: 2762: 2758: 2747: 2735: 2728: 2727: 2708: 2694: 2693: 2664: 2663: 2652: 2651: 2645: 2620: 2619: 2604: 2582: 2581: 2570: 2569: 2563: 2541: 2540: 2523: 2522: 2516: 2482: 2481: 2475: 2453: 2452: 2435: 2434: 2428: 2394: 2393: 2384: 2368: 2361: 2345: 2341: 2327: 2326: 2317: 2310: 2309: 2299: 2285: 2267: 2246: 2245: 2239: 2237: 2209: 2208: 2202: 2176: 2151: 2150: 2139: 2138: 2132: 2104: 2103: 2092: 2091: 2082: 2073: 2054: 2049: 2043: 2015: 2014: 2008: 1987: 1981: 1946: 1942: 1926: 1925: 1919: 1900: 1887: 1882: 1868: 1859: 1855: 1835: 1834: 1824: 1822: 1798: 1776: 1775: 1769: 1748: 1742: 1659: 1651: 1637: 1626: 1618: 1576: 1568: 1489: 1483: 1471: 1462: 1456: 1433: 1423: 1418: 1412: 1395: 1387: 1343: 1335: 1312: 1286: 1280: 1262: 1253: 1247: 1203: 1195: 1175: 1148: 1139: 1133: 1086: 1062: 1044: 1014: 1005: 999: 885: 884: 875: 871: 850: 802: 796: 795: 785: 778: 761: 755: 754: 737: 728: 709: 698: 681:{\displaystyle n(\mu )\propto \mu ^{3/2}} 668: 664: 643: 606: 578: 577: 571: 551: 492: 483: 477: 464: 455: 454: 441: 436: 430: 410: 386: 380: 347: 343: 324: 307: 298: 297: 291: 271:, electrons behave as quantum particles ( 222: 221: 206: 193: 184: 179: 173: 87: 81: 62: 57: 51: 3605:Yu Liu and Jianzhong Wu, J. Chem. Phys. 2847:{\displaystyle k_{\rm {B}}T/E_{\rm {F}}} 1357:{\displaystyle \partial n/\partial \mu } 3519: 2933:) model of the electron fluid. That is 782: 489: 412: 3368:For a dense electron gas, e.g., with 2003:in terms of an effective temperature 1220:{\displaystyle \phi (\mathbf {r} )=0} 260:is given by the familiar formula for 7: 3396:{\displaystyle r_{\rm {s}}\approx 1} 1587:{\displaystyle \phi (\mathbf {r} )} 3474: 3416: 3381: 3305: 3241: 3188: 3168: 3134: 3040: 3001: 2966: 2954: 2951: 2948: 2838: 2818: 2729: 2695: 2671: 2668: 2665: 2653: 2621: 2589: 2586: 2583: 2571: 2542: 2524: 2489: 2486: 2483: 2454: 2436: 2395: 2328: 2311: 2276: 2253: 2250: 2247: 2216: 2213: 2210: 2181: 2170: 2158: 2155: 2152: 2140: 2111: 2108: 2105: 2093: 2022: 2019: 2016: 1927: 1891: 1836: 1813:, which involves the inverse of a 1777: 1721:Fermi gas at arbitrary temperature 1500: 1492: 1348: 1337: 1297: 1289: 1238:Linearization, dielectric function 886: 797: 756: 691:Proof: Including spin degeneracy, 579: 459: 456: 302: 299: 223: 136:is the electron concentration and 98: 90: 14: 3539:(Thomson Learning, Toronto, 1976) 3535:N. W. Ashcroft and N. D. Mermin, 2511:, while in the degenerate limit 1627: 1577: 1396: 1313: 1263: 1204: 1149: 1063: 1015: 939:Heisenberg uncertainty principle 42:The Thomas–Fermi wavevector (in 2504:{\displaystyle T_{\rm {eff}}=T} 1563:as a function of the potential 771: 767: 3491:{\displaystyle 2E_{\rm {F}}/3} 3458:approximates towards the form 3082:where the quantum temperature 2744: 2717: 2705: 2686: 2612: 2598: 2404: 2378: 2338: 2302: 2293: 2279: 1908: 1894: 1631: 1623: 1581: 1573: 1400: 