Knowledge (XXG)

Transmission Kikuchi diffraction

Source đź“ť

176:
and/or low crystallographic symmetry, such as nano-crystalline materials or materials with defects. Off-axis TKD is often preferred for materials science research because it provides more information about the crystallographic orientation and microstructure of the sample, especially in samples with a high density of defects or a high degree of lattice strain. However, on-axis TKD can still be useful for studying samples with high crystallographic symmetry or for verifying the crystallographic orientation of a sample before performing off-axis TKD. The on-axis technique can speed up acquisition by more than 20 times, and a low scattering angle setup also gives rise to higher quality patterns.
30: 44: 1522: 1534: 168:. However, such machines are expensive and their operation requires particular skills and training. Additionally, the diffraction patterns obtained from TKD can be more complex to interpret than those obtained from conventional EBSD techniques due to the complex geometry of the diffracted electrons. 179:
EBSD resolution is influenced by multiple factors including the beam size, electron accelerating voltage, the material's atomic mass and the specimen's thickness. Out of these variables, sample thickness has the greatest effect on the pattern quality and resolution of the image. An increase in the
98:
is that in TEM, discrete diffraction spots arise from coherent scattering of the incident beam, while the formation of Kikuchi bands is described as a two-step process consisting of incoherent scattering of the primary beam followed by coherent scattering of these forward biased electrons. TKD has
175:
In off-axis TKD, the sample is tilted with respect to the incident electron beam, typically at an angle of several degrees. This results in a diffraction pattern that is shifted away from the transmitted beam direction. Off-axis TKD is typically used for analysing samples with high lattice strain
171:
On-axis and off-axis TKD methods differ in the sample's orientation with respect to the electron beam. In on-axis TKD, the sample is oriented so that the incident electron beam is nearly perpendicular to the sample surface. This results in a diffraction pattern that is nearly centred around the
157:(STEM). Another advantage of TKD is its high sensitivity to local variations in crystallographic orientation. This is because the transmitted electrons in TKD are diffracted at very small angles, which makes the diffraction pattern highly sensitive to local variations in the crystal lattice. 694:
Meisnar, Martina; Vilalta-Clemente, Arantxa; Gholinia, Ali; Moody, Michael; Wilkinson, Angus J.; Huin, Nicolas; Lozano-Perez, Sergio (2015). "Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels 5000700".
781:
Yuan, H.; Brodu, E.; Chen, C.; Bouzy, E.; Fundenberger, J-J.; Toth, L.S. (2017). "On-axis versus off-axis Transmission Kikuchi Diffraction technique: application to the characterisation of severe plastic deformation-induced ultrafine-grained microstructures".
82:
TKD offers improved spatial resolution, enabling effective characterization of nanocrystalline materials and heavily deformed samples where high dislocation densities can prevent successful characterization using conventional
606:
Brosusch, N.; Demers, H.; Gauvin, R. (2013). "Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope".
650:
Liang, X. Z.; Dodge, M. F.; Jiang, J.; Dong, H. B. (2019). "Using transmission Kikuchi diffraction in a scanning electron microscope to quantify geometrically necessary dislocation density at the nanoscale".
148:
that can reach a few nanometres. This is achieved by using a small electron beam spot size, typically less than 10 nanometres in diameter, and by collecting the transmitted electrons with a small-angle
371: 172:
transmitted beam direction. On-axis TKD is typically used for analysing samples with low lattice strain and high crystallographic symmetry, such as single crystals or large grains.
1166: 550:
Liu, Junliang; Lozano-Perez, Sergio; Wilkinson, Angus J.; Grovenor, Chris R. M. (2019). "On the depth resolution of transmission Kikuchi diffraction (TKD) analysis 9300920".
130:, which has been introduced around the 1970s, and has since become increasingly popular in materials science research, especially for studying materials at the nanoscale. 1149: 1144: 1293: 996: 1283: 886: 79:(SEM). This technique has been widely utilised in the characterization of nano-crystalline materials, including oxides, superconductors, and metallic alloys. 1186: 1159: 106:
samples in a scanning electron microscope. The preparation of TKD samples can be done with standard methods used for transmission electron microscopy (TEM).
1094: 512:
Trimby, Patrick W. (2012). "Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope".
