Knowledge (XXG)

Tidal force

Source 📝

122: 3092: 605: 701: 3980: 4001: 183: 550: 713: 3081: 671: 3990: 735:
as they would be if there were no externally generated field acting unequally at the given point and at the center of the reference body. The externally generated field is usually that produced by a perturbing third body, often the Sun or the Moon in the frequent example-cases of points on or above the Earth's surface in a geocentric reference frame.)
31: 1699:(and everything on its surface) is in free fall. When the force on the far particle is subtracted from the force on the near particle, this first term cancels, as do all other even-order terms. The remaining (residual) terms represent the difference mentioned above and are tidal force (acceleration) terms. When ∆ 178:
The relationship of an astronomical body's size, to its distance from another body, strongly influences the magnitude of tidal force. The tidal force acting on an astronomical body, such as the Earth, is directly proportional to the diameter of the Earth and inversely proportional to the cube of the
734:
is used to describe the forces due to tidal acceleration. Note that for these purposes the only gravitational field considered is the external one; the gravitational field of the body (as shown in the graphic) is not relevant. (In other words, the comparison is with the conditions at the given point
216:
The tidal force corresponds to the difference in Y between two points on the graph, with one point on the near side of the body, and the other point on the far side. The tidal force becomes larger, when the two points are either farther apart, or when they are more to the left on the graph, meaning
101:
can refer to a situation in which a body or material (for example, tidal water) is mainly under the gravitational influence of a second body (for example, the Earth), but is also perturbed by the gravitational effects of a third body (for example, the Moon). The perturbing force is sometimes in such
716:
Figure 8: Graphic of tidal forces. The top picture shows the gravity field of a body to the right (not shown); the lower shows their residual gravity once the field at the centre of the sphere is subtracted; this is the tidal force. For visualization purposes, the top arrows may be assumed as equal
153:
When a body (body 1) is acted on by the gravity of another body (body 2), the field can vary significantly on body 1 between the side of the body facing body 2 and the side facing away from body 2. Figure 2 shows the differential force of gravity on a spherical body (body 1) exerted by another body
572:
When a body rotates while subject to tidal forces, internal friction results in the gradual dissipation of its rotational kinetic energy as heat. In the case for the Earth, and Earth's Moon, the loss of rotational kinetic energy results in a gain of about 2 milliseconds per century. If the body is
220:
For example, even though the Sun has a stronger overall gravitational pull on Earth, the Moon creates a larger tidal bulge because the Moon is closer. This difference is due to the way gravity weakens with distance: the Moon's closer proximity creates a steeper decline in its gravitational pull as
165:
is the distance from a planet at which tidal effects would cause an object to disintegrate because the differential force of gravity from the planet overcomes the attraction of the parts of the object for one another. These strains would not occur if the gravitational field were uniform, because a
89:
of objects. It arises because the gravitational field exerted on one body by another is not constant across its parts: the nearer side is attracted more strongly than the farther side. The difference is positive in the near side and negative in the far side, which causes a body to get stretched.
136:
Earth's rotation accounts further for the occurrence of two high tides per day on the same location. In this figure, the Earth is the central black circle while the Moon is far off to the right. It shows both the tidal field (thick red arrows) and the gravity field (thin blue arrows) exerted on
569:, and are slightly compressed, which is what happens to the Earth's oceans under the action of the Moon. All parts of the Earth are subject to the Moon's gravitational forces, causing the water in the oceans to redistribute, forming bulges on the sides near the Moon and far from the Moon. 596:
Tidal forces contribute to ocean currents, which moderate global temperatures by transporting heat energy toward the poles. It has been suggested that variations in tidal forces correlate with cool periods in the global temperature record at 6- to 10-year intervals, and that
1635: 675: 224:
Gravitational attraction is inversely proportional to the square of the distance from the source. The attraction will be stronger on the side of a body facing the source, and weaker on the side away from the source. The tidal force is proportional to the difference.
678: 677: 673: 672: 679: 1377: 233:
The Earth is 81 times more massive than the Moon, the Earth has roughly 4 times the Moon's radius. As a result, at the same distance, the tidal force of the Earth at the surface of the Moon is about 20 times stronger than that of the Moon at the Earth's surface.
221:
you move across Earth (compared to the Sun's very gradual decline from its vast distance). This steeper gradient in the Moon's pull results in a larger difference in force between the near and far sides of Earth, which is what creates the bigger tidal bulge.
676: 1864: 1239: 2004: 729:
of the gravitational acceleration at the center of the body (due to the given externally generated field) from the gravitational acceleration (due to the same field) at the given point. Correspondingly, the term
883: 2039:
at the Earth's surface. Hence the tide-raising force (acceleration) due to the Sun is about 45% of that due to the Moon. The solar tidal acceleration at the Earth's surface was first given by Newton in the
1005: 717:
to 1 N, 2 N, and 3 N (from left to right); the resulting bottom arrows would equal, respectively, -1 N (negative, thus 180-degree rotated), 0 N (invisible), and 1 N. See Figure 2 for a more detailed version
1490: 2009:
The tidal accelerations at the surfaces of planets in the Solar System are generally very small. For example, the lunar tidal acceleration at the Earth's surface along the Moon–Earth axis is about
179:
distance from another body producing a gravitational attraction, such as the Moon or the Sun. Tidal action on bath tubs, swimming pools, lakes, and other small bodies of water is negligible.
1254: 1749: 1482: 674: 371: 1915: 1431: 922: 795: 561:
In the case of an infinitesimally small elastic sphere, the effect of a tidal force is to distort the shape of the body without any change in volume. The sphere becomes an
3720: 1037: 1769: 190:
Figure 3 is a graph showing how gravitational force declines with distance. In this graph, the attractive force decreases in proportion to the square of the distance (
1685: 3710: 2769: 2372: 2042: 1662: 321: 298: 272: 2155: 3626: 746: 1147: 557:'s rings are inside the orbits of its principal moons. Tidal forces oppose gravitational coalescence of the material in the rings to form moons. 3041: 2809: 2657:), and wrote that the force to raise the sea along the Sun-Earth axis is "twice as great" (i.e., 2 to 38604600) which comes to about 0.52 × 10 601:
variations in tidal forcing may contribute to millennial climate changes. No strong link to millennial climate changes has been found to date.
2642: 2611: 2408: 2345: 2233: 2200: 3273: 1947: 3163: 2762: 106:): it is the difference between the force exerted by the third body on the second and the force exerted by the third body on the first. 3868: 3295: 3183: 803: 930: 3715: 2986: 2729: 3133: 3173: 1630:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{R^{2}}}\pm {\hat {r}}~G~{\frac {2M}{R^{2}}}~{\frac {\Delta r}{R}}+\cdots } 3993: 3903: 2889: 2682: 742:
in a straight line under the influence of a gravitational field while still being influenced by (changing) tidal acceleration.