1392: 1317: 1309: 1267: 1259: 1208: 1200: 1190:is defined in such a way that 1153: 1145: 1095: 1092: 1079: 1070: 1067: 1059: 1037: 1031: 1019: 1011: 861: 855: 725: 715: 654: 648: 617: 611: 498: 470: 168:is temperature. In this case, 1: 2225:{\displaystyle T_{\rm {eff}}} 2031:{\displaystyle T_{\rm {eff}}} 546:Given a Fermi gas of density 3425:{\displaystyle r_{\rm {s}}} 3250:{\displaystyle r_{\rm {s}}} 1786:{\displaystyle E_{\rm {F}}} 1371:and treated as a constant. 921:The main assumption in the 917:Local-density approximation 841:As another example, for an 588:{\displaystyle k_{\rm {F}}} 533:internal chemical potential 3655: 3576:10.1103/physreve.93.043203 2197:. The general result for 914: 164:is Boltzmann constant and 1170:. The electric potential 1166:is the induced charge at 987:electrochemical potential 541:Pauli exclusion principle 3639:Condensed matter physics 1733:For a three-dimensional 983:total chemical potential 21:electric field screening 2423:In the classical limit 1535:Example: A point charge 623:{\displaystyle n(\mu )} 3492: 3452: 3426: 3397: 3362: 3275: 3251: 3201: 3103: 3076: 2923: 2898: 2874: 2848: 2799: 2779: 2634: 2552: 2505: 2464: 2417: 2226: 2191: 2121: 2032: 1997: 1968: 1807: 1787: 1758: 1730: 1674: 1588: 1518: 1445: 1358: 1324: 1221: 1184: 1160: 1102: 901: 826: 682: 624: 589: 560: 505: 419: 418:{\displaystyle \hbar } 396: 364: 242: 114: 17:Thomas–Fermi screening 3508:Thomas–Fermi equation 3493: 3453: 3427: 3398: 3363: 3276: 3252: 3202: 3104: 3102:{\displaystyle T_{q}} 3077: 2924: 2899: 2875: 2873:{\displaystyle p=1.8} 2849: 2800: 2780: 2635: 2553: 2506: 2465: 2418: 2227: 2192: 2122: 2033: 1998: 1996:{\displaystyle k_{0}} 1969: 1808: 1788: 1759: 1757:{\displaystyle k_{0}} 1728: 1675: 1589: 1519: 1446: 1359: 1325: 1222: 1185: 1183:{\displaystyle \phi } 1161: 1128:is the position, and 1103: 902: 827: 683: 625: 590: 561: 506: 420: 397: 395:{\displaystyle m_{e}} 365: 243: 115: 3462: 3436: 3407: 3372: 3296: 3265: 3232: 3113: 3086: 2937: 2913: 2888: 2858: 2809: 2789: 2644: 2562: 2515: 2474: 2427: 2236: 2201: 2131: 2042: 2007: 1980: 1821: 1815:Fermi–Dirac integral 1806:{\displaystyle \mu } 1797: 1768: 1741: 1617: 1567: 1455: 1386: 1334: 1246: 1194: 1174: 1132: 998: 849: 843:n-type semiconductor 697: 642: 605: 570: 550: 535:(closely related to 429: 409: 379: 290: 172: 50: 3567:2016PhRvE..93d3203S 3537:Solid State Physics 3451:{\displaystyle T=0} 3259:Wigner–Seitz radius 3050: 3033: 3011: 2059: 1876: 1524:At long distances ( 1428: 1376:dielectric function 911:Local approximation 807: 766: 469: 446: 312: 189: 67: 3488: 3448: 3422: 3393: 3358: 3271: 3247: 3197: 3099: 3072: 3034: 3019: 2995: 2919: 2894: 2870: 2844: 2795: 2775: 2630: 2548: 2501: 2460: 2413: 2222: 2187: 2117: 2045: 2028: 1993: 1964: 1851: 1803: 1783: 1754: 1731: 1670: 1584: 1539:If a point charge 1514: 