Knowledge (XXG)

Tip-enhanced Raman spectroscopy

Source 📝

90:. The optical microscope is used to align the laser focal point with the tip coated with a SERS active metal. The three typical experimental configurations are bottom illumination, side illumination, and top illumination, depending on which direction the incident laser propagates towards the sample, with respect to the substrate. In the case of STM-TERS, only side and top illumination configurations can be applied, since the substrate is required to be conductive, therefore typically being non-transparent. In this case, the incident laser is usually linearly polarized and aligned parallel to the tip, in order to generate confined surface plasmon at the tip apex. The sample is moved rather than the tip so that the laser remains focused on the tip. The sample can be moved systematically to build up a series of tip enhanced Raman spectra from which a Raman map of the surface can be built allowing for surface heterogeneity to be assessed with up to 1.7 nm resolution. Subnanometer resolution has been demonstrated in certain cases allowing for submolecular features to be resolved. 1279: 94: 1291: 57:
Although the antennas' electric near-field distributions are commonly understood to determine the spatial resolution, recent experiments showing subnanometer-resolved optical images put this understanding into question. This is because such images enter a regime in which classical electrodynamical
105:
In 2019, Yan group and Liu group at University of California, Riverside developed a lens-free nanofocusing technique, which concentrates the incident light from a tapered optical fiber to the tip apex of a metallic nanowire and collects the Raman signal through the same optical fiber.
1020:
He, Zhe; Han, Zehua; Kizer, Megan; Linhardt, Robert J.; Wang, Xing; Sinyukov, Alexander M.; Wang, Jizhou; Deckert, Volker; Sokolov, Alexei V. (2019-01-16). "Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution".
74:. Tip-enhanced Raman spectroscopy coupled with a scanning tunneling microscope (STM-TERS) has also become a reliable technique, since it utilizes the gap mode plasmon between the metallic probe and the metallic substrate. 46:, which is approximately half the wavelength of the incident light. Furthermore, with SERS spectroscopy the signal obtained is the sum of a relatively large number of molecules. TERS overcomes these limitations as the 1127: 731:
Hou, J. G.; Yang, J. L.; Luo, Y.; Aizpurua, J.; Y. Liao; Zhang, L.; Chen, L. G.; Zhang, C.; Jiang, S. (June 2013). "Chemical mapping of a single molecule by plasmon-enhanced Raman scattering".
961:
Lee, Joonhee; Crampton, Kevin T.; Tallarida, Nicholas; Apkarian, V. Ara (April 2019). "Visualizing vibrational normal modes of a single molecule with atomically confined light".
663:
Kim, Sanggon; Yu, Ning; Ma, Xuezhi; Zhu, Yangzhi; Liu, Qiushi; Liu, Ming; Yan, Ruoxue (2019). "High external-efficiency nanofocusing for lens-free near-field optical nanoscopy".
154:
Sonntag, Matthew D.; Pozzi, Eric A.; Jiang, Nan; Hersam, Mark C.; Van Duyne, Richard P. (18 September 2014). "Recent Advances in Tip-Enhanced Raman Spectroscopy".
1089: 327:
Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B. (2016-06-03).
119: 31:
TERS, with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions, or better at ultralow temperatures and high pressure.
495:
Hayazawa, Norihiko; Inouye, Yasushi; Sekkat, Zouheir; Kawata, Satoshi (September 2000). "Metallized tip amplification of near-field Raman scattering".
460:
Stöckle, Raoul M.; Suh, Yung Doug; Deckert, Volker; Zenobi, Renato (February 2000). "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy".
628:
Smolsky, Joseph; Krasnoslobodtsev, Alexey (8 August 2018). "Nanoscopic imaging of oxidized graphene monolayer using Tip-Enhanced Raman Scattering".
1112: 98: 1142: 1132: 24: 1193: 1082: 123: 1152: 27:(SERS) that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible 1256: 1137: 1295: 1122: 1329: 1283: 1075: 707: 798:
Lee, Joonhee; Tallarida, Nicholas; Chen, Xing; Liu, Pengchong; Jensen, Lasse; Apkarian, Vartkess Ara (2017-10-12).