657: 90:
Thus, the tidal force is also known as the differential force, residual force, or secondary effect of the gravitational field.
3576: 4051: 3983: 2755: 1940:
calculation. In the plane perpendicular to that axis, the tidal acceleration is directed inwards (towards the center where ∆
3031: 1707:, the terms after the first residual term are very small and can be neglected, giving the approximate tidal acceleration 1372:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{R^{2}}}~{\frac {1}{\left(1\pm {\frac {\Delta r}{R}}\right)^{2}}}} 1090:. For simplicity, distances are first considered only in the direction pointing towards or away from the sphere of mass 4046: 3091: 129:
field at the surface of the Earth is known (along with another and weaker differential effect due to the Sun) as the
2104: 3228: 2716: 1710: 3128: 2653:
Newton put the force to depress the sea at places 90 degrees distant from the Sun at "1 to 38604600" (in terms of
3763: 3168: 664: 2526: 2501: 2425: 3893: 3268: 3258: 3198: 2834: 2804: 2707: 2394: 2223: 1436: 161:
cause strains on both bodies and may distort them or even, in extreme cases, break one or the other apart. The
3930: 3913: 3750: 3243: 3108: 3046: 3036: 2929: 2188: 688: 328: 3925: 3863: 3290: 2976: 2298: 609: 525: 2252: 2219: 4026: 3758: 3740: 3248: 3143: 2778: 2603: 3945: 3778: 3481: 3338: 3203: 2914: 2687: 2513: 2454: 2290: 2303: 1884: 1389: 891: 764: 3940: 3825: 3820: 3546: 3218: 3178: 2894: 2281: 2085: 186:
Figure 3: Graph showing how gravitational attraction drops off with increasing distance from a body
94: 62: 2678: 1859:{\displaystyle {\vec {a}}_{t,{\text{axial}}}\approx \pm {\hat {r}}~2\Delta r~G~{\frac {M}{R^{3}}}} 3883: 3596: 3586: 3551: 3451: 3436: 3333: 2741: 653: 586: 110: 2192: 1013: 121: 1126:. Leaving aside whatever gravitational acceleration may be experienced by the particle towards 663:
By generating conducting fluids within the interior of the Earth, tidal forces also affect the
565:
with two bulges, pointing towards and away from the other body. Larger objects distort into an
170:
only causes the entire body to accelerate together in the same direction and at the same rate.
141:
direction of the arrows on the right and left of the Earth indicates that where the Moon is at
133:. This is the primary mechanism driving tidal action, explaining two simultaneous tidal bulges. 3965: 3955: 3898: 3878: 3561: 3526: 3461: 3441: 3431: 3313: 3001: 2859: 2638: 2619: 2607: 2482: 2404: 2341: 2316: 2229: 2196: 2141: 2055: 2020:, while the solar tidal acceleration at the Earth's surface along the Sun–Earth axis is about 1667: 738:
Tidal acceleration does not require rotation or orbiting bodies; for example, the body may be
629: 604: 86: 2352: 4036: 3920: 3888: 3858: 3667: 3652: 3521: 3456: 3348: 3263: 3193: 3118: 2899: 2869: 2799: 2794: 2521: 2472: 2462: 2308: 2060: 2036: 1937: 1687:
is zero. This term does not affect the observed acceleration of particles on the surface of
1383: 726: 700: 598: 70: 2650: 3725: 3621: 3571: 3536: 3496: 3388: 3358: 3208: 3158: 3068: 3026: 2959: 2884: 2844: 2075: 2070: 167: 3080: 2517: 2458: 2294: 1137:
s own mass, we have the acceleration on the particle due to gravitational force towards
4041: 4031: 3835: 3830: 3735: 3730: 3566: 3506: 3501: 3233: 3123: 2944: 2879: 2854: 2181: 1647: 1086:
be the (relatively small) distance of the particle from the center of the body of mass
306: 283: 257: 58: 4020: 4005: 3853: 3773: 3662: 3581: 3556: 3491: 3421: 3328: 3223: 3100: 3021: 2981: 2954: 2864: 2814: 2477: 2442: 2128: 2065: 649: 620:
Tidal effects become particularly pronounced near small bodies of high mass, such as
578: 574: 74: 54: 35: 2735: 1928:
Tidal accelerations can also be calculated away from the axis connecting the bodies
27:
A gravitational effect also known as the differential force and the perturbing force
4000: 3960: 3908: 3848: 3799: 3677: 3672: 3647: 3631: 3606: 3323: 3213: 3153: 2939: 2849: 2824: 2337:
Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity
2080: 621: 103: 2571: 182: 17: 2632: 2597: 2541: 2335: 1102:, then the new particle considered may be located on its surface, at a distance ( 3950: 3682: 3611: 3476: 3416: 3383: 3373: 3253: 3188: 3148: 3138: 3113: 2996: 2969: 2949: 2909: 2874: 2703: 2364: 1040: 162: 82: 78: 2695: 3768: 3616: 3591: 3486: 3466: 3393: 3378: 3363: 3353: 3318: 3238: 3058: 3053: 3016: 3011: 3006: 2904: 625: 549: 2320: 1234:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{(R\pm \Delta r)^{2}}}} 3840: 3702: 3687: 3601: 3446: 3285: 3280: 3063: 2991: 2919: 2839: 2829: 2786: 2467: 2400: 2183:
The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics
590: 582: 562: 2732:
by Mikolaj Sawicki of John A. Logan College and the University of Colorado.
2486: 2673: 712: 3935: 3657: 3516: 3408: 3398: 3343: 2819: 739: 705: 2747: 2717:"Stellar collisions: Tidal disruption of a star by a massive black hole" 2131:, I. N. Avsiuk, in "Soviet Astronomy Letters", vol. 3 (1977), pp. 96–99. 3804: 3794: 2964: 2934: 613: 38: 2156:"Tidal forces carry the mathematical signature of gravitational waves" 57:
effect that stretches a body along the line towards and away from the
3511: 2924: 2312: 1999:{\textstyle {\frac {1}{2}}\left|{\vec {a}}_{t,{\text{axial}}}\right|} 554: 142: 704:
Figure 7: Tidal force is responsible for the merge of galactic pair
573:
close enough to its primary, this can result in a rotation which is
30: 3873: 3692: 3471: 3426: 711: 699: 669: 637: 603: 566: 548: 181: 146: 120: 29: 2500:
Munk, Walter; Dzieciuch, Matthew; Jayne, Steven (February 2002).
