Knowledge (XXG)

Topologically associating domain

Source 📝

182:
encounters a chromatin-bound CTCF protein, typically located at the boundary of a TAD. In this way, TAD boundaries can be brought together as the anchors of a chromatin loop. Indeed, in vitro, cohesin has been observed to processively extrude DNA loops in an ATP-dependent manner and stall at CTCF. However, some in vitro data indicates that the observed loops may be artifacts. Importantly, since cohesins can dynamically unbind from chromatin, this model suggests that TADs (and associated chromatin loops) are dynamic, transient structures, in agreement with in vivo observations.
31: 268: 155: 181:
Computer simulations have shown that chromatin loop extrusion driven by cohesin motors can generate TADs. In the loop extrusion model, cohesin binds chromatin, pulls it in, and extrudes chromatin to progressively grow a loop. Chromatin on both sides of the cohesin complex is extruded until cohesin
104:
and DNA elements are associated with TAD boundaries. However, the handcuff model and the loop extrusion model describe the TAD formation by the aid of CTCF and cohesin proteins. Furthermore, it has been proposed that the stiffness of TAD boundaries itself could cause the domain insulation and TAD
141:
TAD locations are defined by applying an algorithm to Hi-C data. For example, TADs are often called according to the so-called "directionality index". The directionality index is calculated for individual 40kb bins, by collecting the reads that fall in the bin, and observing whether their paired
258:
For example, genomic structural variants that disrupt TAD boundaries have been reported to cause developmental disorders such as human limb malformations. Additionally, several studies have provided evidence that the disruption or rearrangement of TAD boundaries can provide growth advantages to
142:
reads map upstream or downstream of the bin (read pairs are required to span no more than 2Mb). A positive value indicates that more read pairs lie downstream than upstream, and a negative value indicates the reverse. Mathematically, the directionality index is a signed chi-square statistic.
145:
The development of specialized genome browsers and visualization tools such as Juicebox, HiGlass/HiPiler, The 3D Genome Browser, 3DIV, 3D-GNOME, and TADKB have enabled us to visualize the TAD organization of regions of interest in different cell types.
230:
Computer simulations have shown that transcription-induced supercoiling of chromatin fibres can explain how TADs are formed and how they can assure very efficient interactions between enhancers and their cognate promoters located in the same TAD.
185:
Other mechanisms for TAD formation have been suggested. For example, some simulations suggest that transcription-generated supercoiling can relocalize cohesin to TAD boundaries or that passively diffusing cohesin “slip links” can generate TADs.
170:. It is also unknown what components are required at TAD boundaries; however, in mammalian cells, it has been shown that these boundary regions have comparatively high levels of CTCF binding. In addition, some types of genes (such as 54:, and they have similar sizes in non-mammalian species. Boundaries at both side of these domains are conserved between different mammalian cell types and even across species and are highly enriched with 1986:
Mach P, Kos PI, Zhan Y, Cramard J, Gaudin S, Tünnermann J, et al. (2022-03-03). "Live-cell imaging and physical modeling reveal control of chromosome folding dynamics by cohesin and CTCF".
85:
interaction to each TAD; however, a recent study uncouples TAD organization and gene expression. Disruption of TAD boundaries are found to be associated with wide range of diseases such as
2620:
Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, et al. (October 2016). "Formation of new chromatin domains determines pathogenicity of genomic duplications".
239:
Replication timing domains have been shown to be associated with TADs as their boundary is co localized with the boundaries of TADs that are located at either sides of compartments.
1965:
Beckwith KS, Ødegård-Fougner Ø, Morero NR, Barton C, Schueder F, Tang W, et al. (2022-05-02). "Visualization of loop extrusion by DNA nanoscale tracing in single human cells".
1760:
Davidson IF, Barth R, Zaczek M, van der Torre J, Tang W, Nagasaka K, et al. (2022-09-09). "CTCF is a DNA-tension-dependent barrier to cohesin-mediated DNA loop extrusion".
199:
TADs have been reported to be relatively constant between different cell types (in stem cells and blood cells, for example), and even between species in specific cases.
2165:
Brackley CA, Johnson J, Michieletto D, Morozov AN, Nicodemi M, Cook PR, Marenduzzo D (September 2017). "Nonequilibrium Chromosome Looping via Molecular Slip Links".
50:
within a TAD physically interact with each other more frequently than with sequences outside the TAD. The median size of a TAD in mouse cells is 880
1781:
Zhang H, Shi Z, Banigan EJ, Kim Y, Yu H, Bai X, Finkelstein IJ (2022-10-07). "CTCF and R-loops are boundaries of cohesin-mediated DNA looping".
2118:"Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes" 1851:
Ryu JK, Bouchoux C, Liu HW, Kim E, Minamino M, de Groot R, Katan AJ, Bonato A, Marenduzzo D, Michieletto D, Uhlmann F (February 2021).
118: 2331:
Jost D, Vaillant C, Meister P (February 2017). "Coupling 1D modifications and 3D nuclear organization: data, models and function".
281:
Lamina-associated domains (LADs) are parts of the chromatin that heavily interact with the lamina, a network-like structure at the
298: 114: 97:, and F-syndrome, and number of brain disorders like Hypoplastic corpus callosum and Adult-onset demyelinating leukodystrophy. 73:
The functions of TADs are not fully understood and are still a matter of debate. Most of the studies indicate TADs regulate
2507:
Lupiáñez DG, Spielmann M, Mundlos S (April 2016). "Breaking TADs: How Alterations of Chromatin Domains Result in Disease".
2982: 1268:"The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions" 113:
TADs are defined as regions whose DNA sequences preferentially contact each other. They were discovered in 2012 using
920:
de Laat W, Duboule D (October 2013). "Topology of mammalian developmental enhancers and their regulatory landscapes".
