Knowledge

Torsion (algebra)

Source đź“ť

1466: 190:
without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general
728: 1370: 1435: 786: 1276: 1052: 929: 1094:
can be interpreted as the set of the elements that "vanish in the localization". The same interpretation continues to hold in the non-commutative setting for rings satisfying the
839:
in two variables. For non-finitely generated modules, the above direct decomposition is not true. The torsion subgroup of an abelian group may not be a
1285: 1676: 1643: 492:, conversely, asks whether a finitely generated periodic group must be finite. The answer is "no" in general, even if the period is fixed. 1586: 1449:
reflects this relation with the algebraic torsion. This same result holds for non-commutative rings as well as long as the set
686:-module in the natural way, then (as a result of many things, either simply by finite-dimensionality or as a consequence of the 107:(in fact, this is the origin of the terminology, which was introduced for abelian groups before being generalized to modules). 1375: 295: 1695: 1668: 1616: 1542: 157: 1705: 687: 1611: 745: 1215: 1537: 649: 531: 1517: 720: 1527: 1522: 1001: 984: 667: 485: 31: 1532: 885: 1700: 1058: 712: 527: 1606: 489: 1490: 1210: 939: 519: 496: 276: 119: 85: 50: 1507: 1202: 1122: 836: 467: 357: 208: 111: 96: 78: 69:
formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is
1602: 951: 868: 602: 459: 146: 58: 1595: 1578: 1672: 1639: 1582: 265: 1631: 1591: 1502: 968: 621: 384: 187: 139: 70: 54: 1653: 1649: 1474: 660: 566: 273: 183: 17: 103:"). This is allowed by the fact that the abelian groups are the modules over the ring of 1486: 1465: 840: 593:
in one variable is pure torsion. Both these examples can be generalized as follows: if
1689: 1623: 1454: 1099: 1095: 653: 507: 500: 414: 401: 249: 123: 92: 569:
modulo 1, is periodic, i.e. every element has finite order. Analogously, the module
1660: 481: 463: 164: 1512: 1146: 800: 736: 523: 435: 42: 38: 88:, that is, when the regular elements of the ring are all its nonzero elements. 1635: 729:
structure theorem for finitely generated modules over a principal ideal domain
590: 816: 66: 1365:{\displaystyle 0\to \operatorname {Tor} _{1}^{R}(M,R_{S}/R)\to M\to M_{S}} 367:
of the group if it has finite order, i.e., if there is a positive integer
216:
is commutative then the set of all torsion elements forms a submodule of
100: 1630:, Problem Books in Mathematics, New York: Springer, pp. xviii+412, 1446: 950:
is a vector space, possibly infinite-dimensional. There is a canonical
104: 542:. In this case, torsion elements do not form a subgroup, for example, 1469:
The 4-torsion subgroup of an elliptic curve over the complex numbers.
450:
is not a domain then torsion is considered with respect to the set
421:
of integers, and in this case the two notions of torsion coincide.
1464: 77:
is a module consisting entirely of torsion elements. A module is
126:
case, the torsion elements do not form a subgroup, in general.
652:
by a subgroup is torsion-free exactly when the subgroup is a
530:, any nontrivial torsion element either has order two and is 163:
of the ring (an element that is neither a left nor a right
1579:
Introduction to Commutative algebra and algebraic geometry
971:
of this homomorphism is precisely the torsion submodule T(
84:
This terminology is more commonly used for modules over a
413:
if its only torsion element is the identity element. Any
442:. Then it follows immediately from the definitions that 1430:{\displaystyle \operatorname {Tor} _{1}^{R}(M,R_{S}/R)} 1378: 1288: 1218: 1004: 888: 748: 827:
hold for more general commutative domains, even for