137:
Earth's surface and center (label O) by the Moon (label S). The
109:
Tidal forces have also been shown to be fundamentally related to
3305: 2340:(illustrated ed.). Cambridge University Press. p. 45. 878:{\displaystyle {\vec {F}}_{g}=-{\hat {r}}~G~{\frac {Mm}{R^{2}}}} 684: 641: 633: 66: 2751: 1000:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{R^{2}}}} 589:
caused by tidal forces also cause a regular monthly pattern of
2502:"Millennial Climate Variability: Is There a Tidal Connection?" 2430:. Vol. 26. Encyclopedia Americana Corp. pp. 611–617. 1066:
experienced by a particle in the vicinity of the body of mass
645: 2443:"Possible forcing of global temperature by the oceanic tides" 2427:
The Encyclopedia Americana: A Library of Universal Knowledge
1118:
may be taken as positive where the particle's distance from
721:
For a given (externally generated) gravitational field, the
2527:
10.1175/1520-0442(2002)015<0370:MCVITA>2.0.CO;2
577:
to the orbital motion, as in the case of the Earth's moon.
2279:
Sawicki, Mikolaj (1999). "Myths about gravity and tides".
213:) is inversely proportional to the cube of the distance. 61:
of another body due to spatial variations in strength in
1640:
The first term is the gravitational acceleration due to
1062:
Consider now the acceleration due to the sphere of mass
2369:
The NIST Reference on Constants, Units, and Uncertainty
632:" of infalling matter. Tidal forces create the oceanic 2365:"2022 CODATA Value: Newtonian constant of gravitation" 1950: 77:, breaking apart of celestial bodies and formation of 1887: 1772: 1713: 1670: 1650: 1493: 1439: 1392: 1257: 1150: 1016: 933: 894: 806: 767: 581:
produces dramatic volcanic effects on Jupiter's moon
331: 309: 286: 260: 1873:
is a distance along the axis joining the centers of
3813: 3787: 3749: 3701: 3640: 3535: 3407: 3304: 3099: 2785: 687:getting torn apart by the gravitational tides of a 2396:Hamiltonian Dynamical Systems: A Reprint Selection 2180: 2154:arXiv, Emerging Technology from the (2019-12-14). 1998: 1909: 1858: 1755:considered, along the axis joining the centers of 1743: 1679: 1656: 1629: 1476: 1425: 1371: 1233: 1031: 999: 916: 877: 789: 365: 315: 292: 266: 3721:North West Shelf Operational Oceanographic System 2634:The mathematical principles of natural philosophy 725:at a point with respect to a body is obtained by 612:in 1994 after breaking up under the influence of 1869:When calculated in this way for the case where ∆ 3711:Deep-ocean Assessment and Reporting of Tsunamis 2447:Proceedings of the National Academy of Sciences 640:'s oceans, where the attracting bodies are the 616:'s tidal forces during a previous pass in 1992. 65:from the other body. It is responsible for the 2441:Keeling, C. D.; Whorf, T. P. (5 August 1997). 2763: 2274: 2272: 1744:{\displaystyle {\vec {a}}_{t,{\text{axial}}}} 102:cases called a tidal force (for example, the 8: 1917:is directed outwards from to the center of 125:Figure 2: Shown in red, the Moon's gravity 2770: 2756: 2748: 2674:Analysis and Prediction of Tides: GeoTide 2525: 2476: 2466: 2302: 1985: 1978: 1967: 1966: 1951: 1949: 1901: 1890: 1889: 1886: 1848: 1839: 1807: 1806: 1793: 1786: 1775: 1774: 1771: 1734: 1727: 1716: 1715: 1712: 1669: 1649: 1606: 1595: 1581: 1561: 1560: 1549: 1540: 1520: 1519: 1507: 1496: 1495: 1492: 1477:{\displaystyle 1\mp 2x+3x^{2}\mp \cdots } 1462: 1438: 1417: 1396: 1391: 1361: 1341: 1324: 1313: 1304: 1284: 1283: 1271: 1260: 1259: 1256: 1222: 1197: 1177: 1176: 1164: 1153: 1152: 1149: 1018: 1017: 1015: 989: 980: 960: 959: 947: 936: 935: 932: 908: 897: 896: 893: 867: 853: 833: 832: 820: 809: 808: 805: 781: 770: 769: 766: 355: 341: 330: 308: 285: 259: 2006:in linear approximation as in Figure 2. 1110:) from the centre of the sphere of mass 648:. Tidal forces are also responsible for 236: 34:Figure 1: Tidal interaction between the 2253:"The Tidal Force | Neil deGrasse Tyson" 2247: 2245: 2096: 3042:one-dimensional Saint-Venant equations 628:, where they are responsible for the " 366:{\displaystyle Gm~{\frac {2r}{d^{3}}}} 240:Gravitational body causing tidal force 747:Newton's law of universal gravitation 7: 3989: 1644:at the center of the reference body 757:from the center of a sphere of mass 2694:Gray, Meghan; Merrifield, Michael. 2142:"Astronomy: a physical perspective" 2105:"Hubble Views a Cosmic Interaction" 1484:which gives a series expansion of: 1074:as the distance from the center of 749:and laws of motion, a body of mass 3869:National Oceanographic Data Center 3296:World Ocean Circulation Experiment 3184:Global Ocean Data Analysis Project 2393:R. S. MacKay; J. D. Meiss (1987). 1824: 1671: 1609: 1344: 1212: 683:Figure 6: This simulation shows a 25: 3716:Global Sea Level Observing System 1248:term from the denominator gives: 69:and related phenomena, including 3999: 3988: 3979: 3978: 3174:Geochemical Ocean Sections Study 3090: 3079: 2688:Audio: Cain/Gay – Astronomy Cast 2651:Book 3, Proposition 36, Page 307 2222:; J -P Bibring; M Blanc (2003). 