2886:
Li M, Liu GH, Izpisua Belmonte JC (July 2012). "Navigating the epigenetic landscape of pluripotent stem cells".
2977: 2738:
Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, et al. (January 2016).
219:
to delete the relevant region of the genome) can allow new promoter-enhancer contacts to form. This can affect
1595:
Golfier S, Quail T, Kimura H, Brugués J (May 2020). Dekker, Struhl K, Mirny LA, Musacchio A, Marko JF (eds.).
1485:"Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes" 569:
Krijger PH, de Laat W (December 2016). "Regulation of disease-associated gene expression in the 3D genome".
1415: 317: 240: 100:
The mechanisms underlying TAD formation are also complex and not yet fully elucidated, though a number of
35: 30: 2797:"Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking" 2554:"Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions" 2751: 2694: 2629: 2415:
Marchal C, Sima J, Gilbert DM (December 2019). "Control of DNA replication timing in the 3D genome".
2235: 2184: 2020: 1987: 1966: 1921: 1864: 1782: 1761: 1716: 1659: 1496: 1114: 987: 929: 525: 457: 2602: 1219:"HiPiler: Visual Exploration of Large Genome Interaction Matrices with Interactive Small Multiples" 1166:
Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, et al. (August 2018).
1031:
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et al. (February 2012).
286: 212: 208: 82: 78: 267: 2911: 2663: 2440: 2208: 2174: 1685: 1577: 953: 850: 594: 367: 342:
Pombo A, Dillon N (April 2015). "Three-dimensional genome architecture: players and mechanisms".
175: 67: 2795:
Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y, Stütz AM, et al. (January 2017).
2007:
Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, et al. (April 2017).
1908:
Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, Cattoglio C, et al. (April 2022).
271:
LADs (dark gray lines) and proteins that interact with them. Lamina is indicated by green curve.
259:
certain cancers, such as T-cell acute lymphoblastic leukemia (T-ALL), gliomas, and lung cancer.
17: 2903: 2868: 2826: 2777: 2720: 2655: 2583: 2534: 2489: 2432: 2397: 2348: 2310: 2261: 2200: 2147: 2098: 2046: 1947: 1890: 1833: 1742: 1677: 1628: 1569: 1524: 1465: 1397: 1348: 1299: 1248: 1199: 1148: 1095: 1054: 1013: 945: 902: 842: 794: 753: 700: 651: 586: 551: 483: 419: 359: 243:, DNA loops formed by CTCF/cohesin-bound regions, are proposed to functionally underlie TADs. 2552:
Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al. (May 2015).
2279:
Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S (March 2015).
2226:
Yamamoto T, Schiessel H (September 2017). "Osmotic mechanism of the loop extrusion process".
1483:
Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; et al. (November 2015).
1366:
Szalaj P, Michalski PJ, Wróblewski P, Tang Z, Kadlof M, Mazzocco G, et al. (July 2016).
622:"Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression" 2895: 2860: 2816: 2808: 2767: 2759: 2710: 2702: 2645: 2637: 2573: 2565: 2524: 2516: 2479: 2471: 2458:
Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, et al. (February 2016).
2424: 2387: 2379: 2340: 2300: 2292: 2251: 2243: 2192: 2137: 2129: 2088: 2080: 2036: 2028: 2009:"Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition" 1937: 1929: 1880: 1872: 1823: 1815: 1732: 1724: 1667: 1618: 1608: 1559: 1514: 1504: 1455: 1447: 1387: 1379: 1338: 1330: 1289: 1279: 1238: 1230: 1189: 1179: 1138: 1130: 1085: 1044: 1003: 995: 937: 892: 884: 832: 824: 784: 743: 735: 690: 682: 641: 633: 578: 541: 533: 473: 465: 444:
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. (April 2012).
409: 401: 351: 282: 2281:"Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture" 1033:"Three-dimensional folding and functional organization principles of the Drosophila genome" 514:"Topological domains in mammalian genomes identified by analysis of chromatin interactions" 2848: 2650: 2529: 815:
Spielmann M, Lupiáñez DG, Mundlos S (July 2018). "Structural variation in the 3D genome".
405: 305: 252: 220: 154: 101: 74: 162:
A number of proteins are known to be associated with TAD formation including the protein
2755: 2698: 2633: 2239: 2188: 2024: 1925: 1910:"Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging" 1868: 1720: 1663: 1564: 1547: 1500: 991: 933: 529: 461: 2821: 2796: 2772: 2739: 2715: 2682: 2578: 2553: 2484: 2459: 2392: 2367: 2305: 2280: 2142: 2117: 2093: 2068: 2041: 2008: 1942: 1909: 1885: 1852: 1828: 1803: 1737: 1704: 1623: 1596: 1519: 1484: 1460: 1435: 1416:
TADKB: Family classification and a knowledge base of topologically associating domains.
1392: 1367: 1343: 1318: 1294: 1267: 1243: 1218: 1194: 1167: 1143: 1118: 1008: 975: 897: 872: 748: 723: 695: 670: 646: 621: 617: 546: 513: 478: 445: 414: 389: 276: 94: 90: 133:
genomes. In bacteria, they are referred to as Chromosomal Interacting Domains (CIDs).
2971: 2444: 1689: 1581: 837: 613: 2915: 2212: 1119:"Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom" 854: 598: 2681:
Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, et al. (March 2016).
2667: 2196: 957: 371: 171: 63: 47: 2947: 2296: 1451: 888: 285:. LADs consist mostly of transcriptionally silent chromatin, being enriched with 121:. They have been shown to be present in multiple species, including fruit flies ( 1819: 1543: 224: 2569: 2475: 2383: 2247: 1489:
Proceedings of the National Academy of Sciences of the United States of America
1168:"HiGlass: web-based visual exploration and analysis of genome interaction maps" 1134: 1049: 1032: 446:"Spatial partitioning of the regulatory landscape of the X-inactivation centre" 2864: 2520: 2428: 2344: 1992: 1971: 1787: 1766: 1434:
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (May 2016).