538:or has order three and is conjugate to the element 1429: 1364: 1270: 1121:The concept of torsion plays an important role in 1046: 923: 819:, any finitely generated torsion-free module over 780: 240:) may or may not be a submodule. It is shown in ( 212:if zero is the only torsion element. If the ring 81:if its only torsion element is the zero element. 979:is a multiplicatively closed subset of the ring 781:{\displaystyle M\simeq F\oplus \mathrm {T} (M),} 405:if all its elements are torsion elements, and a 1271:{\displaystyle 0\to R\to R_{S}\to R_{S}/R\to 0} 206:if all its elements are torsion elements, and 473:is torsion-free when viewed as a module over 8: 314:-torsion element if there exists an element 95:(with "module" and "submodule" replaced by " 731:gives a detailed description of the module 1133:are two modules over a commutative domain 648:, +) are torsion-free. The quotient of a 1671:(Third ed.), Springer, p. 446, 1437:is the kernel of the localisation map of 1416: 1410: 1388: 1383: 1377: 1356: 1332: 1326: 1304: 1299: 1287: 1254: 1248: 1235: 1217: 1047:{\displaystyle M_{S}=M\otimes _{R}R_{S},} 1035: 1025: 1009: 1003: 909: 893: 887: 761: 747: 53:that yields zero when multiplied by some 417:may be viewed as a module over the ring 345:the set of regular elements of the ring 1554: 1137:(for example, two abelian groups, when 1561: 924:{\displaystyle M_{Q}=M\otimes _{R}Q,} 7: 268:are Ore, this covers the case when 241: 1282:-modules yields an exact sequence 762: 349:and recover the definition above. 279:(which might not be commutative). 25: 1489:they may be computed in terms of 484:(abelian or not) is periodic and 1598:", University of Michigan, 1954. 1180:is canonically isomorphic to Tor 1090:. Thus the torsion submodule of 1082:, whose kernel is precisely the 1069:. There is a canonical map from 739:. In particular, it claims that 703:Case of a principal ideal domain 480:By contrast with example 1, any 341:In particular, one can take for 156:of the module if there exists a 1628:Exercises in modules and rings 1424: 1397: 1349: 1343: 1340: 1313: 1292: 1262: 1241: 1228: 1222: 1117:Torsion in homological algebra 811:) is the torsion submodule of 772: 766: 514:obtained from the group SL(2, 296:multiplicatively closed subset 1: 1669:Graduate Texts in Mathematics 1543:Universal coefficient theorem 1481:or, in an older terminology, 446:is torsion-free (if the ring 1098:, or more generally for any 875:. Then one can consider the 855:is a commutative domain and 495:The torsion elements of the 91:This terminology applies to 1612:Encyclopedia of Mathematics 1473:The torsion elements of an 1057:which is a module over the 554:, which has infinite order. 402:torsion (or periodic) group 114:that are noncommutative, a 1722: 1538:Torsion-free abelian group 946:is a field, a module over 650:torsion-free abelian group 597:is an integral domain and 29: 18:Torsion (abstract algebra) 1636:10.1007/978-0-387-48899-8 1518:Annihilator (ring theory) 27:Zero divisors in a module 1528:Rank of an abelian group 1523:Localization of a module 847:Torsion and localization 823:is free. This corollary 462:is torsion-free and any 454:of non-zero-divisors of 286:be a module over a ring 118:is an element of finite 32:Torsion (disambiguation) 1665:Advanced Linear Algebra 1596:Infinite abelian groups 983:, then we may consider 954:of abelian groups from 688:Cayley–Hamilton theorem 640:, +) while the groups ( 391:denotes the product of 1470: 1431: 1366: 1272: 1086:-torsion submodule of 1048: 975:). More generally, if 925: 782: 713:principal ideal domain 458:). In particular, any 399:. A group is called