658:Tides may also induce seismicity 3904:Ocean thermal energy conversion 3627:Vine–Matthews–Morley hypothesis 2683:Case Western Reserve University 1944:is zero), and its magnitude is 217:closer to the attracting body. 2599:Admiralty manual of navigation 2576:ESA/Hubble Picture of the Week 1972: 1910:{\displaystyle {\vec {a}}_{t}} 1895: 1812: 1780: 1721: 1566: 1525: 1501: 1426:{\displaystyle 1/(1\pm x)^{2}} 1414: 1401: 1289: 1265: 1219: 1203: 1182: 1158: 1098:is itself a sphere of radius ∆ 1023: 965: 941: 917:{\displaystyle {\vec {a}}_{g}} 902: 888:equivalent to an acceleration 838: 814: 790:{\displaystyle {\vec {F}}_{g}} 775: 1: 2730:Myths about Gravity and Tides 644:and, to a lesser extent, the 243:Body subjected to tidal force 3164:El Niño–Southern Oscillation 3134:Craik–Leibovich vortex force 2890:Luke's variational principle 2637:. Vol. 2. p. 307. 2572:"Inseparable galactic twins" 104:perturbing force on the Moon 2742:Tides and centrifugal force 2681:by J. Christopher Mihos of 2542:"Hungry for Power in Space" 1664:, i.e., at the point where 4068: 3229:Ocean dynamical thermostat 3077: 2037:gravitational acceleration 1032:{\displaystyle {\hat {r}}} 3974: 3764:Ocean acoustic tomography 3577:Mohorovičić discontinuity 3169:General circulation model 2805:Benjamin–Feir instability 2690:Tidal Forces – July 2007. 2661:as expressed in the text. 2257:www.haydenplanetarium.org 2111:. NASA. February 11, 2022 1051:(here, acceleration from 520: 242: 239: 3894:Ocean surface topography 3269:Thermohaline circulation 3259:Subsurface ocean current 3199:Hydrothermal circulation 3032:Wave–current interaction 2810:Boussinesq approximation 2708:University of Nottingham 2424:Rollin A Harris (1920). 2334:Schutz, Bernard (2003). 2228:. Springer. p. 16. 1691:because with respect to 1680:{\displaystyle \Delta r} 85:, and in extreme cases, 3931:Sea surface temperature 3914:Outline of oceanography 3109:Atmospheric circulation 3047:shallow water equations 3037:Waves and shallow water 2930:Significant wave height 2552:: 52. 23 September 1989 2468:10.1073/pnas.94.16.8321 2189:Oxford University Press 1043:pointing from the body 689:supermassive black hole 41:and a smaller companion 3926:Sea surface microlayer 3291:Wind generated current 2631:Newton, Isaac (1729). 2596:The Admiralty (1987). 2144:, M. L. Kutner (2003). 2000: 1911: 1860: 1745: 1681: 1658: 1631: 1478: 1427: 1373: 1235: 1094:. If the body of mass 1033: 1001: 918: 879: 791: 718: 709: 692: 665:Earth's magnetic field 617: 610:Comet Shoemaker-Levy 9 558: 526:gravitational constant 367: 317: 294: 268: 187: 150: 42: 4052:Concepts in astronomy 3759:Deep scattering layer 3741:World Geodetic System 3249:Princeton Ocean Model 3129:Coriolis–Stokes force 2779:Physical oceanography 2604:The Stationery Office 2160:MIT Technology Review 2001: 1912: 1861: 1746: 1703:is small compared to 1682: 1659: 1632: 1479: 1428: 1374: 1236: 1034: 1002: 919: 880: 792: 715: 703: 682: 656:, and tidal heating. 607: 552: 368: 318: 295: 269: 185: 131:tide generating force 124: 51:tide-generating force 33: 3779:Underwater acoustics 3339:Perigean spring tide 3204:Langmuir circulation 2915:Rossby-gravity waves 2738:by Donald E. Simanek 2736:Tidal Misconceptions 2129:"On the tidal force" 1948: 1885: 1770: 1711: 1668: 1648: 1491: 1437: 1390: 1255: 1148: 1059:has negative sign). 1014: 931: 892: 804: 765: 329: 307: 284: 258: 229:Sun, Earth, and Moon 200:), while the slope ( 3941:Science On a Sphere 3547:Convergent boundary 3219:Modular Ocean Model 3179:Geostrophic current 2895:Mild-slope equation 2679:Gravitational Tides 2518:2002JCli...15..370M 2459:1997PNAS...94.8321K 2295:1999PhTea..37..438S 2282:The Physics Teacher 2086:Spacetime curvature 1751:for the distances ∆ 246:Tidal acceleration 111:gravitational waves 95:celestial mechanics 63:gravitational field 4047:Effects of gravity 3597:Seafloor spreading 3587:Outer trench swell 3552:Divergent boundary 3452:Continental margin 3437:Carbonate platform 3334:Lunitidal interval 2715:Pau Amaro Seoane. 2620:Chapter 11, p. 277 2506:Journal of Climate 2353:Extract of page 45 2179:R Penrose (1999). 1996: 1907: 1856: 1741: 1677: 1654: 1627: 1474: 1423: 1369: 1231: 1029: 997: 914: 875: 787: 727:vector subtraction 723:tidal acceleration 719: 710: 693: 654:tidal acceleration 618: 559: 363: 313: 290: 264: 188: 151: 43: 18:Tidal interactions 4014: 4013: 4006:Oceans portal 3966:World Ocean Atlas 3956:Underwater glider 3899:Ocean temperature 3562:Hydrothermal vent 3527:Submarine volcano 3462:Continental shelf 3442:Coastal geography 3432:Bathymetric chart 3314:Amphidromic point 3002:Wave nonlinearity 2860:Infragravity wave 2644:978-0-11-772880-6 2613:978-0-11-772880-6 2453:(16): 8321–8328. 