Knowledge (XXG)

Transimpedance amplifier

Source đź“ť

960:, reducing the slope at the intercept. The loop gain is still unity, but the total phase shift is not a full 360°. One of the requirements for oscillation is eliminated with the addition of the compensation capacitor, and so the circuit has stability. This also reduces the gain peaking, producing a flatter overall response. There are several methods used to calculate the compensation capacitor's value. A compensation capacitor that has a too large value will reduce the bandwidth of the amplifier. If the capacitor is too small, then oscillation may occur. One difficulty with this method of phase compensation is the resulting small value of the capacitor, and the iterative method often required to optimize the value. There is no explicit formula for calculating the capacitor value that works for all cases. A compensation method that uses a larger-value capacitor that is not as susceptible to 73: 64:. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers. 569: 263: 1252: 941: 20: 246:
mode, as shown in figure 2. A positive voltage at the cathode of the photodiode applies a reverse bias. This reverse bias increases the width of the depletion region and lowers the junction capacitance, improving the high-frequency performance. The photoconductive configuration of a transimpedance
86:
In the circuit shown in figure 1 the photodiode (shown as a current source) is connected between ground and the inverting input of the op-amp. The other input of the op-amp is also connected to ground. This provides a low-impedance load for the photodiode, which keeps the photodiode voltage low. The
55:
where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance
270:
The frequency response of a transimpedance amplifier is inversely proportional to the gain set by the feedback resistor. The sensors which transimpedance amplifiers are used with usually have more capacitance than an op-amp can handle. The sensor can be modeled as a current source and a capacitor
584:
of a transimpedance amplifier with no compensation, the flat curve with the peak, labeled I-to-V gain, is the frequency response of the transimpedance amplifier. The peaking of the gain curve is typical of uncompensated or poorly compensated transimpedance amplifiers. The curve labeled
98:. The input offset voltage due to the photodiode is very low in this self-biased photovoltaic mode. This permits a large gain without any large output offset voltage. This configuration is used with photodiodes that are illuminated with low light levels and require a lot of gain. 1238:
For a good noise performance, a high feedback resistance should thus be used. However, a larger feedback resistance increases the output voltage swing, and consequently a higher gain from the operational amplifier is needed, demanding an operational amplifier with a high
234:
at the non-inverting input of the op-amp will result in an output DC offset. An input bias current on the inverting terminal of the op-amp will similarly result in an output offset. To minimize these effects, transimpedance amplifiers are usually designed with
278:. This capacitance across the input terminals of the op-amp, which includes the internal capacitance of the op-amp, introduces a low-pass filter in the feedback path. The low-pass response of this filter can be characterized as the feedback factor: 754: 441: 1233: 1073: 1535: 935: 1341: 1436: 51:, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with 835: 952:
The Bode plot of a transimpedance amplifier that has a compensation capacitor in the feedback path is shown in Fig. 5, where the compensated feedback factor plotted as a reciprocal, 1/β, starts to roll off before
162: 225: 972:
In most practical cases, the dominant source of noise in a transimpedance amplifier is the feedback resistor. The output-referred voltage noise is directly the voltage noise over the feedback resistance. This
343: 1537:. A high feedback resistor is desirable because the transimpedance of the amplifier grows linearly with the resistance but the output noise only grows with the square root of the feedback resistance. 530: 607:. Each slope has a magnitude of 20 dB/decade, corresponding to a phase shift of 90°. When the amplifier's 180° of phase inversion is added to this, the result is a full 360° at the 635:
because of the 360° phase shift, or positive feedback, and the unity gain. To mitigate these effects, designers of transimpedance amplifiers add a small-value compensating capacitor (
563: 648: 1107: 354: 471: 1142: 1134: 983: 1448: 853: 1266: 1346: 765: 642:
in the figure above) in parallel with the feedback resistor. When this feedback capacitor is considered, the compensated feedback factor becomes
1558: 1243:. The feedback resistance and therefore the sensitivity are thus limited by the required operating frequency of the transimpedance amplifier. 1653: 1593: 107: 599:
form an isosceles triangle with the frequency axis. The two sides have equal but opposite slopes, since one is the result of a first-order
173: 476:
At low frequencies the feedback factor β has little effect on the amplifier response. The amplifier response will be close to the ideal:
592:
is the open-loop response of the amplifier. The feedback factor, plotted as a reciprocal, is labeled 1/β. In Fig. 4 the 1/β curve and
284: 60:. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -R 1764:"A low noise single-transistor transimpedance preamplifier for Fourier-transform mass spectrometry using a T feedback network" 482: 1830: 1725: 91:
mode with no external bias. The high gain of the op-amp keeps the photodiode current equal to the feedback current through
974: 44: 1825: 1546: 604: 600: 236: 1240: 749:{\displaystyle \beta ={\frac {1+R_{\text{f}}C_{\text{f}}s}{1+R_{\text{f}}(C_{\text{i}}+C_{\text{f}})s}}.} 538: 348:
When the effect of this low-pass filter response is considered, the circuit's response equation becomes:
1564: 961: 40: 436:{\displaystyle V_{\text{out}}=I_{\text{p}}{\frac {-R_{\text{f}}}{1+{\frac {1}{A_{\text{OL}}\beta }}}},} 1775: 1081: 231: 1228:{\displaystyle {\sqrt {\overline {i_{n,in}^{2}}}}={\sqrt {\frac {4k_{\text{B}}T\Delta f}{R_{f}}}}.} 449: 88: 1801: 1649: 1589: 759:
The feedback capacitor produces a zero, or deflection in the response curve, at the frequency
1545:
It is also possible to construct a transimpedance amplifier with discrete components using a
1791: 1783: 1442: 1112: 1068:{\displaystyle {\sqrt {\overline {v_{n,out}^{2}}}}={\sqrt {4k_{\text{B}}TR_{f}\Delta f}}.} 243: 101:
The DC and low-frequency gain of a transimpedance amplifier is determined by the equation
1530:{\displaystyle {\sqrt {\overline {v_{n,out}^{2}}}}={\sqrt {4k_{\text{B}}TR_{f}\Delta f}}} 247:
photodiode amplifier is used where higher bandwidth is required. The feedback capacitor
1779: 930:{\displaystyle f_{\text{zf}}={\frac {1}{2\pi R_{\text{f}}(C_{\text{i}}+C_{\text{f}})}}.} 1796: 1763: 1645:
Design of a Modified Cherry-Hooper Transimpedance Amplifier with Dc Offset Cancellation
77: 48: 1549:
for the gain element. This has been done where a very low noise figure was required.
1819: 39:) is a current to voltage converter, almost exclusively implemented with one or more 72: 1643: 1583: 28: 1336:{\displaystyle {\overline {i_{n}^{2}}}={\frac {4k_{\text{B}}T\Delta f}{R_{f}}}} 940: 568: 1431:{\displaystyle {\overline {v_{n,out}^{2}}}={R_{f}}^{2}{\overline {i_{n}^{2}}}} 1251: 262: 80: 52: 1569: 945: 830:{\displaystyle f_{C_{\text{f}}}={\frac {1}{2\pi R_{\text{f}}C_{\text{f}}}}.} 581: 573: 1805: 614:
intercept, indicated by the dashed vertical line. At that intercept, 1/β =
1255:
Schematic for output noise calculation of transimpedance amplifier with
242:
An inverting TIA can also be used with the photodiode operating in the
19: 1787: 157:{\displaystyle -I_{\text{in}}={\frac {V_{\text{out}}}{R_{\text{f}}}},} 1256: 220:{\displaystyle {\frac {V_{\text{out}}}{I_{\text{in}}}}=-R_{\text{f}}} 1343:. Because of virtual ground at the negative input of the amplifier 1250: 939: 567: 261: 71: 18: 338:{\displaystyle \beta ={\frac {1}{1+R_{\text{f}}C_{\text{i}}s}},} 239:(FET) input op-amps that have very low input offset voltages. 1623:
Electronic Principles Paul E. Gray, Campbell Searle, pg. 641
1078:
Though the output noise voltage increases proportionally to
525:{\displaystyle V_{\text{out}}=-I_{\text{p}}R_{\text{f}}} 43:. The TIA can be used to amplify the current output of 1762:
Lin, TY; Green, RJ; O’Connor, PB (26 September 2012).