1368:"3D-GNOME: an integrated web service for structural modeling of the 3D genome" 1284: 1234: 1184: 828: 739: 719: 686: 637: 290: 122: 1266:
Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, et al. (October 2018).
223:
nearby - such misregulation has been shown to cause limb malformations (e.g.
2706: 1933: 1853:"Bridging-induced phase separation induced by cohesin SMC protein complexes" 1728: 1672: 1647: 1509: 1419: 512:
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. (April 2012).
51: 2907: 2872: 2830: 2781: 2724: 2659: 2587: 2538: 2493: 2436: 2401: 2352: 2314: 2265: 2204: 2151: 2102: 2050: 1951: 1894: 1876: 1837: 1746: 1681: 1632: 1573: 1528: 1469: 1401: 1352: 1317:
Yang D, Jang I, Choi J, Kim MS, Lee AJ, Kim H, et al. (January 2018).
1303: 1252: 1203: 1152: 1099: 1058: 1017: 999: 949: 906: 846: 798: 757: 704: 655: 590: 555: 487: 423: 363: 2133: 2084: 1646:
Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM (December 2019).
1597:"Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner" 1334: 1217:
Lekschas F, Bach B, Kerpedjiev P, Gehlenborg N, Pfister H (January 2018).
789: 772: 178:) appear near TAD boundaries more often than would be expected by chance. 70:) appear near TAD boundaries more often than would be expected by chance. 2851:(August 2016). "On TADs and LADs: Spatial Control Over Gene Expression". 2683:"Activation of proto-oncogenes by disruption of chromosome neighborhoods" 1383: 582: 294: 215:
do not cross TAD boundaries. Removing a TAD boundary (for example, using
2763: 2641: 2032: 1613: 941: 537: 469: 2368:"Comparing 3D Genome Organization in Multiple Species Using Phylo-HMRF" 1090: 1073: 301: 167: 59: 2256: 2740:"Insulator dysfunction and oncogene activation in IDH mutant gliomas" 1074:"Visualising three-dimensional genome organisation in two dimensions" 976:"Principles of genome folding into topologically associating domains" 216: 86: 2899: 2812: 1113:
Durand NC; Robinson JT; Shamim MS; Machol I; Mesirov JP; Lander ES;
355: 2179: 266: 153: 130: 126: 2962: 2957: 2932: 163: 55: 2460:"3D Chromosome Regulatory Landscape of Human Pluripotent Cells" 1804:"DNA sliding and loop formation by E. coli SMC complex: MukBEF" 2942: 1703:
Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H (December 2019).
2116:
Racko D, Benedetti F, Dorier J, Stasiak A (February 2018).
2603:"A Family's Shared Defect Sheds Light on the Human Genome" 2067:
Racko D, Benedetti F, Dorier J, Stasiak A (January 2019).
2937: 390:"The Three-Dimensional Organization of Mammalian Genomes" 235:
Relationship with other structural features of the genome
46:(TAD) is a self-interacting genomic region, meaning that 2952: 1223:
IEEE Transactions on Visualization and Computer Graphics
873:"Chromatin Domains: The Unit of Chromosome Organization" 2366:
Yang Y, Zhang Y, Ren B, Dixon JR, Ma J (June 2019).
1436:"Formation of Chromosomal Domains by Loop Extrusion" 2842: 2840: 1319:"3DIV: A 3D-genome Interaction Viewer and database" 308:. LADs have CTCF-binding sites at their periphery. 1548:"Organization of Chromosomal DNA by SMC Complexes" 612:Ghavi-Helm Y; Jankowski A; Meiers S; Viales RR; 1072:Ing-Simmons E, Vaquerizas JM (September 2019). 974:Szabo Q, Bantignies F, Cavalli G (April 2019). 394:Annual Review of Cell and Developmental Biology 1705:"Human cohesin compacts DNA by loop extrusion" 773:"Disruption of the 3D cancer genome blueprint" 207:The majority of observed interactions between 2062: 2060: 969: 967: 771:Achinger-Kawecka J, Clark SJ (January 2017). 728:Current Opinion in Genetics & Development 675:Current Opinion in Genetics & Development 507: 505: 503: 501: 499: 497: 255:of nearby genes, and this can cause disease. 8: 439: 437: 435: 433: 337: 335: 333: 251:Disruption of TAD boundaries can affect the 203:Relationship with promoter-enhancer contacts 62:. In addition, some types of genes (such as 2326: 2324: 2820: 2771: 2714: 2649: 2577: 2528: 2483: 2391: 2304: 2255: 2178: 2141: 2092: 2040: 1991: 1970: 1941: 1884: 1827: 1786: 1765: 1736: 1671: 1622: 1612: 1563: 1518: 1508: 1459: 1420:https://doi.org/10.1186/s12864-019-5551-2 1391: 1342: 1293: 1283: 1242: 1193: 1183: 1142: 1089: 1048: 1007: 896: 836: 788: 747: 694: 645: 545: 477: 413: 34:Topologically associating domains within 871:Dixon JR, Gorkin DU, Ren B (June 2016). 