2410:978-0-85274-205-1 2347:978-0-521-45506-0 2235:978-3-540-00241-3 2202:978-0-19-286198-6 2056:Amphidromic point 1988: 1975: 1959: 1898: 1854: 1838: 1832: 1820: 1815: 1796: 1783: 1737: 1724: 1657:{\displaystyle m} 1619: 1605: 1601: 1580: 1574: 1569: 1555: 1539: 1533: 1528: 1504: 1367: 1354: 1323: 1319: 1303: 1297: 1292: 1268: 1229: 1196: 1190: 1185: 1161: 1078:to the center of 1026: 995: 979: 973: 968: 944: 905: 873: 852: 846: 841: 817: 778: 680: 630:spaghettification 593:on Earth's Moon. 542: 541: 515:10 m⋅s 467:10 m⋅s 419:10 m⋅s 361: 340: 316:{\displaystyle d} 293:{\displaystyle r} 267:{\displaystyle m} 174:Size and distance 97:, the expression 87:spaghettification 71:solid-earth tides 16:(Redirected from 4059: 4004: 4003: 3992: 3991: 3982: 3981: 3921:Pelagic sediment 3859:Marine pollution 3653:Deep ocean water 3522:Submarine canyon 3457:Continental rise 3349:Rule of twelfths 3264:Sverdrup balance 3194:Humboldt Current 3119:Boundary current 3094: 3083: 2900:Radiation stress 2870:Iribarren number 2845:Equatorial waves 2800:Ballantine scale 2795:Airy wave theory 2772: 2765: 2758: 2749: 2744:by Paolo Sirtoli 2726: 2724: 2723: 2711: 2662: 2648: 2628: 2622: 2617: 2593: 2587: 2586: 2584: 2582: 2568: 2562: 2561: 2559: 2557: 2538: 2532: 2531: 2529: 2497: 2491: 2490: 2480: 2470: 2438: 2432: 2431: 2421: 2415: 2414: 2390: 2384: 2383: 2381: 2380: 2361: 2355: 2351: 2331: 2325: 2324: 2313:10.1119/1.880345 2306: 2276: 2267: 2266: 2264: 2263: 2249: 2240: 2239: 2225:The Solar System 2220:Thérèse Encrenaz 2216: 2210: 2209: 2186: 2176: 2170: 2169: 2167: 2166: 2151: 2145: 2138: 2132: 2126: 2120: 2119: 2117: 2116: 2101: 2061:Disrupted planet 2030: 2025: 2019: 2014: 2005: 2003: 2002: 1997: 1995: 1991: 1990: 1989: 1986: 1977: 1976: 1968: 1960: 1952: 1916: 1914: 1913: 1908: 1906: 1905: 1900: 1899: 1891: 1865: 1863: 1862: 1857: 1855: 1853: 1852: 1840: 1836: 1830: 1818: 1817: 1816: 1808: 1799: 1798: 1797: 1794: 1785: 1784: 1776: 1750: 1748: 1747: 1742: 1740: 1739: 1738: 1735: 1726: 1725: 1717: 1686: 1684: 1683: 1678: 1663: 1661: 1660: 1655: 1636: 1634: 1633: 1628: 1620: 1615: 1607: 1603: 1602: 1600: 1599: 1590: 1582: 1578: 1572: 1571: 1570: 1562: 1556: 1554: 1553: 1541: 1537: 1531: 1530: 1529: 1521: 1512: 1511: 1506: 1505: 1497: 1483: 1481: 1480: 1475: 1467: 1466: 1432: 1430: 1429: 1424: 1422: 1421: 1400: 1384:Maclaurin series 1378: 1376: 1375: 1370: 1368: 1366: 1365: 1360: 1356: 1355: 1350: 1342: 1325: 1321: 1320: 1318: 1317: 1305: 1301: 1295: 1294: 1293: 1285: 1276: 1275: 1270: 1269: 1261: 1244:Pulling out the 1240: 1238: 1237: 1232: 1230: 1228: 1227: 1226: 1198: 1194: 1188: 1187: 1186: 1178: 1169: 1168: 1163: 1162: 1154: 1136: 1122:is greater than 1038: 1036: 1035: 1030: 1028: 1027: 1019: 1006: 1004: 1003: 998: 996: 994: 993: 981: 977: 971: 970: 969: 961: 952: 951: 946: 945: 937: 923: 921: 920: 915: 913: 912: 907: 906: 898: 884: 882: 881: 876: 874: 872: 871: 862: 854: 850: 844: 843: 842: 834: 825: 824: 819: 818: 810: 796: 794: 793: 788: 786: 785: 780: 779: 771: 681: 538: 535: 533: 516: 514: 507: 505: 498: 496: 484: 482: 468: 466: 459: 457: 450: 448: 436: 434: 420: 418: 411: 409: 402: 400: 388: 386: 372: 370: 369: 364: 362: 360: 359: 350: 342: 338: 322: 320: 319: 314: 299: 297: 296: 291: 273: 271: 270: 265: 237: 212: 207: 199: 21: 4067: 4066: 4062: 4061: 4060: 4058: 4057: 4056: 4017: 4016: 4015: 4010: 3998: 3970: 3809: 3783: 3745: 3726:Sea-level curve 3697: 3636: 3622:Transform fault 3572:Mid-ocean ridge 3538: 3531: 3497:Oceanic plateau 3403: 3389:Tidal resonance 3359:Theory of tides 3300: 3209:Longshore drift 3159:Ekman transport 3095: 3089: 3088: 3087: 3086: 3085: 3084: 3075: 3027:Wave turbulence 2960:Trochoidal wave 2885:Longshore drift 2781: 2776: 2721: 2719: 2714: 2693: 2670: 2665: 2645: 2630: 2629: 2625: 2614: 2606:. p. 277. 2602:. Vol. 1. 2595: 2594: 2590: 2580: 2578: 2570: 2569: 2565: 2555: 2553: 2540: 2539: 2535: 2499: 2498: 2494: 2440: 2439: 2435: 2423: 2422: 2418: 2411: 2392: 2391: 2387: 2378: 2376: 2363: 2362: 2358: 2348: 2333: 2332: 2328: 2304:10.1.1.695.8981 2278: 2277: 2270: 2261: 2259: 2251: 2250: 2243: 2236: 2218: 2217: 2213: 2203: 2178: 2177: 2173: 2164: 2162: 2153: 2152: 2148: 2139: 2135: 2127: 2123: 2114: 2112: 2103: 2102: 2098: 2094: 2076:Tidal stripping 2071:Tidal resonance 2052: 2023: 2021: 2012: 2010: 1965: 1961: 1946: 1945: 1888: 1883: 1882: 1844: 1773: 1768: 1767: 1714: 1709: 1708: 1666: 1665: 1646: 1645: 1608: 1591: 1583: 1545: 1494: 1489: 1488: 1458: 1435: 1434: 1413: 1388: 1387: 1343: 1334: 1330: 1329: 1309: 1258: 1253: 1252: 1218: 1202: 1151: 1146: 1145: 1134: 1012: 1011: 985: 934: 929: 928: 895: 890: 889: 863: 855: 807: 802: 801: 768: 763: 762: 698: 670: 547: 536: 531: 529: 512: 510: 503: 501: 494: 492: 480: 478: 464: 462: 455: 453: 446: 444: 432: 430: 416: 414: 407: 405: 398: 396: 384: 382: 351: 343: 327: 326: 305: 304: 282: 281: 256: 255: 231: 205: 201: 191: 176: 135: 134: 119: 28: 23: 22: 15: 12: 11: 5: 4065: 4063: 4055: 4054: 4049: 4044: 4039: 4034: 4029: 4019: 4018: 4012: 4011: 4009: 4008: 3996: 3986: 3975: 3972: 3971: 3969: 3968: 3963: 3958: 3953: 3948: 3946:Stratification 3943: 3938: 3933: 3928: 3923: 3918: 3917: 3916: 3906: 3901: 3896: 3891: 3886: 3881: 3876: 3871: 3866: 3861: 3856: 3851: 3846: 3838: 3836:Color of water 3833: 3831:Benthic lander 3828: 3823: 3817: 3815: 3811: 3810: 3808: 3807: 3802: 3797: 3791: 3789: 3785: 3784: 3782: 3781: 3776: 3771: 3766: 3761: 3755: 3753: 3747: 3746: 3744: 3743: 3738: 3736:Sea level rise 3733: 3731:Sea