376:
Barbry, M.; Koval, P.; Marchesin, F.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; Sánchez-Portal, D. (2015-05-04).
1324: 800:"Tip-Enhanced Raman Spectromicroscopy of Co(II)-Tetraphenylporphyrin on Au(111): Toward the Chemists' Microscope" 87: 114:
Several research have used TERS to image single atoms and the internal structure of the molecules. In 2019, the
1334: 1263: 1234: 58:
descriptions might no longer be applicable and quantum plasmonic and atomistic effects could become relevant.
425:
Anderson, Mark S. (2000). "Locally enhanced Raman spectroscopy with an atomic force microscope (AFM-TERS)".
71: 1117: 532:"A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient" 233:"A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient" 115: 1209: 970: 909: 740: 543: 504: 469: 434: 1339: 1229: 1168: 579:
Jiang, S.; Zhang, X.; Zhang, Y.; Hu, Ch.; Zhang, R.; Liao, Y.; Smith, Z.; Dong, Zh. (6 June 2017).
83: 1098: 1054: 1002: 780: 688: 645: 309: 35: 1046: 1038: 994: 986: 943: 925: 878: 870: 829: 821: 772: 764: 680: 610: 561: 407: 348: 301: 262: 254: 213: 171: 581:"Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps" 1224: 1219: 1214: 1183: 1030: 978: 933: 917: 896:
Lee, Joonhee; Tallarida, Nicholas; Chen, Xing; Jensen, Lasse; Apkarian, V. Ara (June 2018).
860: 849:"Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips" 811: 756: 748: 672: 637: 600: 592: 551: 512: 477: 442: 397: 389: 356: 340: 293: 244: 205: 163: 67: 39: 282:"Visualizing vibrational normal modes of a single molecule with atomically confined light" 974: 913: 744: 547: 508: 473: 438: 938: 897: 605: 580: 361: 193: 47: 516: 481: 280:
Lee, Joonhee; Crampton, Kevin T.; Tallarida, Nicholas; Apkarian, V. Ara (April 2019).
1318: 1173: 784: 692: 649: 378:"Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics" 1058: 1006: 313: 281: 1302: 1239: 377: 393: 1178: 209: 127: 982: 676: 641: 297: 93: 43: 1042: 990: 929: 874: 825: 768: 684: 411: 352: 305: 258: 232: 217: 192:
Shi, Xian; Coca-López, Nicolás; Janik, Julia; Hartschuh, Achim (2017-04-12).
865: 848: 816: 799: 131: 51: 1050: 998: 947: 921: 882: 833: 776: 614: 565: 329:"Quantum mechanical effects in plasmonic structures with subnanometre gaps" 266: 175: 1034: 328: 194:"Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas" 66:
The earliest reports of tip enhanced Raman spectroscopy typically used a
847:
Tallarida, Nicholas; Lee, Joonhee; Apkarian, Vartkess Ara (2017-10-09).
760: 752: 596: 402: 344: 1188: 556: 531: 249: 167: 1067: 446: 530:
Chen, Chi; Hayazawa, Norihiko; Kawata, Satoshi (12 February 2014).
92: 1071: 135: 1128:
Rotating-polarization coherent anti-Stokes Raman spectroscopy
231:
Chen, Chi; Hayazawa, Norihiko; Kawata, Satoshi (2014-02-12).