a 264:-modules. Since right 236:is not commutative, T( 228:, sometimes denoted T( 1581:", Birkhauser 1985, 1468: 1455:right denominator set 1432: 1367: 1273: 1100:right denominator set 1049: 926: 783: 526:by factoring out its 1696:Abelian group theory 1491:division polynomials 1376: 1286: 1216: 1211:short exact sequence 1002: 940:extension of scalars 886: 746: 565:, consisting of the 497:multiplicative group 282:More generally, let 256:) is a submodule of 30:For other uses, see 1706:Homological algebra 1607:"Torsion submodule" 1508:Arithmetic dynamics 1393: 1309: 1123:homological algebra 837:ring of polynomials 803:(depending only on 721:finitely generated 711:is a (commutative) 499:of a field are its 167:) that annihilates 65:of a module is the 49:is an element of a 1603:Michiel Hazewinkel 1533:Ray–Singer torsion 1471: 1427: 1379: 1362: 1295: 1268: 1149:yield a family of 1044: 921: 869:field of fractions 799:-module of finite 778: 668:finite-dimensional 603:field of fractions 557:The abelian group 490:Burnside's problem 486:finitely generated 460:free abelian group 409:torsion-free group 387:of the group, and 266:Noetherian domains 122:. Contrary to the 41:, specifically in 1678:978-0-387-72828-5 1645:978-0-387-98850-4 1461:Abelian varieties 518:) of 2Ă—2 integer 252:if and only if T( 222:torsion submodule 63:torsion submodule 16:(Redirected from 1713: 1681: 1656: 1619: 1592:Irving Kaplansky 1565: 1559: 1503:Analytic torsion 1444: 1436: 1434: 1433: 1428: 1420: 1415: 1414: 1392: 1387: 1371: 1369: 1368: 1363: 1361: 1360: 1336: 1331: 1330: 1308: 1303: 1277: 1275: 1274: 1269: 1258: 1253: 1252: 1240: 1239: 1053: 1051: 1050: 1045: 1040: 1039: 1030: 1029: 1014: 1013: 930: 928: 927: 922: 914: 913: 898: 897: 787: 785: 784: 779: 765: 622:torsion subgroup 567:rational numbers 411: 410: 385:identity element 340: 188:commutative ring 181: 55:non-zero-divisor 21: 1721: 1720: 1716: 1715: 1714: 1712: 1711: 1710: 1686: 1685: 1679: 1659: 1646: 1622: 1601: 1574: 1569: 1568: 1560: 1556: 1551: 1499: 1487:elliptic curves 1483:division points 1475:abelian variety 1463: 1442: 1406: 1374: 1373: 1352: 1322: 1284: 1283: 1244: 1231: 1214: 1213: 1208: 1196: 1183: 1172:-torsion of an 1159: 1119: 1081: 1068: 1031: 1021: 1005: 1000: 999: 966: 905: 889: 884: 883: 849: 744: 743: 705: 674:over the field 661:linear operator 546: ·  534:to the element 427: 408: 407: 365:torsion element 331: 184:integral domain 172: 158:regular element 154:torsion element 132: 116:torsion element 110:In the case of 47:torsion element 35: 28: 23: 22: 15: 12: 11: 5: 1719: 1717: 1709: 1708: 1703: 1698: 1688: 1687: 1684: 1683: 1677: 1661:Roman, Stephen 1657: 1644: 1624:Lam, Tsit Yuen 1620: 1599: 1589: 1573: 1570: 1567: 1566: 1553: 1552: 1550: 1547: 1546: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1498: 1495: 1479:torsion points 1462: 1459: 1426: 1423: 1419: 1413: 1409: 1405: 1402: 1399: 1396: 1391: 1386: 1382: 1359: 1355: 1351: 1348: 1345: 1342: 1339: 1335: 1329: 1325: 1321: 1318: 1315: 1312: 1307: 1302: 1298: 1294: 1291: 1267: 1264: 1261: 1257: 1251: 1247: 1243: 1238: 1234: 1230: 1227: 1224: 1221: 1206: 1203:exact sequence 1192: 1181: 1154: 1118: 1115: 1077: 1064: 1055: 1054: 1043: 1038: 1034: 1028: 1024: 1020: 1017: 1012: 1008: 962: 934:obtained from 932: 931: 920: 917: 912: 908: 904: 901: 896: 892: 848: 845: 841:direct summand 789: 788: 777: 774: 771: 768: 764: 760: 757: 754: 751: 704: 701: 700: 699: 657: 618: 581:over the ring 555: 504: 501:roots of unity 493: 478: 438:over any ring 426: 423: 260:for all right 204:torsion module 131: 128: 93:abelian groups 75:torsion module 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1718: 