56:
amplifier has just a large valued feedback resistor, R
1451: 1349: 1269: 1145: 1115: 1084: 986: 856: 768: 651: 541: 485: 452: 357: 287: 176: 110: 266:
Fig. 3. Incremental model showing sensor capacitance
1529: 1430: 1335: 1263:The noise current of the feedback resistor equals 1227: 1128: 1101: 1067: 929: 829: 748: 557: 524: 465: 435: 337: 219: 156: 1136:, resulting in an input-referred noise current 628:β = 1. Oscillation will occur at the frequency 1109:, the transimpedance increases linearly with 8: 1561:– converts differential voltage into current 23:Fig. 1. Simplified transimpedance amplifier 1588:. Gain technology. McGraw-Hill Education. 254:is usually required to improve stability. 16:Amplifier that converts current to voltage 1795: 1632:The Art of Electronics, Horowitz and Hill 1513: 1500: 1491: 1476: 1459: 1452: 1450: 1417: 1412: 1406: 1400: 1393: 1388: 1373: 1356: 1350: 1348: 1325: 1305: 1295: 1281: 1276: 1270: 1268: 1213: 1193: 1182: 1167: 1153: 1146: 1144: 1120: 1114: 1091: 1085: 1083: 1048: 1035: 1026: 1011: 994: 987: 985: 912: 899: 886: 870: 861: 855: 815: 805: 789: 778: 773: 767: 728: 715: 702: 681: 671: 658: 650: 576:of uncompensated transimpedance amplifier 546: 540: 516: 506: 490: 484: 457: 451: 415: 405: 391: 381: 375: 362: 356: 320: 310: 294: 286: 211: 193: 183: 177: 175: 143: 133: 127: 118: 109: 76:Fig. 2. Transimpedance amplifier with a 1616: 1585:Photodiode Amplifiers: OP AMP Solutions 948:of compensated transimpedance amplifier 1749: 1711: 1699: 1687: 1675: 1559:Operational transconductance amplifier 840:This counteracts the pole produced by 473:is the open-loop gain of the op-amp. 7: 1768:The Review of Scientific Instruments 558:{\displaystyle A_{\text{OL}}\beta } 1519: 1314: 1202: 1054: 14: 603:, and the other of a first-order 535:as long as the loop gain : 1102:{\displaystyle {\sqrt {R_{f}}}} 1247:Derivation for TIA with op-amp 918: 892: 734: 708: 1: 466:{\displaystyle A_{\text{OL}}} 1482: 1423: 1379: 1287: 1173: 1017: 565:is much greater than unity. 1726:"Transimpedance amplifiers" 1445:(RMS) noise output voltage 87:photodiode is operating in 1847: 964:effects can also be used. 230:If the gain is large, any 47:, photo multiplier tubes, 1441:We therefore get for the 33:transimpedance amplifier 1547:field effect transistor 258:Bandwidth and stability 237:field-effect transistor 1774:(9): 094102–094102–7. 1531: 1432: 1337: 1260: 1241:gain-bandwidth product 1229: 1130: 1103: 1069: 977:has an RMS amplitude 949: 931: 831: 750: 577: 559: 526: 467: 437: 339: 267: 221: 158: 83: 41:operational amplifiers 24: 1831:Electronic amplifiers 1582:Graeme, J.G. (1996). 1565:Optical communication 1532: 1433: 1338: 1259:and feedback resistor 1254: 1230: 1131: 1129:{\displaystyle R_{f}} 1104: 1070: 975:Johnson–Nyquist noise 962:parasitic capacitance 943: 932: 832: 751: 571: 560: 527: 468: 438: 340: 265: 222: 159: 75: 22: 1642:Lafevre, K. (2012). 