898:"Microscopy with a single-molecule scanning electrometer" 1248: 1202: 1161: 1105: 106:Fiber-in-fiber-out NSOM-TERS has been developed. 1083: 101:probe design for lens-free TERS measurement. 99:near-field scanning optical microscopy (NSOM) 8: 120:Center for Chemistry at the Space-Time Limit 54:within a few tens of nanometers of the tip. 708:"Fiber-optic probe can see molecular bonds" 82:Tip-enhanced Raman spectroscopy requires a 34:The maximum resolution achievable using an 1090: 1076: 1068: 937: 864: 815: 604: 555: 401: 360: 248: 156:The Journal of Physical Chemistry Letters 1023:Journal of the American Chemical Society 1113:Coherent anti-Stokes Raman spectroscopy 146: 138:sequencing has also been demonstrated. 50:obtained originates primarily from the 7: 1290: 187: 185: 1143:Surface-enhanced Raman spectroscopy 1133:Spatially offset Raman spectroscopy 25:surface-enhanced Raman spectroscopy 1194:Stimulated Raman adiabatic passage 14: 134:molecules using TERS. TERS-based 1289: 1278: 1277: 124:University of California, Irvine 1153:Transmission Raman spectroscopy 1148:Tip-enhanced Raman spectroscopy 17:Tip-enhanced Raman spectroscopy 1: 1257:Journal of Raman Spectroscopy 1138:Stimulated Raman spectroscopy 517:10.1016/S0030-4018(00)00894-4 482:10.1016/S0009-2614(99)01451-7 1123:Resonance Raman spectroscopy 394:10.1021/acs.nanolett.5b00759 210:10.1021/acs.chemrev.6b00640 1356: 1273: 983:10.1038/s41586-019-1059-9 677:10.1038/s41566-019-0456-9 642:10.1007/s12274-018-2158-x 298:10.1038/s41586-019-1059-9 88:scanning probe microscope 1264:Vibrational Spectroscopy 1235:Rule of mutual exclusion 462:Chemical Physics Letters 128:vibrational normal modes 866:10.1021/acsnano.7b06022 817:10.1021/acsnano.7b06183 427:Applied Physics Letters 72:atomic force microscope 1118:Raman optical activity 922:10.1126/sciadv.aat5472 102: 536:Nature Communications 497:Optics Communications 333:Nature Communications 237:Nature Communications 97:A fiber-in-fiber-out 96: 1210:Depolarization ratio 1035:10.1021/jacs.8b11506 42:, is limited by the 1230:Rayleigh scattering 1169:Raman amplification 975:2019Natur.568...78L 914:2018SciA....4.5472L 859:(11): 11393–11401. 810:(11): 11466–11474. 753:10.1038/nature12151 745:2013Natur.498...82Z 597:10.1038/lsa.2017.98 548:2014NatCo...5.3312C 509:2000OptCo.183..333H 474:2000CPL...318..131S 439:2000ApPhL..76.3130A 345:10.1038/ncomms11495 84:confocal microscope 1330:Raman spectroscopy 1099:Raman spectroscopy 557:10.1038/ncomms4312 250:10.1038/ncomms4312 103: 36:optical microscope 23:) is a variant of 1312: 1311: 712:UC Riverside News 636:(12): 6346–6359. 168:10.1021/jz5015746 162:(18): 3125–3130. 40:Raman microscopes 1347: 1325:Raman scattering 1293: 1292: 1281: 1280: 1225:Raman scattering 1220:Nonlinear optics 1215:Four-wave mixing 1184:Raman microscope 1092: 1085: 1078: 1069: 1063: 1062: 1017: 1011: 1010: 958: 952: 951: 941: 902:Science Advances 893: 887: 886: 868: 844: 838: 837: 819: 795: 789: 788: 728: 722: 721: 719: 718: 703: 697: 696: 665:Nature Photonics 660: 654: 653: 625: 619: 618: 608: 576: 570: 569: 559: 527: 521: 520: 503:(1–4): 333–336. 492: 486: 485: 468:(1–3): 131–136. 457: 451: 450: 447:10.1063/1.126546 422: 416: 415: 405: 388:(5): 3410–3419. 373: 367: 366: 364: 324: 318: 317: 277: 271: 270: 252: 228: 222: 221: 204:(7): 4945–4960. 