level drop 3728: 3723: 3718: 3713: 3707: 3705: 3699: 3698: 3696: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3655: 3650: 3644: 3642: 3638: 3637: 3635: 3634: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3594: 3589: 3584: 3579: 3574: 3569: 3567:Marine geology 3564: 3559: 3554: 3549: 3543: 3541: 3533: 3532: 3530: 3529: 3524: 3519: 3514: 3509: 3507:Passive margin 3504: 3502:Oceanic trench 3499: 3494: 3489: 3484: 3479: 3474: 3469: 3464: 3459: 3454: 3449: 3444: 3439: 3434: 3429: 3424: 3419: 3413: 3411: 3405: 3404: 3402: 3401: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3361: 3356: 3351: 3346: 3341: 3336: 3331: 3326: 3321: 3316: 3310: 3308: 3302: 3301: 3299: 3298: 3293: 3288: 3283: 3278: 3277: 3276: 3266: 3261: 3256: 3251: 3246: 3241: 3236: 3234:Ocean dynamics 3231: 3226: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3161: 3156: 3151: 3146: 3141: 3136: 3131: 3126: 3124:Coriolis force 3121: 3116: 3111: 3105: 3103: 3097: 3096: 3078: 3076: 3074: 3073: 3072: 3071: 3061: 3056: 3051: 3050: 3049: 3044: 3034: 3029: 3024: 3019: 3014: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2974: 2973: 2972: 2962: 2957: 2952: 2947: 2945:Stokes problem 2942: 2937: 2932: 2927: 2922: 2917: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2880:Kinematic wave 2877: 2872: 2867: 2862: 2857: 2852: 2847: 2842: 2837: 2832: 2827: 2822: 2817: 2812: 2807: 2802: 2797: 2791: 2789: 2783: 2782: 2777: 2775: 2774: 2767: 2760: 2752: 2746: 2745: 2739: 2733: 2727: 2712: 2696:"Tidal Forces" 2691: 2685: 2676: 2669: 2668:External links 2666: 2664: 2663: 2643: 2623: 2612: 2588: 2563: 2533: 2512:(4): 370–385. 2492: 2433: 2416: 2409: 2403:. p. 36. 2385: 2356: 2346: 2326: 2289:(7): 438–441. 2268: 2241: 2234: 2211: 2201: 2171: 2146: 2140:See p. 509 in 2133: 2121: 2095: 2093: 2090: 2089: 2088: 2083: 2078: 2073: 2068: 2063: 2058: 2051: 2048: 1994: 1984: 1981: 1974: 1971: 1964: 1958: 1955: 1936:, requiring a 1904: 1897: 1894: 1867: 1866: 1851: 1847: 1843: 1835: 1829: 1826: 1823: 1814: 1811: 1805: 1802: 1792: 1789: 1782: 1779: 1733: 1730: 1723: 1720: 1676: 1673: 1653: 1638: 1637: 1626: 1623: 1618: 1614: 1611: 1598: 1594: 1589: 1586: 1577: 1568: 1565: 1559: 1552: 1548: 1544: 1536: 1527: 1524: 1518: 1515: 1510: 1503: 1500: 1473: 1470: 1465: 1461: 1457: 1454: 1451: 1448: 1445: 1442: 1420: 1416: 1412: 1409: 1406: 1403: 1399: 1395: 1380: 1379: 1364: 1359: 1353: 1349: 1346: 1340: 1337: 1333: 1328: 1316: 1312: 1308: 1300: 1291: 1288: 1282: 1279: 1274: 1267: 1264: 1242: 1241: 1225: 1221: 1217: 1214: 1211: 1208: 1205: 1201: 1193: 1184: 1181: 1175: 1172: 1167: 1160: 1157: 1130:on account of 1025: 1022: 1008: 1007: 992: 988: 984: 976: 967: 964: 958: 955: 950: 943: 940: 911: 904: 901: 886: 885: 870: 866: 861: 858: 849: 840: 837: 831: 828: 823: 816: 813: 784: 777: 774: 761:feels a force 697: 694: 575:tidally locked 546: 543: 540: 539: 534:10 m⋅kg⋅s 518: 517: 508: 499: 490: 485: 476: 470: 469: 460: 451: 442: 437: 428: 422: 421: 412: 403: 394: 389: 380: 374: 373: 358: 354: 349: 346: 337: 334: 324: 312: 301: 289: 278: 275: 263: 252: 248: 247: 244: 241: 230: 227: 175: 172: 118: 115: 59:center of mass 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4064: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4024: 4022: 4007: 4002: 3997: 3995: 3987: 3985: 3977: 3976: 3973: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3927: 3924: 3922: 3919: 3915: 3912: 3911: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3854:Marine energy 3852: 3850: 3847: 3845: 3844: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3821:Acidification 3819: 3818: 3816: 3812: 3806: 3803: 3801: 3798: 3796: 3793: 3792: 3790: 3786: 3780: 3777: 3775: 3774:SOFAR channel 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3756: 3754: 3752: 3748: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3708: 3706: 3704: 3700: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3645: 3643: 3639: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3582:Oceanic crust 3580: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3560: 3558: 3557:Fracture zone 3555: 3553: 3550: 3548: 3545: 3544: 3542: 3540: 3534: 3528: 3525: 3523: 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3498: 3495: 3493: 3492:Oceanic basin 3490: 3488: 3485: 3483: 3480: 3478: 3475: 3473: 3470: 3468: 3465: 3463: 3460: 3458: 3455: 3453: 3450: 3448: 3445: 3443: 3440: 3438: 3435: 3433: 3430: 3428: 3425: 3423: 3422:Abyssal plain 3420: 3418: 3415: 3414: 3412: 3410: 3406: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3330: 3329:Internal tide 3327: 3325: 3322: 3320: 3317: 3315: 3312: 3311: 3309: 3307: 3303: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3275: 3272: 3271: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3232: 3230: 3227: 3225: 3224:Ocean current 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3106: 3104: 3102: 3098: 3093: 3082: 3070: 3067: 3066: 3065: 3062: 3060: 3057: 3055: 3052: 3048: 3045: 3043: 3040: 3039: 3038: 3035: 3033: 3030: 3028: 3025: 3023: 3022:Wave shoaling 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2982:Ursell