1707: 1704: 1702: 1701:Module theory 1699: 1697: 1694: 1693: 1691: 1680: 1674: 1670: 1666: 1662: 1658: 1655: 1651: 1647: 1641: 1637: 1633: 1629: 1625: 1621: 1618: 1614: 1613: 1608: 1604: 1600: 1597: 1593: 1590: 1588: 1587:0-8176-3065-1 1584: 1580: 1577:Ernst Kunz, " 1576: 1575: 1571: 1563: 1558: 1555: 1548: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1500: 1496: 1494: 1492: 1488: 1484: 1480: 1476: 1467: 1460: 1458: 1456: 1452: 1448: 1445:denoting the 1441:. The symbol 1440: 1421: 1417: 1411: 1407: 1403: 1400: 1394: 1389: 1384: 1380: 1357: 1353: 1346: 1337: 1333: 1327: 1323: 1319: 1316: 1310: 1305: 1300: 1296: 1289: 1281: 1265: 1259: 1255: 1249: 1245: 1236: 1232: 1225: 1219: 1212: 1204: 1200: 1195: 1191: 1187: 1179: 1175: 1171: 1167: 1163: 1157: 1152: 1148: 1144: 1141: =  1140: 1136: 1132: 1128: 1124: 1116: 1114: 1112: 1108: 1104: 1101: 1097: 1096:Ore condition 1093: 1089: 1085: 1080: 1076: 1072: 1067: 1063: 1060: 1041: 1036: 1032: 1026: 1022: 1018: 1015: 1010: 1006: 998: 997: 996: 994: 990: 986: 982: 978: 974: 970: 965: 961: 957: 953: 949: 945: 941: 937: 918: 915: 910: 906: 902: 899: 894: 890: 882: 881: 880: 878: 874: 870: 866: 863:-module. Let 862: 858: 854: 846: 844: 842: 838: 834: 831: =  830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 775: 769: 758: 755: 752: 749: 742: 741: 740: 738: 734: 730: 726: 724: 718: 714: 710: 707:Suppose that 702: 697: 694:is a torsion 693: 689: 685: 681: 678:. If we view 677: 673: 670:vector space 669: 665: 662: 658: 655: 654:pure subgroup 651: 647: 643: 639: 635: 631: 627: 623: 619: 616: 613:is a torsion 612: 608: 604: 600: 596: 592: 588: 585: =  584: 580: 576: 572: 568: 564: 560: 556: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 513: 509: 508:modular group 505: 502: 498: 494: 491: 487: 483: 479: 476: 472: 469: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 428: 424: 422: 420: 416: 415:abelian group 412: 404: 403: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 359: 355: 350: 348: 344: 338: 334: 329: 325: 321: 317: 313: 310:is called an 309: 305: 302:. An element 301: 297: 293: 289: 285: 280: 278: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 220:, called the 219: 215: 211: 210: 205: 201: 197: 192: 189: 185: 179: 175: 170: 166: 162: 159: 155: 151: 148: 144: 141: 137: 129: 127: 125: 121: 117: 113: 108: 106: 102: 98: 94: 89: 87: 82: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 1664: 1627: 1610: 1564:, p. 115, §4 1557: 1482: 1478: 1472: 1450: 1438: 1372:, and hence 1279: 1198: 1193: 1189: 1185: 1177: 1173: 1169: 1165: 1161: 1155: 1153:-modules Tor 1150: 1147:Tor functors 1142: 1138: 1134: 1130: 1126: 1120: 1110: 1106: 1102: 1091: 1087: 1083: 1078: 1074: 1070: 1065: 1061: 1059:localization 1056: 992: 988: 985:localization 980: 976: 972: 963: 959: 955: 952:homomorphism 947: 943: 935: 933: 876: 872: 871:of the ring 864: 860: 856: 852: 851:Assume that 850: 832: 828: 824: 820: 812: 808: 804: 796: 792: 790: 732: 722: 716: 708: 706: 695: 691: 683: 679: 675: 671: 666:acting on a 663: 645: 641: 637: 633: 629: 625: 614: 610: 606: 598: 594: 586: 582: 578: 574: 570: 562: 558: 551: 547: 543: 539: 535: 515: 511: 482:finite group 474: 470: 464:vector space 455: 451: 447: 443: 439: 431: 418: 406: 400: 396: 392: 388: 383:denotes the 380: 376: 372: 368: 364: 363:is called a 360: 353: 351: 346: 342: 336: 332: 327: 326:annihilates 323: 319: 315: 311: 307: 303: 299: 291: 287: 283: 281: 269: 261: 257: 253: 245: 237: 233: 229: 225: 221: 217: 213: 209:torsion-free 207: 203: 202:is called a 199: 198:over a ring 195: 193: 177: 173: 168: 165:zero divisor 160: 153: 152:is called a 149: 142: 135: 133: 115: 109: 90: 83: 79:torsion-free 