1449: 1347: 1267: 1143: 1113: 1082: 984: 968:Noise considerations 854: 766: 649: 539: 483: 450: 355: 285: 232:input offset voltage 174: 108: 1780:2012RScI...83i4102L 1541:Discrete TIA design 1481: 1422: 1378: 1286: 1172: 1016: 621:for a loop gain of 45:Geiger–MĂĽller tubes 1527: 1455: 1428: 1408: 1352: 1333: 1272: 1261: 1225: 1149: 1126: 1099: 1065: 990: 950: 927: 827: 746: 578: 555: 522: 463: 433: 335: 268: 217: 154: 84: 25: 1788:10.1063/1.4751851 1655:978-1-249-07817-3 1595:978-0-07-024247-0 1525: 1503: 1486: 1485: 1426: 1382: 1331: 1308: 1290: 1220: 1219: 1196: 1177: 1176: 1097: 1060: 1038: 1021: 1020: 922: 915: 902: 889: 864: 847:at the frequency 822: 818: 808: 781: 741: 731: 718: 705: 684: 674: 549: 519: 509: 493: 460: 428: 425: 418: 394: 378: 365: 330: 323: 313: 214: 199: 196: 186: 149: 146: 136: 121: 1838: 1810: 1809: 1799: 1759: 1753: 1747: 1741: 1740: 1738: 1736: 1721: 1715: 1709: 1703: 1697: 1691: 1685: 1679: 1673: 1667: 1666: 1664: 1662: 1648:. BiblioBazaar. 1639: 1633: 1630: 1624: 1621: 1606: 1604: 1602: 1536: 1534: 1533: 1528: 1526: 1518: 1517: 1505: 1504: 1501: 1492: 1487: 1480: 1475: 1454: 1453: 1443:root mean square 1437: 1435: 1434: 1429: 1427: 1421: 1416: 1407: 1405: 1404: 1399: 1398: 1397: 1383: 1377: 1372: 1351: 1342: 1340: 1339: 1334: 1332: 1330: 1329: 1320: 1310: 1309: 1306: 1296: 1291: 1285: 1280: 1271: 1234: 1232: 1231: 1226: 1221: 1218: 1217: 1208: 1198: 1197: 1194: 1184: 1183: 1178: 1171: 1166: 1148: 1147: 1135: 1133: 1132: 1127: 1125: 1124: 1108: 1106: 1105: 1100: 1098: 1096: 1095: 1086: 1074: 1072: 1071: 1066: 1061: 1053: 1052: 1040: 1039: 1036: 1027: 1022: 1015: 1010: 989: 988: 936: 934: 933: 928: 923: 921: 917: 916: 913: 904: 903: 900: 891: 890: 887: 871: 866: 865: 862: 836: 834: 833: 828: 823: 821: 820: 819: 816: 810: 809: 806: 790: 785: 784: 783: 782: 779: 755: 753: 752: 747: 742: 740: 733: 732: 729: 720: 719: 716: 707: 706: 703: 690: 686: 685: 682: 676: 675: 672: 659: 564: 562: 561: 556: 551: 550: 547: 531: 529: 528: 523: 521: 520: 517: 511: 510: 507: 495: 494: 491: 472: 470: 469: 464: 462: 461: 458: 442: 440: 439: 434: 429: 427: 426: 424: 420: 419: 416: 406: 397: 396: 395: 392: 382: 380: 379: 376: 367: 366: 363: 344: 342: 341: 336: 331: 329: 325: 324: 321: 315: 314: 311: 295: 226: 224: 223: 218: 216: 215: 212: 200: 198: 197: 194: 188: 187: 184: 178: 163: 161: 160: 155: 150: 148: 147: 144: 138: 137: 134: 128: 123: 122: 119: 1846: 1845: 1841: 1840: 1839: 1837: 1836: 1835: 1826:Analog circuits 1816: 1815: 1814: 1813: 1761: 1760: 1756: 1748: 1744: 1734: 1732: 1723: 1722: 1718: 1710: 1706: 1698: 1694: 1686: 1682: 1674: 1670: 1660: 1658: 1656: 1641: 1640: 1636: 1631: 1627: 1622: 1618: 1613: 1600: 1598: 1596: 1581: 1578: 1555: 1543: 1509: 1496: 1447: 1446: 1389: 1387: 1345: 1344: 1321: 1301: 1297: 1265: 1264: 1249: 1209: 1189: 1185: 1141: 1140: 1116: 1111: 1110: 1087: 1080: 1079: 1044: 1031: 982: 981: 970: 959: 908: 895: 882: 875: 857: 852: 851: 846: 811: 801: 794: 774: 769: 764: 763: 724: 711: 698: 691: 677: 667: 660: 647: 646: 641: 634: 627: 620: 613: 598: 591: 542: 537: 536: 512: 502: 486: 481: 480: 453: 448: 447: 411: 410: 398: 387: 383: 371: 358: 353: 352: 316: 306: 299: 283: 