158:DNA loop extrusion through cohesin rings 89:, variety of limb malformations such as 29: 329: 2888:Nature Reviews. Molecular Cell Biology 2417:Nature Reviews. Molecular Cell Biology 669:Corces MR, Corces VG (February 2016). 571:Nature Reviews. Molecular Cell Biology 344:Nature Reviews. Molecular Cell Biology 1648:"DNA loop extrusion by human cohesin" 1429: 1427: 1414:Liu, T., Porter, J., Zhao, C. et al. 866: 864: 810: 808: 671:"The three-dimensional cancer genome" 406:10.1146/annurev-cellbio-100616-060531 7: 724:"TAD disruption as oncogenic driver" 383: 381: 1808:Biochemistry and Biophysics Reports 1565:10.1146/annurev-genet-112618-043633 25: 44:topologically associating domain 38:, their borders and interactions 18:Topologically Associating Domain 2333:Current Opinion in Cell Biology 115:chromosome conformation capture 27:Self-interacting genomic region 2651:11858/00-001M-0000-002C-010A-3 2530:11858/00-001M-0000-002E-1D1D-D 2197:10.1103/PhysRevLett.119.138101 137:Analytical tools and databases 1: 1418:BMC Genomics 20, 217 (2019). 283:inner membrane of the nucleus 2297:10.1016/j.celrep.2015.02.004 1802:Man, Zhou (September 2022). 1452:10.1016/j.celrep.2016.04.085 889:10.1016/j.molcel.2016.05.018 388:Yu M, Ren B (October 2017). 1820:10.1016/j.bbrep.2022.101297 56:CCCTC-binding factor (CTCF) 2999: 2570:10.1016/j.cell.2015.04.004 2476:10.1016/j.stem.2015.11.007 2384:10.1016/j.cels.2019.05.011 2248:10.1103/PhysRevE.96.030402 1135:10.1016/j.cels.2015.07.012 1050:10.1016/j.cell.2012.01.010 274: 2865:10.1016/j.tig.2016.05.004 2521:10.1016/j.tig.2016.01.003 2429:10.1038/s41580-019-0162-y 2345:10.1016/j.ceb.2016.12.001 1993:10.1101/2022.03.03.482826 1972:10.1101/2021.04.12.439407 1788:10.1101/2022.09.15.508177 1767:10.1101/2022.09.08.507093 1552:Annual Review of Genetics 1285:10.1186/s13059-018-1519-9 1235:10.1109/TVCG.2017.2745978 1185:10.1186/s13059-018-1486-1 838:21.11116/0000-0003-610A-5 829:10.1038/s41576-018-0007-0 740:10.1016/j.gde.2016.03.008 687:10.1016/j.gde.2016.01.002 638:10.1038/s41588-019-0462-3 263:Lamina-associated domains 1542:Yatskevich S; Rhodes J; 817:Nature Reviews. Genetics 166:and the protein complex 2707:10.1126/science.aad9024 2601:Angier N (2017-01-09). 2167:Physical Review Letters 2069:"Are TADs supercoiled?" 1934:10.1126/science.abn6583 1729:10.1126/science.aaz4475 1673:10.1126/science.aaz3418 1510:10.1073/pnas.1518552112 241:Insulated neighborhoods 150:Mechanisms of formation 109:Discovery and diversity 2122:Nucleic Acids Research 2073:Nucleic Acids Research 1877:10.1126/sciadv.abe5905 1372:Nucleic Acids Research 1323:Nucleic Acids Research 1000:10.1126/sciadv.aaw1668 318:Insulated neighborhood 272: 227:) in humans and mice. 159: 39: 36:chromosome territories 2847:Gonzalez-Sandoval A; 790:10.2217/epi-2016-0111 297:); which is a common 270: 157: 117:techniques including 33: 2983:Nuclear organization 583:10.1038/nrm.2016.138 129:, plants, fungi and 2764:10.1038/nature16490 2756:2016Natur.529..110F 2699:2016Sci...351.1454H 2693:(6280): 1454–1458. 2642:10.1038/nature19800 2634:2016Natur.538..265F 2240:2017PhRvE..96c0402Y 2189:2017PhRvL.119m8101B 2134:10.1093/nar/gkx1123 2085:10.1093/nar/gky1091 2033:10.1038/nature21711 2025:2017Natur.544..110F 1926:2022Sci...376..496G 1869:2021SciA....7.5905R 1721:2019Sci...366.1345K 1715:(6471): 1345–1349. 1664:2019Sci...366.1338D 1658:(6471): 1338–1345. 1614:10.7554/eLife.53885 1501:2015PNAS..112E6456S 1495:(47): E6456–E6465. 1335:10.1093/nar/gkx1017 992:2019SciA....5.1668S 942:10.1038/nature12753 934:2013Natur.502..499D 538:10.1038/nature11082 530:2012Natur.485..376D 470:10.1038/nature11049 462:2012Natur.485..381N 2853:Trends in Genetics 2607:The New York Times 2509:Trends in Genetics 2378:(6): 494–505.e14. 1384:10.1093/nar/gkw437 1091:10.1242/dev.177162 273: 176:housekeeping genes 160: 68:housekeeping genes 40: 2948:3D Genome Browser 2750:(7584): 110–114. 2628:(7624): 265–269. 