1441: 1414: 1354: 1320: 1217: 1180: 1156: 1098: 923:Thomas–Fermi model 897: 822: 791: 750: 678: 620: 585: 556: 501: 450: 432: 415: 392: 372:If we restore the 360: 293: 238: 175: 126:chemical potential 110: 53: 44:Gaussian-cgs units 3555:Physical Review E 3335: 3274:{\displaystyle n} 3195: 3174: 3140: 3051: 3012: 2972: 2922:{\displaystyle T} 2897:{\displaystyle T} 2798:{\displaystyle p} 2408: 2297: 2262: 1936: 1912: 1846: 1645: 1509: 1507: 1439: 1304: 1256: 1142: 1122:elementary charge 1008: 817: 745: 735: 630:as a function of 559:{\displaystyle n} 337: 233: 142:elementary charge 105: 3646: 3623: 3616: 3610: 3603: 3597: 3596: 3578: 3546: 3540: 3533: 3497: 3495: 3494: 3489: 3484: 3479: 3478: 3477: 3457: 3455: 3454: 3449: 3431: 3429: 3428: 3423: 3421: 3420: 3419: 3402: 3400: 3399: 3394: 3386: 3385: 3384: 3367: 3365: 3364: 3359: 3354: 3353: 3349: 3340: 3336: 3334: 3320: 3310: 3309: 3308: 3291: 3289: 3286: 3280: 3278: 3277: 3272: 3256: 3254: 3253: 3248: 3246: 3245: 3244: 3227: 3220: 3213: 3206: 3204: 3203: 3198: 3196: 3194: 3193: 3192: 3191: 3175: 3173: 3172: 3171: 3161: 3146: 3141: 3139: 3138: 3137: 3127: 3126: 3117: 3108: 3106: 3105: 3100: 3098: 3097: 3081: 3079: 3078: 3073: 3071: 3070: 3066: 3057: 3053: 3052: 3049: 3044: 3043: 3032: 3027: 3018: 3013: 3010: 3005: 3004: 2994: 2993: 2984: 2973: 2971: 2970: 2969: 2959: 2958: 2957: 2941: 2928: 2926: 2925: 2920: 2903: 2901: 2900: 2895: 2879: 2877: 2876: 2871: 2853: 2851: 2850: 2845: 2843: 2842: 2841: 2831: 2823: 2822: 2821: 2804: 2802: 2801: 2796: 2784: 2782: 2781: 2776: 2771: 2770: 2766: 2757: 2753: 2752: 2751: 2739: 2734: 2733: 2732: 2713: 2712: 2700: 2699: 2698: 2676: 2675: 2674: 2658: 2657: 2656: 2639: 2637: 2636: 2631: 2626: 2625: 2624: 2608: 2594: 2593: 2592: 2576: 2575: 2574: 2557: 2555: 2554: 2549: 2547: 2546: 2545: 2529: 2528: 2527: 2510: 2508: 2507: 2502: 2494: 2493: 2492: 2469: 2467: 2466: 2461: 2459: 2458: 2457: 2441: 2440: 2439: 2422: 2420: 2419: 2414: 2409: 2407: 2400: 2399: 2398: 2388: 2377: 2376: 2372: 2355: 2354: 2353: 2349: 2333: 2332: 2331: 2321: 2316: 2315: 2314: 2300: 2298: 2296: 2289: 2268: 2263: 2258: 2257: 2256: 2240: 2231: 2229: 2228: 2223: 2221: 2220: 2219: 2196: 2194: 2193: 2188: 2180: 2163: 2162: 2161: 2145: 2144: 2143: 2126: 2124: 2123: 2118: 2116: 2115: 2114: 2098: 2097: 2096: 2086: 2078: 2077: 2058: 2053: 2037: 2035: 2034: 2029: 2027: 2026: 2025: 2002: 2000: 1999: 1994: 1992: 1991: 1973: 1971: 1970: 1965: 1960: 1956: 1955: 1954: 1950: 1941: 1937: 1932: 1931: 1930: 1920: 1913: 1911: 1904: 1883: 1875: 1867: 1863: 1847: 1845: 1841: 1840: 1839: 1825: 1812: 1810: 1809: 1804: 1792: 1790: 1789: 1784: 1782: 1781: 1780: 1763: 1761: 1760: 1755: 1753: 1752: 1689: 1679: 1677: 1676: 1671: 1669: 1668: 1664: 1663: 1646: 1638: 1630: 1599:Poisson equation 1593: 1591: 1590: 1585: 1580: 1551: 1544: 1530: 1523: 1521: 1520: 1515: 1510: 