number 2980: 2978: 2975: 2971: 2968: 2967: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2865:Internal wave 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2815:Breaking wave 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2796: 2793: 2792: 2790: 2788: 2784: 2780: 2773: 2768: 2766: 2761: 2759: 2754: 2753: 2750: 2743: 2740: 2737: 2734: 2731: 2728: 2718: 2713: 2709: 2705: 2701: 2700:Sixty Symbols 2697: 2692: 2689: 2686: 2684: 2680: 2677: 2675: 2672: 2671: 2667: 2660: 2656: 2652: 2646: 2640: 2636: 2635: 2627: 2624: 2621: 2615: 2609: 2605: 2601: 2600: 2592: 2589: 2577: 2573: 2567: 2564: 2551: 2547: 2546:New Scientist 2543: 2537: 2534: 2528: 2523: 2519: 2515: 2511: 2507: 2503: 2496: 2493: 2488: 2484: 2479: 2474: 2469: 2464: 2460: 2456: 2452: 2448: 2444: 2437: 2434: 2429: 2428: 2420: 2417: 2412: 2406: 2402: 2398: 2397: 2389: 2386: 2374: 2370: 2366: 2360: 2357: 2354: 2349: 2343: 2339: 2338: 2330: 2327: 2322: 2318: 2314: 2310: 2305: 2300: 2296: 2292: 2288: 2284: 2283: 2275: 2273: 2269: 2258: 2254: 2248: 2246: 2242: 2237: 2231: 2227: 2226: 2221: 2215: 2212: 2208: 2204: 2198: 2194: 2190: 2185: 2184: 2175: 2172: 2161: 2157: 2150: 2147: 2143: 2137: 2134: 2130: 2125: 2122: 2110: 2106: 2100: 2097: 2091: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2066:Galactic tide 2064: 2062: 2059: 2057: 2054: 2053: 2049: 2047: 2045: 2044: 2038: 2034: 2029: 2018: 2007: 1992: 1982: 1979: 1969: 1962: 1956: 1953: 1943: 1939: 1935: 1931: 1926: 1924: 1920: 1902: 1892: 1880: 1876: 1872: 1849: 1845: 1841: 1833: 1827: 1821: 1809: 1803: 1800: 1790: 1787: 1777: 1766: 1765: 1764: 1762: 1758: 1754: 1731: 1728: 1718: 1706: 1702: 1698: 1694: 1690: 1674: 1651: 1643: 1624: 1621: 1616: 1612: 1596: 1592: 1587: 1584: 1575: 1563: 1557: 1550: 1546: 1542: 1534: 1522: 1516: 1513: 1508: 1498: 1487: 1486: 1485: 1471: 1468: 1463: 1459: 1455: 1452: 1449: 1446: 1443: 1440: 1418: 1410: 1407: 1404: 1397: 1393: 1385: 1362: 1357: 1351: 1347: 1338: 1335: 1331: 1326: 1314: 1310: 1306: 1298: 1286: 1280: 1277: 1272: 1262: 1251: 1250: 1249: 1247: 1223: 1215: 1209: 1206: 1199: 1191: 1179: 1173: 1170: 1165: 1155: 1144: 1143: 1142: 1140: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1060: 1058: 1054: 1050: 1046: 1042: 1020: 990: 986: 982: 974: 962: 956: 953: 948: 938: 927: 926: 925: 909: 899: 868: 864: 859: 856: 847: 835: 829: 826: 821: 811: 800: 799: 798: 782: 772: 760: 756: 752: 748: 743: 741: 736: 733: 728: 724: 714: 707: 702: 695: 690: 686: 668: 666: 661: 659: 655: 651: 650:tidal locking 647: 643: 639: 635: 631: 627: 623: 622:neutron stars 615: 611: 606: 602: 600: 599:harmonic beat 594: 592: 588: 584: 580: 579:Tidal heating 576: 570: 568: 564: 556: 551: 544: 527: 523: 519: 509: 500: 491: 489: 486: 477: 475: 472: 471: 461: 452: 443: 441: 438: 429: 427: 424: 423: 413: 404: 395: 393: 390: 381: 379: 376: 375: 356: 352: 347: 344: 335: 332: 325: 310: 302: 287: 279: 276: 261: 253: 250: 249: 245: 238: 235: 228: 226: 222: 218: 214: 211: 204: 198: 194: 184: 180: 173: 171: 169: 164: 160: 155: 148: 144: 140: 132: 128: 123: 116: 114: 112: 107: 105: 100: 96: 91: 88: 84: 80: 76: 75:tidal locking 72: 68: 64: 60: 56: 55:gravitational 52: 48: 40: 37: 36:spiral galaxy 32: 19: 4027:Tidal forces 3961:Water column 3909:Oceanography 3884:Observations 3879:Explorations 3849:Marginal sea 3842: 3800:OSTM/Jason-2 3632:Volcanic arc 3607:Slab suction 3368: 3324:Head of tide 3214:Loop Current 3154:Ekman spiral 2940:Stokes drift 2850:Gravity wave 2825:Cnoidal wave 2720:. Retrieved 2699: 2658: 2654: 2633: 2626: 2598: 2591: 2579:. Retrieved 2575: 2566: 2554:. Retrieved 2549: 2545: 2536: 2509: 2505: 2495: 2450: 2446: 2436: 2426: 2419: 2395: 2388: 2377:. Retrieved 2368: 2359: 2336: 2329: 2286: 2280: 2260:. Retrieved 2256: 2224: 2214: 2207:tidal force. 2206: 2182: 2174: 2163:. Retrieved 2159: 2149: 2136: 2124: 2113:. Retrieved 2108: 2099: 2081:Tidal tensor 2041: 2032: 2027: 2016: 2008: 1941: 1933: 1929: 1927: 1922: 1918: 1878: 1874: 1870: 1868: 1760: 1756: 1752: 1704: 1700: 1696: 1692: 1688: 1641: 1639: 1381: 1245: 1243: 1138: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1061: 1056: 1052: 1048: 1047:to the body 1044: 1009: 887: 758: 754: 753:at distance 750: 744: 737: 731: 722: 720: 662: 619: 595: 571: 560: 521: 487: 473: 439: 425: 391: 377: 232: 223: 219: 215: 209: 202: 196: 192: 189: 177: 159:tidal forces 158: 156: 152: 138: 130: 126: 108: 98: 92: 79:ring systems 50: 46: 44: 3951:Thermocline 3668:Mesopelagic 3641:Ocean zones 3612:Slab window 3477:Hydrography 3417:Abyssal fan 3384:Tidal range 3374:Tidal power 3369:Tidal force 3254:Rip current 3189:Gulf Stream 3149:Ekman layer 3139:Downwelling 3114:Baroclinity 3101:Circulation 2997:Wave height 2987:Wave action 2970:megatsunami 2950:Stokes wave 2910:Rossby wave 2875:Kelvin wave 2855:Green's law 2704:Brady Haran 1041:unit vector 740:freefalling 732:tidal force 696:Formulation 626:black holes 163:Roche limit 154:(body 2). 