282: 277: 260: 253: 244:photoconductive 207: 189: 179: 172: 171: 139: 129: 114: 106: 105: 97: 70: 63: 59: 17: 12: 11: 5: 1844: 1842: 1834: 1833: 1828: 1818: 1817: 1812: 1811: 1754: 1742: 1716: 1704: 1692: 1680: 1668: 1654: 1634: 1625: 1615: 1614: 1612: 1609: 1608: 1607: 1594: 1577: 1574: 1573: 1572: 1567: 1562: 1554: 1551: 1542: 1539: 1524: 1521: 1516: 1512: 1508: 1499: 1495: 1490: 1484: 1479: 1474: 1471: 1468: 1465: 1462: 1458: 1425: 1420: 1415: 1411: 1403: 1396: 1392: 1386: 1381: 1376: 1371: 1368: 1365: 1362: 1359: 1355: 1328: 1324: 1319: 1316: 1313: 1304: 1300: 1294: 1289: 1284: 1279: 1275: 1248: 1245: 1236: 1235: 1224: 1216: 1212: 1207: 1204: 1201: 1192: 1188: 1181: 1175: 1170: 1165: 1162: 1159: 1156: 1152: 1123: 1119: 1094: 1090: 1076: 1075: 1064: 1059: 1056: 1051: 1047: 1043: 1034: 1030: 1025: 1019: 1014: 1009: 1006: 1003: 1000: 997: 993: 969: 966: 957: 938: 937: 926: 920: 911: 907: 898: 894: 885: 881: 878: 874: 869: 860: 844: 838: 837: 826: 814: 804: 800: 797: 793: 788: 777: 772: 757: 756: 745: 739: 736: 727: 723: 714: 710: 701: 697: 694: 689: 680: 670: 666: 663: 657: 654: 639: 632: 625: 618: 611: 596: 589: 554: 545: 533: 532: 515: 505: 501: 498: 489: 456: 444: 443: 432: 423: 414: 409: 404: 401: 390: 386: 374: 370: 361: 346: 345: 334: 328: 319: 309: 305: 302: 298: 293: 290: 275: 259: 256: 251: 228: 227: 210: 206: 203: 192: 182: 165: 164: 153: 142: 132: 126: 117: 113: 95: 78:reverse-biased 69: 66: 61: 57: 49:accelerometers 15: 13: 10: 9: 6: 4: 3: 2: 1843: 1832: 1829: 1827: 1824: 1823: 1821: 1807: 1803: 1798: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1758: 1755: 1752:, p. 49. 1751: 1746: 1743: 1731: 1727: 1720: 1717: 1714:, p. 43. 1713: 1708: 1705: 1702:, p. 41. 1701: 1696: 1693: 1690:, p. 40. 1689: 1684: 1681: 1678:, p. 39. 1677: 1672: 1669: 1657: 1651: 1647: 1646: 1638: 1635: 1629: 1626: 1620: 1617: 1610: 1597: 1591: 1587: 1586: 1580: 1579: 1575: 1571: 1568: 1566: 1563: 1560: 1557: 1556: 1552: 1550: 1548: 1540: 1538: 1522: 1514: 1510: 1506: 1497: 1493: 1488: 1477: 1472: 1469: 1466: 1463: 1460: 1456: 1444: 1439: 1418: 1413: 1409: 1401: 1394: 1390: 1384: 1374: 1369: 1366: 1363: 1360: 1357: 1353: 1326: 1322: 1317: 1311: 1302: 1298: 1292: 1282: 1277: 1273: 1258: 1253: 1246: 1244: 1242: 1222: 1214: 1210: 1205: 1199: 1190: 1186: 1179: 1168: 1163: 1160: 1157: 1154: 1150: 1139: 1138: 1137: 1121: 1117: 1092: 1088: 1062: 1057: 1049: 1045: 1041: 1032: 1028: 1023: 1012: 1007: 1004: 1001: 998: 995: 991: 980: 979: 978: 976: 967: 965: 963: 956: 947: 942: 924: 909: 905: 896: 883: 879: 876: 872: 867: 858: 850: 849: 848: 843: 824: 812: 802: 798: 795: 791: 786: 775: 770: 762: 761: 760: 743: 737: 725: 721: 712: 699: 695: 692: 687: 678: 668: 664: 661: 655: 652: 645: 644: 643: 638: 631: 624: 617: 610: 606: 602: 595: 588: 583: 575: 570: 566: 552: 543: 513: 503: 499: 496: 487: 479: 478: 477: 474: 454: 430: 421: 412: 407: 402: 399: 388: 384: 372: 368: 359: 351: 350: 349: 332: 326: 317: 307: 303: 300: 296: 291: 288: 281: 280: 279: 274: 264: 257: 255: 250: 245: 240: 238: 233: 208: 204: 201: 