1508: 1506: 1498: 1490: 1488: 1487: 1472: 1467: 1466: 1450: 1448: 1447: 1442: 1440: 1438: 1437: 1427: 1422: 1413: 1399: 1364:is evaluated at 1363: 1361: 1360: 1355: 1347: 1329: 1327: 1326: 1321: 1316: 1305: 1303: 1295: 1287: 1285: 1284: 1266: 1258: 1257: 1254: 1226: 1224: 1223: 1218: 1207: 1189: 1187: 1186: 1181: 1165: 1163: 1162: 1157: 1152: 1144: 1143: 1140: 1107: 1105: 1104: 1099: 1091: 1090: 1066: 1049: 1048: 1018: 1010: 1009: 1006: 906: 904: 903: 898: 896: 895: 891: 890: 889: 879: 831: 829: 828: 823: 818: 816: 808: 806: 801: 800: 790: 789: 779: 765: 760: 759: 746: 738: 736: 734: 733: 732: 710: 687: 685: 684: 679: 677: 676: 672: 629: 627: 626: 621: 594: 592: 591: 586: 584: 583: 582: 565: 563: 562: 557: 510: 508: 507: 502: 497: 496: 487: 482: 481: 468: 463: 462: 445: 440: 424: 422: 421: 416: 401: 399: 398: 393: 391: 390: 369: 367: 366: 361: 356: 355: 351: 342: 338: 333: 325: 311: 306: 305: 270: 259: 247: 245: 244: 239: 234: 232: 228: 227: 226: 215: 211: 210: 194: 188: 183: 156: 119: 117: 116: 111: 106: 104: 96: 88: 86: 85: 66: 61: 33:Llewellyn Thomas 29:Lindhard formula 3654: 3653: 3649: 3648: 3647: 3645: 3644: 3643: 3629: 3628: 3627: 3626: 3622:, 206404 (2001) 3617: 3613: 3604: 3600: 3548: 3547: 3543: 3534: 3521: 3516: 3504: 3468: 3460: 3459: 3434: 3433: 3410: 3405: 3404: 3375: 3370: 3369: 3324: 3315: 3314: 3299: 3294: 3293: 3287: 3284: 3282: 3263: 3262: 3235: 3230: 3229: 3222: 3215: 3208: 3182: 3162: 3150: 3128: 3118: 3111: 3110: 3109:is defined as: 3089: 3084: 3083: 2985: 2982: 2978: 2977: 2960: 2942: 2935: 2934: 2911: 2910: 2886: 2885: 2856: 2855: 2832: 2812: 2807: 2806: 2787: 2786: 2743: 2723: 2704: 2689: 2685: 2681: 2680: 2659: 2647: 2642: 2641: 2615: 2577: 2565: 2560: 2559: 2536: 2518: 2513: 2512: 2477: 2472: 2471: 2448: 2430: 2425: 2424: 2389: 2357: 2356: 2337: 2322: 2305: 2301: 2272: 2241: 2234: 2233: 2204: 2199: 2198: 2146: 2134: 2129: 2128: 2099: 2087: 2069: 2040: 2039: 2010: 2005: 2004: 1983: 1978: 1977: 1976:We can express 1921: 1915: 1914: 1881: 1877: 1830: 1829: 1819: 1818: 1795: 1794: 1771: 1766: 1765: 1744: 1739: 1738: 1723: 1687: 1681: 1655: 1647: 1615: 1614: 1565: 1564: 1546: 1540: 1537: 1525: 1499: 1491: 1479: 1458: 1453: 1452: 1429: 1384: 1383: 1370: 1332: 1331: 1296: 1288: 1276: 1249: 1244: 1243: 1240: 1233: 1192: 1191: 1172: 1171: 1135: 1130: 1129: 1082: 1040: 1001: 996: 995: 979: 972: 958: 951: 919: 913: 880: 867: 847: 846: 809: 781: 780: 724: 714: 695: 694: 660: 640: 639: 603: 602: 573: 568: 567: 548: 547: 529: 524: 516:Lindhard theory 488: 473: 427: 426: 407: 406: 404:Planck constant 382: 377: 376: 326: 320: 319: 288: 287: 281: 265: 258: 251: 217: 216: 202: 195: 170: 169: 163: 148: 97: 89: 77: 48: 47: 25:Lindhard theory 12: 11: 5: 3652: 3650: 3642: 3641: 3631: 3630: 3625: 3624: 3611: 3598: 3541: 3518: 3517: 3515: 3512: 3511: 3510: 3503: 3500: 3487: 3483: 