2228:Physical Review E 2019:(7648): 110–114. 1920:(6592): 496–501. 1546:(December 2019). 1378:(W1): W288–W293. 928:(7472): 499–506. 722:(February 2016). 524:(7398): 376–380. 456:(7398): 381–385. 299:posttranslational 102:protein complexes 16:(Redirected from 2990: 2920: 2919: 2883: 2877: 2876: 2844: 2835: 2834: 2824: 2792: 2786: 2785: 2775: 2735: 2729: 2728: 2718: 2678: 2672: 2671: 2653: 2617: 2611: 2610: 2598: 2592: 2591: 2581: 2564:(5): 1012–1025. 2549: 2543: 2542: 2532: 2504: 2498: 2497: 2487: 2455: 2449: 2448: 2412: 2406: 2405: 2395: 2363: 2357: 2356: 2328: 2319: 2318: 2308: 2291:(8): 1297–1309. 2276: 2270: 2269: 2259: 2223: 2217: 2216: 2182: 2162: 2156: 2155: 2145: 2128:(4): 1648–1660. 2113: 2107: 2106: 2096: 2064: 2055: 2054: 2044: 2004: 1998: 1997: 1995: 1983: 1977: 1976: 1974: 1962: 1956: 1955: 1945: 1905: 1899: 1898: 1888: 1857:Science Advances 1848: 1842: 1841: 1831: 1799: 1793: 1792: 1790: 1778: 1772: 1771: 1769: 1757: 1751: 1750: 1740: 1700: 1694: 1693: 1675: 1643: 1637: 1636: 1626: 1616: 1592: 1586: 1585: 1567: 1539: 1533: 1532: 1522: 1512: 1480: 1474: 1473: 1463: 1446:(9): 2038–2049. 1431: 1422: 1412: 1406: 1405: 1395: 1363: 1357: 1356: 1346: 1314: 1308: 1307: 1297: 1287: 1263: 1257: 1256: 1246: 1214: 1208: 1207: 1197: 1187: 1163: 1157: 1156: 1146: 1110: 1104: 1103: 1093: 1069: 1063: 1062: 1052: 1028: 1022: 1021: 1011: 980:Science Advances 971: 962: 961: 917: 911: 910: 900: 868: 859: 858: 840: 812: 803: 802: 792: 768: 762: 761: 751: 715: 709: 708: 698: 666: 660: 659: 649: 632:(8): 1272–1282. 609: 603: 602: 566: 560: 559: 549: 509: 492: 491: 481: 441: 428: 427: 417: 385: 376: 375: 339: 304:modification of 77:by limiting the 21: 2998: 2997: 2993: 2992: 2991: 2989: 2988: 2987: 2978:Gene expression 2968: 2967: 2929: 2924: 2923: 2900:10.1038/nrm3393 2885: 2884: 2880: 2846: 2845: 2838: 2813:10.1038/ng.3722 2801:Nature Genetics 2794: 2793: 2789: 2737: 2736: 2732: 2680: 2679: 2675: 2619: 2618: 2614: 2600: 2599: 2595: 2551: 2550: 2546: 2506: 2505: 2501: 2457: 2456: 2452: 2423:(12): 721–737. 2414: 2413: 2409: 2365: 2364: 2360: 2330: 2329: 2322: 2278: 2277: 2273: 2234:(3–1): 030402. 2225: 2224: 2220: 2164: 2163: 2159: 2115: 2114: 2110: 2066: 2065: 2058: 2006: 2005: 2001: 1985: 1984: 1980: 1964: 1963: 1959: 1907: 1906: 1902: 1863:(7): eabe5905. 1850: 1849: 1845: 1801: 1800: 1796: 1780: 1779: 1775: 1759: 1758: 1754: 1702: 1701: 1697: 1645: 1644: 1640: 1594: 1593: 1589: 1541: 1540: 1536: 1482: 1481: 1477: 1433: 1432: 1425: 1413: 1409: 1365: 1364: 1360: 1329:(D1): D52–D57. 1316: 1315: 1311: 1265: 1264: 1260: 1216: 1215: 1211: 1165: 1164: 1160: 1112: 1111: 1107: 1071: 1070: 1066: 1030: 1029: 1025: 986:(4): eaaw1668. 973: 972: 965: 919: 918: 914: 870: 869: 862: 814: 813: 806: 770: 769: 765: 717: 716: 712: 668: 667: 663: 626:Nature Genetics 620:(August 2019). 611: 610: 606: 577:(12): 771–782. 568: 567: 563: 511: 510: 495: 443: 442: 431: 387: 386: 379: 356:10.1038/nrm3965 341: 340: 331: 326: 314: 306:heterochromatin 279: 265: 249: 247:Role in disease 237: 221:gene expression 205: 197: 192: 152: 139: 111: 75:gene expression 28: 23: 22: 15: 12: 11: 5: 2996: 2994: 2986: 2985: 2980: 2970: 2969: 2966: 2965: 2960: 2955: 2950: 2945: 2940: 2935: 2928: 2927:External links 2925: 2922: 2921: 2894:(8): 524–535. 2878: 2859:(8): 485–495. 2836: 2787: 2730: 2673: 2612: 2593: 2544: 2515:(4): 225–237. 2499: 2470:(2): 262–275. 2464:Cell Stem Cell 2450: 2407: 2358: 2320: 2271: 2218: 2173:(13): 138101. 2157: 2108: 2079:(2): 521–532. 2056: 1999: 1978: 1957: 1900: 1843: 1794: 1773: 1752: 1695: 1638: 1587: 1558:(1): 445–482. 1534: 1475: 1423: 1407: 1358: 1309: 1272:Genome Biology 1258: 1229:(1): 522–531. 1209: 1172:Genome Biology 1158: 1105: 1084:(19): 99–101. 1064: 1043:(3): 458–472. 1023: 963: 912: 883:(5): 668–680. 877:Molecular Cell 860: 823:(7): 453–467. 804: 763: 710: 661: 604: 561: 493: 429: 377: 350:(4): 245–257. 