198:Chemical Reviews 189: 180: 179: 151: 70:coupled with an 68:Raman microscope 1355: 1354: 1350: 1349: 1348: 1346: 1345: 1344: 1335:Surface science 1315: 1314: 1313: 1308: 1269: 1244: 1198: 1157: 1101: 1096: 1066: 1019: 1018: 1014: 969:(7750): 78–82. 960: 959: 955: 908:(6): eaat5472. 895: 894: 890: 846: 845: 841: 797: 796: 792: 739:(7452): 82–86. 730: 729: 725: 716: 714: 705: 704: 700: 662: 661: 657: 627: 626: 622: 578: 577: 573: 529: 528: 524: 494: 493: 489: 459: 458: 454: 424: 423: 419: 375: 374: 370: 326: 325: 321: 292:(7750): 78–82. 279: 278: 274: 230: 229: 225: 191: 190: 183: 153: 152: 148: 144: 112: 80: 64: 12: 11: 5: 1353: 1351: 1343: 1342: 1337: 1332: 1327: 1317: 1316: 1310: 1309: 1307: 1306: 1299: 1287: 1274: 1271: 1270: 1268: 1267: 1260: 1252: 1250: 1246: 1245: 1243: 1242: 1237: 1232: 1227: 1222: 1217: 1212: 1206: 1204: 1200: 1199: 1197: 1196: 1191: 1186: 1181: 1176: 1171: 1165: 1163: 1159: 1158: 1156: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1109: 1107: 1103: 1102: 1097: 1095: 1094: 1087: 1080: 1072: 1065: 1064: 1029:(2): 753–757. 1012: 953: 888: 839: 790: 723: 698: 671:(9): 636–643. 655: 620: 591:(11): e17098. 585:Light Sci Appl 571: 522: 487: 452: 417: 368: 319: 272: 223: 181: 145: 143: 140: 111: 108: 79: 76: 63: 60: 48:Raman spectrum 13: 10: 9: 6: 4: 3: 2: 1352: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1322: 1320: 1305: 1304: 1300: 1298: 1297: 1288: 1286: 1285: 1276: 1275: 1272: 1266: 1265: 1261: 1259: 1258: 1254: 1253: 1251: 1247: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1207: 1205: 1201: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1174:Raman cooling 1172: 1170: 1167: 1166: 1164: 1160: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1110: 1108: 1104: 1100: 1093: 1088: 1086: 1081: 1079: 1074: 1073: 1070: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1016: 1013: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 964: 957: 954: 949: 945: 940: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 892: 889: 884: 880: 876: 872: 867: 862: 858: 854: 850: 843: 840: 835: 831: 827: 823: 818: 813: 809: 805: 801: 794: 791: 786: 782: 778: 774: 770: 766: 762: 758: 754: 750: 746: 742: 738: 734: 727: 724: 713: 709: 706:Ober, Holly. 702: 699: 694: 690: 686: 682: 678: 674: 670: 666: 659: 656: 651: 647: 643: 639: 635: 631: 630:Nano Research 624: 621: 616: 612: 607: 602: 598: 594: 590: 586: 582: 575: 572: 567: 563: 558: 553: 549: 545: 541: 537: 533: 526: 523: 518: 514: 510: 506: 502: 498: 491: 488: 483: 479: 475: 471: 467: 463: 456: 453: 448: 444: 440: 436: 432: 428: 421: 418: 413: 409: 404: 399: 395: 391: 387: 383: 379: 372: 369: 363: 358: 354: 350: 346: 342: 338: 334: 330: 323: 320: 315: 311: 307: 303: 299: 295: 291: 287: 283: 276: 273: 268: 264: 260: 256: 251: 246: 242: 238: 234: 227: 224: 219: 215: 211: 207: 203: 199: 195: 188: 186: 182: 177: 173: 169: 165: 161: 157: 150: 147: 141: 139: 137: 133: 129: 125: 121: 118:group at the 117: 109: 107: 100: 95: 91: 89: 85: 77: 75: 73: 69: 61: 59: 55: 53: 49: 45: 41: 37: 32: 30: 26: 22: 18: 1303:Spectroscopy 1301: 1294: 1282: 1262: 1255: 1240:Stokes shift 1162:Applications 1147: 1026: 1022: 1015: 966: 962: 956: 905: 901: 891: 856: 852: 842: 807: 803: 793: 761:10261/102366 736: 732: 726: 715:. Retrieved 711: 701: 668: 664: 658: 633: 629: 623: 588: 584: 574: 539: 535: 525: 500: 496: 490: 465: 461: 455: 433:(21): 3130. 