3476: 3471: 3467: 3447: 3444: 3441: 3418: 3413: 3392: 3389: 3383: 3378: 3357: 3352: 3348: 3344: 3339: 3333: 3330: 3327: 3323: 3318: 3313: 3307: 3302: 3270: 3243: 3238: 3190: 3185: 3181: 3178: 3170: 3165: 3159: 3156: 3153: 3149: 3144: 3136: 3131: 3125: 3121: 3096: 3092: 3069: 3065: 3061: 3056: 3048: 3042: 3037: 3031: 3026: 3022: 3016: 3009: 3003: 2998: 2992: 2988: 2981: 2976: 2968: 2963: 2956: 2953: 2950: 2945: 2918: 2893: 2869: 2866: 2863: 2840: 2835: 2830: 2826: 2820: 2815: 2794: 2785:for any power 2774: 2769: 2765: 2761: 2756: 2750: 2746: 2742: 2738: 2731: 2726: 2722: 2719: 2716: 2711: 2707: 2703: 2697: 2692: 2688: 2684: 2679: 2673: 2670: 2667: 2662: 2655: 2650: 2629: 2623: 2618: 2614: 2611: 2607: 2603: 2600: 2597: 2591: 2588: 2585: 2580: 2573: 2568: 2544: 2539: 2535: 2532: 2526: 2521: 2500: 2497: 2491: 2488: 2485: 2480: 2456: 2451: 2447: 2444: 2438: 2433: 2412: 2406: 2403: 2397: 2392: 2387: 2383: 2380: 2375: 2371: 2367: 2364: 2360: 2352: 2348: 2344: 2340: 2336: 2330: 2325: 2320: 2313: 2308: 2304: 2295: 2292: 2288: 2284: 2281: 2278: 2275: 2271: 2266: 2261: 2255: 2252: 2249: 2244: 2218: 2215: 2212: 2207: 2186: 2183: 2179: 2175: 2172: 2169: 2166: 2160: 2157: 2154: 2149: 2142: 2137: 2113: 2110: 2107: 2102: 2095: 2090: 2085: 2081: 2076: 2072: 2068: 2065: 2062: 2057: 2052: 2048: 2024: 2021: 2018: 2013: 1990: 1986: 1963: 1959: 1953: 1949: 1945: 1940: 1935: 1929: 1924: 1918: 1910: 1907: 1903: 1899: 1896: 1893: 1890: 1886: 1880: 1874: 1871: 1866: 1862: 1858: 1854: 1850: 1844: 1838: 1833: 1828: 1802: 1779: 1774: 1751: 1747: 1722: 1719: 1699:in addition to 1685: 1667: 1662: 1658: 1654: 1650: 1644: 1641: 1636: 1633: 1629: 1625: 1622: 1607: 1606: 1601:(derived from 1595: 1594:at that point. 1583: 1579: 1575: 1572: 1536: 1533: 1513: 1505: 1502: 1497: 1494: 1486: 1482: 1478: 1475: 1470: 1465: 1461: 1436: 1432: 1426: 1421: 1417: 1411: 1408: 1405: 1402: 1398: 1394: 1391: 1368: 1353: 1350: 1346: 1342: 1339: 1319: 1315: 1311: 1308: 1302: 1299: 1294: 1291: 1283: 1279: 1275: 1272: 1269: 1265: 1261: 1252: 1239: 1236: 1231: 1216: 1213: 1210: 1206: 1202: 1199: 1179: 1155: 1151: 1147: 1138: 1097: 1094: 1089: 1085: 1081: 1078: 1075: 1072: 1069: 1065: 1061: 1058: 1055: 1052: 1047: 1043: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1017: 1013: 1004: 978: 975: 970: 956: 949: 945:of size ≈ 1 / 912: 909: 894: 888: 883: 878: 874: 870: 866: 863: 860: 857: 854: 821: 815: 812: 805: 799: 794: 788: 784: 777: 774: 770: 764: 758: 753: 749: 744: 741: 731: 727: 723: 720: 717: 713: 708: 705: 702: 675: 671: 667: 663: 659: 656: 653: 650: 647: 619: 616: 613: 610: 600:number density 581: 576: 555: 528: 525: 523: 520: 500: 495: 491: 486: 480: 476: 472: 467: 461: 458: 453: 449: 444: 439: 435: 414: 389: 385: 359: 354: 350: 346: 341: 336: 332: 329: 323: 318: 315: 310: 304: 301: 296: 279: 256: 237: 231: 225: 220: 214: 209: 