328: 327: 325: 322: 321: 320: 313: 310: 277:Nuclear lamina 275:Main article: 264: 261: 248: 245: 236: 233: 204: 201: 196: 193: 191: 188: 151: 148: 138: 135: 110: 107: 95:Cooks syndrome 91:synpolydactyly 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2995: 2984: 2981: 2979: 2976: 2975: 2973: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2930: 2926: 2917: 2913: 2909: 2905: 2901: 2897: 2893: 2889: 2882: 2879: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2843: 2841: 2837: 2832: 2828: 2823: 2818: 2814: 2810: 2806: 2802: 2798: 2791: 2788: 2783: 2779: 2774: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2734: 2731: 2726: 2722: 2717: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2677: 2674: 2669: 2665: 2661: 2657: 2652: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2616: 2613: 2608: 2604: 2597: 2594: 2589: 2585: 2580: 2575: 2571: 2567: 2563: 2559: 2555: 2548: 2545: 2540: 2536: 2531: 2526: 2522: 2518: 2514: 2510: 2503: 2500: 2495: 2491: 2486: 2481: 2477: 2473: 2469: 2465: 2461: 2454: 2451: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2411: 2408: 2403: 2399: 2394: 2389: 2385: 2381: 2377: 2373: 2369: 2362: 2359: 2354: 2350: 2346: 2342: 2338: 2334: 2327: 2325: 2321: 2316: 2312: 2307: 2302: 2298: 2294: 2290: 2286: 2282: 2275: 2272: 2267: 2263: 2258: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2222: 2219: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2181: 2176: 2172: 2168: 2161: 2158: 2153: 2149: 2144: 2139: 2135: 2131: 2127: 2123: 2119: 2112: 2109: 2104: 2100: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2061: 2057: 2052: 2048: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2003: 2000: 1994: 1989: 1982: 1979: 1973: 1968: 1961: 1958: 1953: 1949: 1944: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1911: 1904: 1901: 1896: 1892: 1887: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1844: 1839: 1835: 1830: 1825: 1821: 1817: 1813: 1809: 1805: 1798: 1795: 1789: 1784: 1777: 1774: 1768: 1763: 1756: 1753: 1748: 1744: 1739: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1699: 1696: 1691: 1687: 1683: 1679: 1674: 1669: 1665: 1661: 1657: 1653: 1649: 1642: 1639: 1634: 1630: 1625: 1620: 1615: 1610: 1606: 1602: 1598: 1591: 1588: 1583: 1579: 1575: 1571: 1566: 1561: 1557: 1553: 1549: 1545: 1538: 1535: 1530: 1526: 1521: 1516: 1511: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1476: 1471: 1467: 1462: 1457: 1453: 1449: 1445: 1441: 1437: 1430: 1428: 1424: 1421: 1417: 1411: 1408: 1403: 1399: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1359: 1354: 1350: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1310: 1305: 1301: 1296: 1291: 1286: 1281: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1245: 1240: 1236: 1232: 1228: 1224: 1220: 1213: 1210: 1205: 1201: 1196: 1191: 1186: 1181: 1177: 1173: 1169: 1162: 1159: 1154: 1150: 1145: 1140: 1136: 1132: 1129:(1): 99–101. 1128: 1124: 1120: 1117:(July 2016). 1116: 1109: 1106: 1101: 1097: 1092: 1087: 1083: 1079: 1075: 1068: 1065: 1060: 1056: 1051: 1046: 1042: 1038: 1034: 1027: 1024: 1019: 1015: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 970: 968: 964: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 916: 913: 908: 904: 899: 894: 890: 886: 882: 878: 874: 867: 865: 861: 856: 852: 848: 844: 839: 834: 830: 826: 822: 818: 811: 809: 805: 800: 796: 791: 786: 782: 778: 774: 767: 764: 759: 755: 750: 745: 741: 737: 733: 729: 725: 721: 714: 711: 706: 702: 697: 692: 688: 684: 680: 676: 672: 665: 662: 657: 653: 648: 643: 639: 635: 631: 627: 623: 619: 615: 608: 605: 600: 596: 592: 588: 584: 580: 576: 572: 565: 562: 557: 553: 548: 543: 539: 535: 531: 527: 523: 519: 515: 508: 506: 504: 502: 500: 498: 494: 489: 485: 480: 475: 471: 467: 463: 459: 455: 451: 447: 440: 438: 436: 434: 430: 425: 421: 416: 411: 407: 403: 399: 395: 391: 384: 382: 378: 373: 369: 365: 361: 357: 353: 349: 345: 338: 336: 334: 330: 323: 319: 316: 315: 311: 309: 307: 303: 300: 296: 292: 288: 287:trimethylated 284: 278: 269: 262: 260: 256: 254: 246: 244: 242: 234: 232: 228: 226: 222: 218: 214: 210: 202: 200: 194: 189: 187: 183: 179: 177: 173: 169: 165: 156: 149: 147: 143: 136: 134: 132: 128: 124: 120: 116: 108: 106: 103: 98: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 48:DNA sequences 45: 37: 32: 19: 2891: 2887: 2881: 2856: 2852: 2807:(1): 65–74. 