430: 426: 420: 403:10261/136309 385: 382:Nano Letters 381: 371: 336: 332: 322: 289: 285: 275: 240: 236: 226: 201: 197: 159: 155: 149: 116:Ara Apkarian 113: 110:Applications 104: 81: 65: 56: 38:, including 33: 28: 20: 16: 15: 1179:Raman laser 243:(1): 3312. 1340:Plasmonics 1319:Categories 1106:Techniques 717:2020-01-10 142:References 130:of single 44:Abbe limit 1043:0002-7863 991:0028-0836 930:2375-2548 875:1936-0851 826:1936-0851 785:205233946 769:1476-4687 693:195093429 685:1749-4893 650:139119548 412:1530-6984 353:2041-1723 306:1476-4687 259:2041-1723 218:0009-2665 132:porphyrin 78:Equipment 52:molecules 1284:Category 1249:Journals 1059:58552541 1051:30586988 1007:92998248 999:30944493 948:29963637 883:28980800 853:ACS Nano 834:28976729 804:ACS Nano 777:23739426 615:30167216 566:24518208 542:: 3312. 314:92998248 267:24518208 176:26276323 86:, and a 1296:Commons 1189:SHERLOC 971:Bibcode 939:6025905 910:Bibcode 741:Bibcode 606:6062048 544:Bibcode 505:Bibcode 470:Bibcode 435:Bibcode 362:4895716 126:imaged 62:History 1203:Theory 1057:  1049:  1041:  1005:  997:  989:  963:Nature 946:  936:  928:  881:  873:  832:  824:  783:  775:  767:  733:Nature 691:  683:  648:  613:  603:  564:  410:  359:  351:  312:  304:  286:Nature 265:  257:  216:  174:  1055:S2CID 1003:S2CID 781:S2CID 689:S2CID 646:S2CID 339:(1). 310:S2CID 1047:PMID 1039:ISSN 995:PMID 987:ISSN 944:PMID 926:ISSN 879:PMID 871:ISSN 830:PMID 822:ISSN 773:PMID 765:ISSN 681:ISSN 611:PMID 562:PMID 408:ISSN 349:ISSN 302:ISSN 263:PMID 255:ISSN 214:ISSN 172:PMID 21:TERS 1031:doi 1027:141 979:doi 967:568 934:PMC 918:doi 861:doi 812:doi 757:hdl 749:doi 737:498 673:doi 638:doi 601:PMC 593:doi 552:doi 513:doi 501:183 478:doi 466:318 443:doi 398:hdl 390:doi 357:PMC 341:doi 294:doi 290:568 245:doi 206:doi 202:117 164:doi 136:DNA 29:via 1321:: 1053:. 1045:. 1037:. 1025:. 1001:. 993:. 985:. 977:. 965:. 942:. 932:. 924:. 916:. 904:. 900:. 877:. 869:. 857:11 855:. 851:. 828:. 820:. 808:11 806:. 802:. 779:. 771:. 763:. 755:. 747:. 735:. 710:. 687:. 679:. 669:13 667:. 644:. 634:11 632:. 609:. 599:. 587:. 583:. 560:. 550:. 538:. 534:. 511:. 499:. 476:. 464:. 441:. 431:76 429:. 406:. 396:. 386:15 384:. 380:. 355:. 347:. 335:. 331:. 308:. 300:. 288:. 284:. 261:. 253:. 239:. 235:. 212:. 200:. 196:. 184:^ 170:. 158:. 122:, 1091:e 1084:t 1077:v 1061:. 1033:: 1009:. 981:: 973:: 950:. 920:: 912:: 906:4 885:. 863:: 836:. 814:: 787:. 759:: 751:: 743:: 720:. 695:. 675:: 652:. 640:: 617:. 595:: 589:6 568:. 554:: 546:: 540:5 519:. 515:: 507:: 484:. 480:: 472:: 449:. 445:: 437:: 414:. 400:: 392:: 365:. 343:: 337:7 316:. 296:: 269:. 247:: 241:5 220:. 208:: 178:. 166:: 160:5 19:(

Index

surface-enhanced Raman spectroscopy
optical microscope
Raman microscopes
Abbe limit
Raman spectrum
molecules
Raman microscope
atomic force microscope
confocal microscope
scanning probe microscope

near-field scanning optical microscopy (NSOM)
Ara Apkarian
Center for Chemistry at the Space-Time Limit
University of California, Irvine
vibrational normal modes
porphyrin
DNA
doi
10.1021/jz5015746
PMID
26276323


"Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas"
doi
10.1021/acs.chemrev.6b00640
ISSN
0009-2665
"A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.