205: 201: 198: 192: 187: 182: 178: 161: 109: 103: 100: 95: 92: 84: 80: 76: 73: 70: 65: 60: 56: 13: 10: 9: 6: 4: 3: 2: 3651: 3640: 3637: 3636: 3634: 3621: 3615: 3612: 3609:064115 (2014) 3608: 3602: 3599: 3594: 3590: 3586: 3582: 3577: 3572: 3568: 3564: 3560: 3556: 3552: 3545: 3542: 3538: 3532: 3530: 3528: 3526: 3524: 3520: 3513: 3509: 3506: 3505: 3501: 3499: 3485: 3481: 3469: 3465: 3445: 3442: 3439: 3411: 3390: 3387: 3376: 3355: 3350: 3346: 3342: 3337: 3331: 3328: 3325: 3321: 3316: 3311: 3300: 3268: 3260: 3236: 3225: 3218: 3211: 3183: 3179: 3176: 3163: 3157: 3154: 3151: 3147: 3142: 3129: 3123: 3119: 3094: 3090: 3067: 3063: 3059: 3054: 3046: 3035: 3029: 3024: 3020: 3014: 3007: 2996: 2990: 2986: 2979: 2974: 2961: 2943: 2932: 2916: 2908: 2891: 2881: 2867: 2864: 2861: 2833: 2828: 2824: 2813: 2792: 2772: 2767: 2763: 2759: 2754: 2748: 2740: 2736: 2724: 2720: 2714: 2709: 2701: 2690: 2682: 2677: 2660: 2648: 2627: 2616: 2609: 2605: 2601: 2595: 2578: 2566: 2537: 2533: 2530: 2519: 2498: 2495: 2478: 2449: 2445: 2442: 2431: 2410: 2401: 2390: 2385: 2381: 2373: 2369: 2365: 2362: 2358: 2350: 2346: 2342: 2334: 2323: 2318: 2306: 2290: 2286: 2282: 2273: 2269: 2264: 2259: 2242: 2205: 2184: 2177: 2173: 2167: 2164: 2147: 2135: 2100: 2088: 2083: 2079: 2074: 2070: 2066: 2063: 2060: 2055: 2050: 2046: 2011: 1988: 1984: 1974: 1961: 1957: 1951: 1947: 1943: 1938: 1933: 1922: 1916: 1905: 1901: 1897: 1888: 1884: 1878: 1872: 1869: 1864: 1860: 1856: 1852: 1848: 1842: 1831: 1826: 1816: 1800: 1772: 1749: 1745: 1736: 1727: 1720: 1718: 1716: 1712: 1708: 1704: 1700: 1695: 1693: 1692:Coulomb's law 1684: 1665: 1660: 1656: 1652: 1648: 1642: 1639: 1634: 1620: 1612: 1604: 1600: 1596: 1570: 1562: 1558: 1557: 1556: 1553: 1549: 1545:is placed at 1543: 1534: 1532: 1528: 1511: 1503: 1495: 1484: 1480: 1476: 1473: 1468: 1463: 1459: 1434: 1430: 1424: 1419: 1415: 1409: 1406: 1403: 1389: 1381: 1377: 1372: 1367: 1351: 1344: 1340: 1306: 1300: 1292: 1281: 1277: 1273: 1270: 1250: 1237: 1235: 1230: 1214: 1211: 1197: 1177: 1169: 1136: 1127: 1123: 1119: 1115: 1111: 1087: 1083: 1076: 1073: 1056: 1053: 1050: 1045: 1041: 1034: 1028: 1025: 1022: 1002: 992: 988: 984: 976: 974: 969: 964: 962: 961:Fermi surface 955: 948: 944: 940: 936: 932: 929:that depends 928: 924: 918: 910: 908: 892: 881: 876: 872: 868: 864: 858: 852: 844: 839: 837: 832: 819: 813: 810: 803: 792: 786: 775: 772: 768: 762: 751: 747: 742: 739: 729: 721: 718: 711: 706: 703: 700: 692: 689: 673: 669: 665: 661: 657: 651: 645: 637: 633: 614: 608: 601: 596: 574: 553: 544: 542: 538: 534: 526: 521: 519: 517: 512: 493: 484: 478: 474: 465: 451: 447: 442: 437: 433: 405: 387: 383: 375: 374:electron mass 370: 357: 352: 348: 344: 339: 334: 330: 327: 321: 316: 313: 308: 294: 285: 278: 274: 268: 263: 255: 248: 235: 229: 218: 212: 207: 203: 199: 196: 190: 185: 180: 176: 167: 160: 155: 151: 145: 143: 