2804: 2800: 2790: 2747: 2743: 2733: 2690: 2686: 2676: 2625: 2621: 2615: 2606: 2596: 2561: 2557: 2547: 2512: 2508: 2502: 2467: 2463: 2453: 2420: 2416: 2410: 2375: 2372:Cell Systems 2371: 2361: 2336: 2332: 2288: 2285:Cell Reports 2284: 2274: 2231: 2227: 2221: 2170: 2166: 2160: 2125: 2121: 2111: 2076: 2072: 2016: 2012: 2002: 1981: 1960: 1917: 1913: 1903: 1860: 1856: 1846: 1811: 1807: 1797: 1776: 1755: 1712: 1708: 1698: 1655: 1651: 1641: 1604: 1600: 1590: 1555: 1551: 1537: 1492: 1488: 1478: 1443: 1440:Cell Reports 1439: 1410: 1375: 1371: 1361: 1326: 1322: 1312: 1275: 1271: 1261: 1226: 1222: 1212: 1175: 1171: 1161: 1126: 1123:Cell Systems 1122: 1108: 1081: 1077: 1067: 1040: 1036: 1026: 983: 979: 925: 921: 915: 880: 876: 820: 816: 783:(1): 47–55. 780: 776: 766: 731: 727: 713: 678: 674: 664: 629: 625: 607: 574: 570: 564: 521: 517: 453: 449: 397: 393: 347: 343: 280: 257: 250: 238: 229: 206: 198: 195:Conservation 184: 180: 172:transfer RNA 161: 144: 140: 112: 99: 72: 64:transfer RNA 43: 41: 1078:Development 777:Epigenomics 718:Valton AL; 400:: 265–289. 225:polydactyly 105:formation. 2972:Categories 2257:1887/58394 2180:1612.07256 1814:: 101297. 1607:: e53885. 1278:(1): 151. 1178:(1): 125. 618:Furlong EE 324:References 291:histone H3 253:expression 190:Properties 174:genes and 123:Drosophila 66:genes and 2849:Gasser SM 2445:201714312 2339:: 20–27. 1690:208228309 1582:203653572 1544:Nasmyth K 734:: 34–40. 614:Korbel JO 289:Lys27 on 213:enhancers 209:promoters 2958:3D-GNOME 2933:Juicebox 2916:22524502 2908:22820889 2873:27312344 2831:27869826 2782:26700815 2725:26940867 2660:27706140 2588:25959774 2539:26862051 2494:26686465 2437:31477886 2402:31229558 2353:28040646 2315:25732821 2266:29346962 2213:14706723 2205:29341686 2152:29140466 2103:30395328 2051:28355183 1952:35420890 1895:33568486 1838:35770038 1747:31780627 1682:31753851 1633:32396063 1574:31577909 1529:26499245 1470:27210764 1402:27185892 1353:29106613 1304:30286773 1253:28866592 1204:30143029 1153:27467250 1115:Aiden EL 1100:31558569 1059:22265598 1018:30989119 950:24153303 907:27259200 855:22325904 847:29692413 799:27936932 758:27111891 720:Dekker J 705:26855137 656:31308546 599:11484886 591:27826147 556:22495300 488:22495304 424:28783961 364:25757416 312:See also 295:H3K27me3 293:, (i.e. 83:promoter 79:enhancer 2943:HiPiler 2938:HiGlass 2822:5791882 2773:4831574 2752:Bibcode 2716:4884612 2695:Bibcode 2687:Science 2668:4463482 2630:Bibcode 2579:4791538 2485:4848748 2393:6706282 2306:4542312 2236:Bibcode 2185:Bibcode 2143:5829651 2094:6344874 2042:5639698 2021:Bibcode 1988:bioRxiv 1967:bioRxiv 1943:9069445 1922:Bibcode 1914:Science 1886:7875533 1865:Bibcode 1829:9234588 1783:bioRxiv 1762:bioRxiv 1738:7387118 1717:Bibcode 1709:Science 1660:Bibcode 1652:Science 1624:7316503 1520:4664323 1497:Bibcode 1461:4889513 1393:4987952 1344:5753379 1295:6172833 1244:6038708 1195:6109259 1144:5596920 1009:6457944 988:Bibcode 958:4468533 930:Bibcode 898:5371509 749:4880504 696:4880523 681:: 1–7. 647:7116017 547:3356448 526:Bibcode 479:3555144 458:Bibcode 415:5837811 372:6713103 302:histone 168:cohesin 60:cohesin 2914:  2906:  2871:  2829:  2819:  2780:  2770:  2744:Nature 2723:  2713:  2666:  2658:  2622:Nature 2586:  2576:  2537:  2492:  2482:  2443:  2435:  2400:  2390:  2351:  2313:  2303:  2264:  2211:  2203:  2150:  2140:  2101:  2091:  2049:  2039:  2013:Nature 1990:  1969:  1950:  1940:  1893:  1883:  1836:  1826:  1785:  1764:  1745:  1735:  1688:  1680:  1631:  1621:  1580:  1572:  1527:  1517:  1468:  1458:  1400:  1390:  1351:  1341:  1302:  1292:  1251:  1241:  1202:  1192:  1151:  1141:  1098:  1057:  1016:  1006:  956:  948:  922:Nature 905:  895:  853:  845:  797:  756:  746:  703:  693:  654:  644:  597:  589:  554:  544:  518:Nature 486:  476:  450:Nature 422:  412:  370:  362:  217:CRISPR 87:cancer 2963:TADKB 2912:S2CID 2664:S2CID 2441:S2CID 2209:S2CID 2175:arXiv 1686:S2CID 1601:eLife 1578:S2CID 954:S2CID 851:S2CID 595:S2CID 368:S2CID 131:human 127:mouse 2953:3DIV 2904:PMID 2869:PMID 2827:PMID 2778:PMID 2721:PMID 2656:PMID 2584:PMID 2558:Cell 2535:PMID 2490:PMID 2433:PMID 2398:PMID 2349:PMID 2311:PMID 2262:PMID 2201:PMID 2148:PMID 2099:PMID 2047:PMID 1948:PMID 