74: 62: 46: 36: 1513:Flat module 737:isomorphism 727:. Then the 659:Consider a 591:polynomials 524:determinant 436:free module 352:An element 272:is a right 248:is a right 134:An element 124:commutative 71:commutative 43:ring theory 39:mathematics 1690:Categories 1562:Roman 2008 1549:References 1105:and right 967:, and the 795:is a free 644:, +) and ( 522:with unit 395:copies of 371:such that 322:such that 274:Noetherian 130:Definition 1617:EMS Press 1605:(2001) , 1395:⁡ 1350:→ 1344:→ 1311:⁡ 1293:→ 1263:→ 1242:→ 1229:→ 1223:→ 1201:) by the 1023:⊗ 907:⊗ 817:corollary 759:⊕ 753:≃ 632:, +) is ( 532:conjugate 194:A module 67:submodule 1663:(2008), 1626:(2007), 1497:See also 1447:functors 1176:-module 1109:-module 991:-module 942:. Since 879:-module 825:does not 807:) and T( 698:-module. 617:-module. 520:matrices 425:Examples 379:, where 330:, i.e., 250:Ore ring 242:Lam 2007 171:, i.e., 105:integers 101:subgroup 1654:2278849 1572:Sources 1188:,  1168:). The 1158:  987:of the 867:be the 843:of it. 815:. As a 725:-module 605:, then 601:is its 506:In the 466:over a 335:  244:) that 191:rings. 176:  145:over a 99:" and " 57:of the 1675:  1652:  1642:  1585:  1485:. On 1209:: The 1205:of Tor 969:kernel 859:is an 835:, the 791:where 735:up to 682:as an 528:center 277:domain 232:). If 182:In an 140:module 112:groups 86:domain 61:. The 51:module 1453:is a 1125:. If 719:is a 468:field 434:be a 358:group 356:of a 294:be a 138:of a 120:order 97:group 73:). A 1673:ISBN 1640:ISBN 1583:ISBN 1477:are 1129:and 801:rank 715:and 624:of ( 620:The 430:Let 339:= 0. 290:and 180:= 0. 147:ring 59:ring 45:, a 1632:doi 1594:, " 1443:Tor 1381:Tor 1297:Tor 1278:of 1145:), 1073:to 958:to 938:by 690:), 589:of 318:in 306:of 298:of 224:of 186:(a 37:In 1692:: 1667:, 1650:MR 1648:, 1638:, 1615:, 1609:, 1493:. 1457:. 1113:. 995:, 577:)/ 550:= 548:ST 540:ST 510:, 488:. 375:= 1682:. 1634:: 1451:S 1439:M 1425:) 1422:R 1418:/ 1412:S 1408:R 1404:, 1401:M 1398:( 1390:R 1385:1 1358:S 1354:M 1347:M 1341:) 1338:R 1334:/ 1328:S 1324:R 1320:, 1317:M 1314:( 1306:R 1301:1 1290:0 1280:R 1266:0 1260:R 1256:/ 1250:S 1246:R 1237:S 1233:R 1226:R 1220:0 1207:* 1199:R 1197:/ 1194:S 1190:R 1186:M 1184:( 1182:1 1178:M 1174:R 1170:S 1166:N 1164:, 1162:M 1160:( 1156:i 1151:R 1143:Z 1139:R 1135:R 1131:N 1127:M 1111:M 1107:R 1103:S 1092:M 1088:M 1084:S 1079:S 1075:M 1071:M 1066:S 1062:R 1042:, 1037:S 1033:R 1027:R 1019:M 1016:= 1011:S 1007:M 993:M 989:R 981:R 977:S 973:M 964:Q 960:M 956:M 948:Q 944:Q 936:M 919:, 916:Q 911:R 903:M 900:= 895:Q 891:M 877:Q 873:R 865:Q 861:R 857:M 853:R 833:K 829:R 821:R 813:M 809:M 805:M 797:R 793:F 776:, 773:) 770:M 767:( 763:T 756:F 750:M 733:M 723:R 717:M 709:R 696:K 692:V 684:K 680:V 676:K 672:V 664:L 656:. 646:Z 642:R 638:Z 636:/ 634:Q 630:Z 628:/ 626:R 615:R 611:R 609:/ 607:Q 599:Q 595:R 587:K 583:R 579:K 575:t 573:( 571:K 563:Z 561:/ 559:Q 552:T 544:S 536:S 516:Z 512:Γ 503:. 477:. 475:K 471:K 456:R 452:S 448:R 444:M 440:R 432:M 419:Z 397:g 393:m 389:g 381:e 377:e 373:g 369:m 361:G 354:g 347:R 343:S 337:m 333:s 328:m 324:s 320:S 316:s 312:S 308:M 304:m 300:R 292:S 288:R 284:M 270:R 262:R 258:M 254:M 246:R 238:M 234:R 230:M 226:M 218:M 214:R 200:R 196:M 178:m 174:r 169:m 161:r 150:R 143:M 136:m 34:. 20:)

Index

Torsion (abstract algebra)
Torsion (disambiguation)
mathematics
ring theory
module
non-zero-divisor
ring
submodule
commutative
torsion-free
domain
abelian groups
group
subgroup
integers
groups
order
commutative
module
ring
regular element
zero divisor
integral domain
commutative ring
torsion-free
Lam 2007
Ore ring
Noetherian domains
Noetherian
domain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