190: 180: 170: 169: 168: 151: 140: 130: 124: 115: 111: 104: 103: 102: 99: 94: 90: 82: 79: 74: 67: 65: 54: 50: 46: 42: 38: 34: 30: 21: 1771: 1767: 1757: 1745: 1733:. Retrieved 1729: 1724:Pease, Bob. 1719: 1707: 1695: 1683: 1671: 1659:. Retrieved 1644: 1637: 1628: 1619: 1599:. Retrieved 1584: 1544: 1440: 1262: 1237: 1077: 971: 954: 951: 841: 839: 758: 636: 629: 622: 615: 608: 593: 586: 579: 534: 475: 445: 347: 272: 269: 248: 241: 229: 166: 100: 92: 89:photovoltaic 85: 68:DC operation 36: 32: 26: 1750:Graeme 1996 1735:12 November 1712:Graeme 1996 1700:Graeme 1996 1688:Graeme 1996 1676:Graeme 1996 1661:12 November 1601:12 November 53:photodiodes 29:electronics 1820:Categories 1611:References 81:photodiode 1730:StackPath 1570:PIN diode 1520:Δ 1483:¯ 1424:¯ 1380:¯ 1315:Δ 1288:¯ 1203:Δ 1174:¯ 1055:Δ 1018:¯ 946:Bode plot 880:π 799:π 653:β 582:Bode plot 574:Bode plot 553:β 500:− 422:β 385:− 289:β 205:− 112:− 1806:23020394 1553:See also 944:Fig. 5. 572:Fig. 4. 1797:3470605 1776:Bibcode 1576:Sources 1438:holds. 580:In the 1804:  1794:  1652:  1592:  1257:op-amp 446:where 1802:PMID 1737:2020 1663:2020 1650:ISBN 1603:2020 1590:ISBN 605:zero 601:pole 31:, a 1792:PMC 1784:doi 492:out 364:out 185:out 167:so 135:out 37:TIA 27:In 1822:: 1800:. 1790:. 1782:. 1772:83 1770:. 1766:. 1728:. 863:zf 626:OL 619:OL 597:OL 590:OL 548:OL 459:OL 417:OL 195:in 120:in 1808:. 1786:: 1778:: 1739:. 1665:. 1605:. 1523:f 1515:f 1511:R 1507:T 1502:B 1498:k 1494:4 1489:= 1478:2 1473:t 1470:u 1467:o 1464:, 1461:n 1457:v 1419:2 1414:n 1410:i 1402:2 1395:f 1391:R 1385:= 1375:2 1370:t 1367:u 1364:o 1361:, 1358:n 1354:v 1327:f 1323:R 1318:f 1312:T 1307:B 1303:k 1299:4 1293:= 1283:2 1278:n 1274:i 1223:. 1215:f 1211:R 1206:f 1200:T 1195:B 1191:k 1187:4 1180:= 1169:2 1164:n 1161:i 1158:, 1155:n 1151:i 1122:f 1118:R 1093:f 1089:R 1063:. 1058:f 1050:f 1046:R 1042:T 1037:B 1033:k 1029:4 1024:= 1013:2 1008:t 1005:u 1002:o 999:, 996:n 992:v 958:i 955:f 925:. 919:) 914:f 910:C 906:+ 901:i 897:C 893:( 888:f 884:R 877:2 873:1 868:= 859:f 845:i 842:C 825:. 817:f 813:C 807:f 803:R 796:2 792:1 787:= 780:f 776:C 771:f 744:. 738:s 735:) 730:f 726:C 722:+ 717:i 713:C 709:( 704:f 700:R 696:+ 693:1 688:s 683:f 679:C 673:f 669:R 665:+ 662:1 656:= 640:f 637:C 633:i 630:f 623:A 616:A 612:i 609:f 594:A 587:A 544:A 518:f 514:R 508:p 504:I 497:= 488:V 455:A 431:, 413:A 408:1 403:+ 400:1 393:f 389:R 377:p 373:I 369:= 360:V 333:, 327:s 322:i 318:C 312:f 308:R 304:+ 301:1 297:1 292:= 276:i 273:C 252:f 249:C 213:f 209:R 202:= 191:I 181:V 152:, 145:f 141:R 131:V 125:= 116:I 96:f 93:R 62:f 58:f 35:(

Index


electronics
operational amplifiers
Geiger–Müller tubes
accelerometers
photodiodes

reverse-biased
photodiode
photovoltaic
input offset voltage
field-effect transistor
photoconductive


Bode plot
Bode plot
pole
zero

Bode plot
parasitic capacitance
Johnson–Nyquist noise
gain-bandwidth product

op-amp
root mean square
field effect transistor
Operational transconductance amplifier
Optical communication

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