1891:PMID 1834:PMID 1743:PMID 1678:PMID 1629:PMID 1570:PMID 1525:PMID 1466:PMID 1398:PMID 1349:PMID 1300:PMID 1249:PMID 1200:PMID 1149:PMID 1096:PMID 1055:PMID 1037:Cell 1014:PMID 946:PMID 903:PMID 843:PMID 795:PMID 754:PMID 701:PMID 652:PMID 587:PMID 552:PMID 484:PMID 420:PMID 360:PMID 211:and 164:CTCF 119:Hi-C 58:and 2896:doi 2861:doi 2817:PMC 2809:doi 2768:PMC 2760:doi 2748:529 2711:PMC 2703:doi 2691:351 2646:hdl 2638:doi 2626:538 2574:PMC 2566:doi 2562:161 2525:hdl 2517:doi 2480:PMC 2472:doi 2425:doi 2388:PMC 2380:doi 2341:doi 2301:PMC 2293:doi 2252:hdl 2244:doi 2193:doi 2171:119 2138:PMC 2130:doi 2089:PMC 2081:doi 2037:PMC 2029:doi 2017:544 1938:PMC 1930:doi 1918:376 1881:PMC 1873:doi 1824:PMC 1816:doi 1733:PMC 1725:doi 1713:366 1668:doi 1656:366 1619:PMC 1609:doi 1560:doi 1515:PMC 1505:doi 1493:112 1456:PMC 1448:doi 1388:PMC 1380:doi 1339:PMC 1331:doi 1290:PMC 1280:doi 1239:PMC 1231:doi 1190:PMC 1180:doi 1139:PMC 1131:doi 1086:doi 1082:146 1045:doi 1041:148 1004:PMC 996:doi 938:doi 926:502 893:PMC 885:doi 833:hdl 825:doi 785:doi 744:PMC 736:doi 691:PMC 683:doi 642:PMC 634:doi 579:doi 542:PMC 534:doi 522:485 474:PMC 466:doi 454:485 410:PMC 402:doi 352:doi 125:), 2974:: 2910:. 2902:. 2892:13 2890:. 2867:. 2857:32 2855:. 2839:^ 2825:. 2815:. 2805:49 2803:. 2799:. 2776:. 2766:. 2758:. 2746:. 2742:. 2719:. 2709:. 2701:. 2689:. 2685:. 2662:. 2654:. 2644:. 2636:. 2624:. 2605:. 2582:. 2572:. 2560:. 2556:. 2533:. 2523:. 2513:32 2511:. 2488:. 2478:. 2468:18 2466:. 2462:. 2439:. 2431:. 2421:20 2419:. 2396:. 2386:. 2374:. 2370:. 2347:. 2337:44 2335:. 2323:^ 2309:. 2299:. 2289:10 2287:. 2283:. 2260:. 2250:. 2242:. 2232:96 2230:. 2207:. 2199:. 2191:. 2183:. 2169:. 2146:. 2136:. 2126:46 2124:. 2120:. 2097:. 2087:. 2077:47 2075:. 2071:. 2059:^ 2045:. 2035:. 2027:. 2015:. 2011:. 1946:. 1936:. 1928:. 1916:. 1912:. 1889:. 1879:. 1871:. 1859:. 1855:. 1832:. 1822:. 1812:31 1810:. 1806:. 1741:. 1731:. 1723:. 1711:. 1707:. 1684:. 1676:. 1666:. 1654:. 1650:. 1627:. 1617:. 1603:. 1599:. 1576:. 1568:. 1556:53 1554:. 1550:. 1523:. 1513:. 1503:. 1491:. 1487:. 1464:. 1454:. 1444:15 1442:. 1438:. 1426:^ 1396:. 1386:. 1376:44 1374:. 1370:. 1347:. 1337:. 1327:46 1325:. 1321:. 1298:. 1288:. 1276:19 1274:. 1270:. 1247:. 1237:. 1227:24 1225:. 1221:. 1198:. 1188:. 1176:19 1174:. 1170:. 1147:. 1137:. 1125:. 1121:. 1094:. 1080:. 1076:. 1053:. 1039:. 1035:. 1012:. 1002:. 994:. 982:. 978:. 966:^ 952:. 944:. 936:. 924:. 901:. 891:. 881:62 879:. 875:. 863:^ 849:. 841:. 831:. 821:19 819:. 807:^ 793:. 779:. 775:. 752:. 742:. 732:36 730:. 726:. 699:. 689:. 679:36 677:. 673:. 650:. 640:. 630:51 628:. 624:. 616:; 593:. 585:. 575:17 573:. 550:. 540:. 532:. 520:. 516:. 496:^ 482:. 472:. 464:. 452:. 448:. 432:^ 418:. 408:. 398:33 396:. 392:. 380:^ 366:. 358:. 348:16 346:. 332:^ 93:, 52:kb 42:A 2918:. 2898:: 2875:. 2863:: 2833:. 2811:: 2784:. 2762:: 2754:: 2727:. 2705:: 2697:: 2670:. 2648:: 2640:: 2632:: 2609:. 2590:. 2568:: 2541:. 2527:: 2519:: 2496:. 2474:: 2447:. 2427:: 2404:. 2382:: 2376:8 2355:. 2343:: 2317:. 2295:: 2268:. 2254:: 2246:: 2238:: 2215:. 2195:: 2187:: 2177:: 2154:. 2132:: 2105:. 2083:: 2053:. 2031:: 2023:: 1996:. 1975:. 1954:. 1932:: 1924:: 1897:. 1875:: 1867:: 1861:7 1840:. 1818:: 1791:. 1770:. 1749:. 1727:: 1719:: 1692:. 1670:: 1662:: 1635:. 1611:: 1605:9 1584:. 1562:: 1531:. 1507:: 1499:: 1472:. 1450:: 1404:. 1382:: 1355:. 1333:: 1306:. 1282:: 1255:. 1233:: 1206:. 1182:: 1155:. 1133:: 1127:3 1102:. 1088:: 1061:. 1047:: 1020:. 998:: 990:: 984:5 960:. 940:: 932:: 909:. 887:: 857:. 835:: 827:: 801:. 787:: 781:9 760:. 738:: 707:. 685:: 658:. 636:: 601:. 581:: 558:. 536:: 528:: 490:. 468:: 460:: 426:. 404:: 374:. 354:: 81:- 20:)

Index

Topologically Associating Domain

chromosome territories
DNA sequences
kb
CCCTC-binding factor (CTCF)
cohesin
transfer RNA
housekeeping genes
gene expression
enhancer
promoter
cancer
synpolydactyly
Cooks syndrome
protein complexes
chromosome conformation capture
Hi-C
Drosophila
mouse
human

CTCF
cohesin
transfer RNA
housekeeping genes
promoters
enhancers
CRISPR
gene expression

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.