139: 135: 131: 127: 123: 107: 101: 93: 82: 78: 74: 71: 68: 63: 58: 54: 45: 40: 38: 34: 30: 26: 22: 18: 3619: 3614: 3606: 3601: 3558: 3554: 3544: 3536: 3223: 3216: 3209: 2906: 2882: 1975: 1732: 1714: 1710: 1706: 1702: 1698: 1696: 1682: 1611:cgs-Gaussian 1608: 1560: 1554: 1547: 1541: 1538: 1526: 1380:cgs-Gaussian 1373: 1365: 1241: 1228: 1167: 1125: 1117: 1113: 1109: 980: 967: 965: 953: 946: 934: 930: 926: 920: 840: 836:Fermi energy 833: 693: 690: 631: 597: 545: 530: 513: 371: 284:atomic units 276: 266: 262:Debye length 253: 249: 165: 158: 153: 149: 146: 137: 133: 121: 41: 37:Enrico Fermi 16: 15: 2907:interacting 1603:Gauss's law 991:Fermi level 537:Fermi level 130:Fermi level 3514:References 3290:10 cm 2470:, we find 943:wavepacket 915:See also: 522:Derivation 3585:2470-0045 3388:≈ 3329:π 3219:= −0.3160 2534:≪ 2446:≫ 2382:μ 2363:− 2277:Γ 2182:∂ 2174:μ 2171:∂ 2067:π 1892:Γ 1870:− 1827:μ 1801:μ 1735:Fermi gas 1653:− 1621:ϕ 1571:ϕ 1504:μ 1501:∂ 1493:∂ 1477:π 1390:ε 1352:μ 1349:∂ 1338:∂ 1307:ϕ 1301:μ 1298:∂ 1290:∂ 1274:− 1271:≈ 1251:ρ 1198:ϕ 1178:ϕ 1137:ρ 1084:μ 1074:− 1057:ϕ 1042:μ 1026:− 1003:ρ 873:μ 865:∝ 859:μ 783:ℏ 773:μ 748:π 722:π 662:μ 658:∝ 652:μ 636:Fermi gas 615:μ 490:ℏ 413:ℏ 335:π 282:given in 200:π 102:μ 99:∂ 91:∂ 75:π 3633:Category 3593:27176414 3502:See also 3226:= 0.0240 2558:we find 1713:, where 1613:units): 952:, where 402:and the 273:fermions 157:, where 3563:Bibcode 3292:, then 3257:is the 3228:. Here 3212:= 1.594 2884:finite- 1382:units) 1255:induced 1141:induced 1120:is the 1007:induced 140:is the 124:is the 3591:  3583:  3207:where 1451:where 1378:: (in 1330:where 1108:where 120:where 3283:5.291 2127:, or 1680:With 250:i.e. 46:) is 3589:PMID 3581:ISSN 2931:CHNC 1597:The 931:only 531:The 286:is 35:and 3607:141 3571:doi 2868:1.8 2854:is 2232:is 1705:by 1688:= 0 1550:= 0 1529:→ 0 838:). 269:= 0 132:), 3635:: 3620:87 3587:. 3579:. 3569:. 3559:93 3557:. 3553:. 3522:^ 3285:77 3221:, 3214:, 2038:: 1817:, 1694:. 1124:, 907:. 688:. 595:. 518:. 511:. 280:TF 252:1/ 152:∝ 144:. 39:. 3595:. 3573:: 3565:: 3486:3 3482:/ 3475:F 3470:E 3466:2 3446:0 3443:= 3440:T 3417:s 3412:r 3391:1 3382:s 3377:r 3356:. 3351:3 3347:/ 3343:1 3338:) 3332:n 3326:4 3322:3 3317:( 3312:= 3306:s 3301:r 3288:× 3269:n 3242:s 3237:r 3224:c 3217:b 3210:a 3189:s 3184:r 3180:c 3177:+ 3169:s 3164:r 3158:b 3155:+ 3152:a 3148:1 3143:= 3135:F 3130:E 3124:q 3120:T 3095:q 3091:T 3068:2 3064:/ 3060:1 3055:) 3047:2 3041:F 3036:E 3030:2 3025:q 3021:T 3015:+ 3008:2 3002:F 2997:E 2991:2 2987:T 2980:( 2975:= 2967:F 2962:E 2955:f 2952:f 2949:e 2944:T 2917:T 2892:T 2865:= 2862:p 2839:F 2834:E 2829:/ 2825:T 2819:B 2814:k 2793:p 2773:, 2768:p 2764:/ 2760:1 2755:] 2749:p 2745:) 2741:3 2737:/ 2730:F 2725:E 2721:2 2718:( 2715:+ 2710:p 2706:) 2702:T 2696:B 2691:k 2687:( 2683:[ 2678:= 2672:f 2669:f 2666:e 2661:T 2654:B 2649:k 2628:. 