117:Explanation 99:tidal force 83:Roche limit 81:within the 47:tidal force 4021:Categories 3889:Reanalysis 3788:Satellites 3769:Sofar bomb 3617:Subduction 3592:Ridge push 3487:Ocean bank 3467:Contourite 3394:Tide gauge 3379:Tidal race 3364:Tidal bore 3354:Slack tide 3319:Earth tide 3239:Ocean gyre 3059:Wind setup 3054:Wind fetch 3017:Wave setup 3012:Wave radar 3007:Wave power 2905:Rogue wave 2835:Dispersion 2722:2018-12-28 2379:2024-05-18 2375:. May 2024 2262:2016-10-10 2191:. p.  2165:2023-11-12 2115:2022-07-09 2092:References 1925:is zero). 608:Figure 5: 591:moonquakes 553:Figure 4: 483:10 kg 435:10 kg 387:10 kg 303:Distance ( 3751:Acoustics 3703:Sea level 3602:Slab pull 3539:tectonics 3447:Cold seep 3409:Landforms 3286:Whirlpool 3281:Upwelling 3064:Wind wave 2992:Wave base 2920:Sea state 2840:Edge wave 2830:Cross sea 2401:CRC Press 2321:0031-921X 2299:CiteSeerX 2043:Principia 1973:→ 1896:→ 1825:Δ 1813:^ 1804:± 1801:≈ 1781:→ 1722:→ 1672:Δ 1625:⋯ 1610:Δ 1567:^ 1558:± 1526:^ 1517:− 1502:→ 1472:⋯ 1469:∓ 1444:∓ 1408:± 1345:Δ 1339:± 1290:^ 1281:− 1266:→ 1213:Δ 1210:± 1183:^ 1174:− 1159:→ 1024:^ 966:^ 957:− 942:→ 903:→ 839:^ 830:− 815:→ 776:→ 563:ellipsoid 506:10 m 497:10 m 458:10 m 449:10 m 410:10 m 401:10 m 3984:Category 3936:Seawater 3663:Littoral 3658:Deep sea 3517:Seamount 3399:Tideline 3344:Rip tide 3274:shutdown 3244:Overflow 2977:Undertow 2820:Clapotis 2706:for the 2556:14 March 2487:11607740 2109:nasa.gov 2050:See also 2031:, where 2026:10  2015:10  1921:(where ∆ 1055:towards 706:MRK 1034 587:Stresses 280:Radius ( 166:uniform 127:residual 4037:Gravity 3994:Commons 3864:Mooring 3814:Related 3805:Jason-3 3795:Jason-1 3678:Pelagic 3673:Oceanic 3648:Benthic 2965:Tsunami 2935:Soliton 2581:12 July 2514:Bibcode 2455:Bibcode 2291:Bibcode 2035:is the 1082:, let ∆ 1070:. With 614:Jupiter 545:Effects 537:‍ 524:is the 139:outward 39:NGC 169 3683:Photic 3512:Seabed 2925:Seiche 2641:  2610:  2485:  2475:  2407:  2344:  2319:  2301:  2232:  2199:  1938:vector 1837:  1831:  1819:  1604:  1579:  1573:  1538:  1532:  1322:  1302:  1296:  1195:  1189:  1114:, and 1010:where 978:  972:  851:  845:  555:Saturn 339:  254:Mass ( 157:These 145:or at 143:zenith 4042:Force 4032:Tides 3874:Ocean 3843:Alvin 3693:Swash 3537:Plate 3482:Knoll 3472:Guyot 3427:Atoll 3306:Tides 3069:model 2955:Swell 2787:Waves 2478:33744 1987:axial 1795:axial 1736:axial 1135:' 1039:is a 638:Earth 567:ovoid 530:6.674 474:Earth 440:Earth 392:Earth 208:= −2/ 168:field 147:nadir 67:tides 53:is a 3841:DSV 3826:Argo 3688:Surf 3144:Eddy 2639:ISBN 2608:ISBN 2583:2013 2558:2016 2483:PMID 2405:ISBN 2373:NIST 2342:ISBN 2317:ISSN 2230:ISBN 2197:ISBN 2022:0.52 1932:and 1877:and 1759:and 1382:The 1141:as: 685:star 642:Moon 634:tide 511:2.44 502:3.84 493:1.74 488:Moon 479:5.97 463:1.10 454:3.84 445:6.37 431:7.34 426:Moon 415:5.05 406:1.50 397:6.37 383:1.99 277:Body 251:Body 195:= 1/ 45:The 2550:123 2522:doi 2473:PMC 2463:doi 2309:doi 2193:264 2011:1.1 1433:is 1386:of 745:By 646:Sun 636:of 624:or 378:Sun 93:In 49:or 4023:: 2702:. 2698:. 2649:, 2618:, 2574:. 2548:. 2544:. 2520:. 2510:15 2508:. 2504:. 2481:. 2471:. 2461:. 2451:94 2449:. 2445:. 2399:. 2371:. 2367:. 2315:. 2307:. 2297:. 2287:37 2285:. 2271:^ 2255:. 2244:^ 2205:. 2195:. 2187:. 2158:. 2107:. 2046:. 1881:, 1763:: 1695:, 1116:∆r 1108:∆r 1106:± 924:, 797:, 708:. 667:. 660:. 652:, 585:. 583:Io 528:= 113:. 73:, 2771:e 2764:t 2757:v 2725:. 2710:. 2659:g 2655:g 2647:. 2616:. 2585:. 2560:. 2530:. 2524:: 2516:: 2489:. 2465:: 2457:: 2413:. 2382:. 2350:. 2323:. 2311:: 2293:: 2265:. 2238:. 2168:. 2118:. 2033:g 2028:g 2024:× 2017:g 2013:× 1993:| 1983:, 1980:t 1970:a 1963:| 1957:2 1954:1 1942:r 1934:M 1930:m 1923:r 1919:m 1903:t 1893:a 1879:M 1875:m 1871:r 1850:3 1846:R 1842:M 1834:G 1828:r 1822:2 1810:r 1791:, 1788:t 1778:a 1761:M 1757:m 1753:r 1732:, 1729:t 1719:a 1705:R 1701:r 1697:m 1693:M 1689:m 1675:r 1652:m 1642:M 1622:+ 1617:R 1613:r 1597:2 1593:R 1588:M 1585:2 1576:G 1564:r 1551:2 1547:R 1543:M 1535:G 1523:r 1514:= 1509:g 1499:a 1464:2 1460:x 1456:3 1453:+ 1450:x 1447:2 1441:1 1419:2 1415:) 1411:x 1405:1 1402:( 1398:/ 1394:1 1363:2 1358:) 1352:R 1348:r 1336:1 1332:( 1327:1 1315:2 1311:R 1307:M 1299:G 1287:r 1278:= 1273:g 1263:a 1246:R 1224:2 1220:) 1216:r 1207:R 1204:( 1200:M 1192:G 1180:r 1171:= 1166:g 1156:a 1139:M 1132:m 1128:m 1124:R 1120:M 1112:M 1104:R 1100:r 1096:m 1092:M 1088:m 1084:r 1080:m 1076:M 1072:R 1068:m 1064:M 1057:M 1053:m 1049:m 1045:M 1021:r 991:2 987:R 983:M 975:G 963:r 954:= 949:g 939:a 910:g 900:a 869:2 865:R 860:m 857:M 848:G 836:r 827:= 822:g 812:F 783:g 773:F 759:M 755:R 751:m 691:. 532:× 522:G 513:× 504:× 495:× 481:× 465:× 456:× 447:× 433:× 417:× 408:× 399:× 385:× 357:3 353:d 348:r 345:2 336:m 333:G 323:) 311:d 300:) 288:r 274:) 262:m 210:X 206:′ 203:Y 197:X 193:Y 149:. 20:)

Index

Tidal interactions

spiral galaxy
NGC 169
gravitational
center of mass
gravitational field
tides
solid-earth tides
tidal locking
ring systems
Roche limit
spaghettification
celestial mechanics
perturbing force on the Moon
gravitational waves

zenith
nadir
Roche limit
field

gravitational constant

Saturn
ellipsoid
ovoid
tidally locked
Tidal heating
Io

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.