2622:F 2617:E 2613:) 2610:3 2606:/ 2602:2 2599:( 2596:= 2590:f 2587:f 2584:e 2579:T 2572:B 2567:k 2543:F 2538:E 2531:T 2525:B 2520:k 2499:T 2496:= 2490:f 2487:f 2484:e 2479:T 2455:F 2450:E 2443:T 2437:B 2432:k 2411:. 2405:) 2402:T 2396:B 2391:k 2386:/ 2379:( 2374:2 2370:/ 2366:1 2359:F 2351:2 2347:/ 2343:3 2339:) 2335:T 2329:B 2324:k 2319:/ 2312:F 2307:E 2303:( 2294:) 2291:2 2287:/ 2283:1 2280:( 2274:3 2270:4 2265:= 2260:T 2254:f 2251:f 2248:e 2243:T 2217:f 2214:f 2211:e 2206:T 2185:n 2178:/ 2168:n 2165:= 2159:f 2156:f 2153:e 2148:T 2141:B 2136:k 2112:f 2109:f 2106:e 2101:T 2094:B 2089:k 2084:/ 2080:n 2075:2 2071:e 2064:4 2061:= 2056:2 2051:0 2047:k 2023:f 2020:f 2017:e 2012:T 1989:0 1985:k 1962:. 1958:] 1952:2 1948:/ 1944:3 1939:) 1934:T 1928:F 1923:E 1917:( 1909:) 1906:2 1902:/ 1898:3 1895:( 1889:3 1885:2 1879:[ 1873:1 1865:2 1861:/ 1857:1 1853:F 1849:= 1843:T 1837:B 1832:k 1778:F 1773:E 1750:0 1746:k 1715:ε 1711:ε 1709:/ 1707:Q 1703:Q 1686:0 1683:k 1666:r 1661:0 1657:k 1649:e 1643:r 1640:Q 1635:= 1632:) 1628:r 1624:( 1582:) 1578:r 1574:( 1561:r 1548:r 1542:Q 1527:q 1512:. 1496:n 1485:2 1481:e 1474:4 1469:= 1464:0 1460:k 1435:2 1431:q 1425:2 1420:0 1416:k 1410:+ 1407:1 1404:= 1401:) 1397:q 1393:( 1369:0 1366:μ 1345:/ 1341:n 1318:) 1314:r 1310:( 1293:n 1282:2 1278:e 1268:) 1264:r 1260:( 1232:0 1229:μ 1215:0 1212:= 1209:) 1205:r 1201:( 1168:r 1154:) 1150:r 1146:( 1126:r 1118:e 1114:μ 1112:( 1110:n 1096:] 1093:) 1088:0 1080:( 1077:n 1071:) 1068:) 1064:r 1060:( 1054:e 1051:+ 1046:0 1038:( 1035:n 1032:[ 1029:e 1023:= 1020:) 1016:r 1012:( 971:F 968:k 957:F 954:k 950:F 947:k 935:r 927:r 893:T 887:B 882:k 877:/ 869:e 862:) 856:( 853:n 820:. 814:m 811:2 804:2 798:F 793:k 787:2 776:= 769:, 763:3 757:F 752:k 743:3 740:4 730:3 726:) 719:2 716:( 712:1 707:2 704:= 701:n 674:2 670:/ 666:3 655:) 649:( 646:n 632:μ 618:) 612:( 609:n 580:F 575:k 554:n 499:) 494:2 485:/ 479:e 475:m 471:( 466:2 460:F 457:T 452:k 448:= 443:2 438:0 434:k 388:e 384:m 358:. 353:3 349:/ 345:1 340:) 331:n 328:3 322:( 317:4 314:= 309:2 303:F 300:T 295:k 277:k 267:T 257:0 254:k 236:, 230:T 224:B 219:k 213:n 208:2 204:e 197:4 191:= 186:2 181:0 177:k 166:T 162:B 159:k 154:e 150:n 138:e 134:n 128:( 122:μ 108:, 94:n 83:2 79:e 72:4 69:= 64:2 59:0 55:k

Index

electric field screening
Lindhard theory
Lindhard formula
Llewellyn Thomas
Enrico Fermi
Gaussian-cgs units
chemical potential
Fermi level
elementary charge
Debye length
fermions
atomic units
electron mass
Planck constant
Lindhard theory
internal chemical potential
Fermi level
Pauli exclusion principle
number density
Fermi gas
Fermi energy
n-type semiconductor
Local-density approximation
Thomas–Fermi model
Heisenberg uncertainty principle
wavepacket
Fermi surface
total chemical potential
electrochemical potential
Fermi level

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.