141:. The diffraction pattern is then collected by a detector and analysed to determine the crystallographic orientation and microstructure of the sample. 1154: 825:
Rice, K.P.; Keller, R.R.; Stoykovich, M.P. (2014). "Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope".
154: 1298: 431:
Sneddon, Glenn C.; Trimby, Patrick W.; Cairney, Julie M. (2016). "Transmission Kikuchi diffraction in a scanning electron microscope: A review".
1114: 1238: 1104: 1051: 160:
TKD can also be used to study nano-sized materials, such as nanoparticles and thin films. Thin foil samples can be prepared for TKD using a
1493: 1221: 1206: 1132: 127: 393:
Keller, R.R.; Geiss, R.H. (2012). "Transmission EBSD from 10 nm domains in a scanning electron microscope: Transmission EBSD in the SEM".
732:"Mapping the full lattice strain tensor of a single dislocation by high angular resolution transmission Kikuchi diffraction (HR-TKD)" 1243: 1076: 929: 879: 1226: 1124: 1099: 1066: 138: 115: 84: 72: 1303: 1288: 1268: 1006: 1565: 1071: 914: 1538: 1248: 1211: 1056: 1526: 1086: 872: 468: 134: 76: 137:. The electron beam is then focused on a small spot on the sample, and the crystal lattice of the sample diffracts the 1273: 1191: 1498: 1452: 1278: 343: 1488: 71:), is a method for orientation mapping at the nanoscale. It’s used for analysing the microstructures of thin 1201: 1137: 1011: 970: 95: 1391: 119: 1570: 1396: 1216: 150: 29: 257: 224: 191: 1560: 1401: 960: 91: 43: 1366: 1351: 1258: 1253: 1196: 1061: 1043: 975: 965: 909: 895: 165: 1437: 1016: 980: 850: 807: 763: 743: 676: 632: 585: 559: 410: 145: 1381: 1376: 842: 799: 712: 668: 624: 577: 529: 491: 363: 324: 277: 244: 211: 1331: 1263: 834: 791: 753: 704: 660: 616: 569: 521: 483: 440: 402: 355: 316: 305:"Transmission Kikuchi diffraction study of submicrotexture within ultramylonitic peridotite" 269: 236: 203: 161: 730:
Yu, Hongbing; Liu, Junliang; Karamched, Phani; Wilkinson, Angus J.; Hofmann, Felix (2019).
223:
Fundenberger, J. J.; Bouzy, E.; Goran, D.; Guyon, J.; Yuan, H.; Morawiec, A. (2016-02-01).
1386: 133:
In TKD, a thin foil sample is prepared and placed perpendicular to the electron beam of a
342:
van Bremen, R.; Ribas Gomes, D.; de Jeer, L.T.H.; OcelĂ­k, V.; De Hosson, J.Th.M. (2016).
1341: 955: 344:"On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD)" 123: 1554: 1417: 1361: 1021: 767: 758: 731: 680: 589: 406: 100: 1468: 854: 636: 414: 1478: 1442: 1336: 1326: 1001: 950: 811: 664: 573: 525: 487: 359: 273: 240: 469:"A systematic comparison of on-axis and off-axis transmission Kikuchi diffraction" 258:"A systematic comparison of on-axis and off-axis transmission Kikuchi diffraction" 180:
sample thickness broadens the beam, thus reducing the lateral spatial resolution.
708: 1422: 1356: 1346: 444: 320: 207: 1503: 924: 919: 192:"Transmission Kikuchi diffraction in a scanning electron microscope: A review" 103: 328: 304: 281: 248: 215: 1371: 1026: 846: 803: 716: 672: 628: 581: 533: 495: 367: 35:
Off-axis TKD with an example EBSP. Right: On-axis TKD with an example EBSP
1473: 939: 1483: 1427: 1109: 190:
Sneddon, Glenn C.; Trimby, Patrick W.; Cairney, Julie M. (2016-12-01).
864: 838: 795: 620: 1447: 748: 564: 49:
Imaging using diodes in on-axis TKD setup. Right: on-axis TKD setup
256:
Niessen, F.; Burrows, A.; Fanta, A. Bastos da Silva (2018-03-01).
225:"Orientation mapping by transmission-SEM with an on-axis detector" 1432: 126:
of materials at a high spatial resolution. It is a variation of
868: 87:. Many studies have reported sub-10 nm resolution using TKD. 467:
Niessen, F.; Burrows, A.; Fanta, A. Bastos da Silva (2018).
114:
Transmission Kikuchi diffraction (TKD or t-EBSD) is an
303:
Igami, Yohei; Michibayashi, Katsuyoshi (2021-09-29).
1461: 1410: 1319: 1312: 1179: 1123: 1085: 1042: 1035: 989: 938: 902: 1294:Serial block-face scanning electron microscopy 997:Detectors for transmission electron microscopy 880: 433:Materials Science and Engineering: R: Reports 196:Materials Science and Engineering: R: Reports 144:One of the key advantages of TKD is its high 118:(EBSD) technique that is used to analyse the 65:transmission-electron backscatter diffraction 8: 1316: 1039: 887: 873: 865: 99:also been applied to analyse fine-grained 757: 747: 563: 155:scanning transmission electron microscope 295: 22:Transmission Kikuchi diffraction setup 601: 599: 545: 543: 507: 505: 462: 460: 458: 456: 454: 426: 424: 7: 1533: 128:convergent-beam electron diffraction 16:Nanoscale orientation mapping method 374:from the original on 25 March 2023 14: 930:Timeline of microscope technology 309:Physics and Chemistry of Minerals 1532: 1521: 1520: 759:10.1016/j.scriptamat.2018.12.039 407:10.1111/j.1365-2818.2011.03566.x 116:Electron backscatter diffraction 85:Electron backscatter diffraction 73:transmission electron microscopy 57:Transmission Kikuchi Diffraction 42: 28: 1289:Precession electron diffraction 665:10.1016/j.ultramic.2018.11.011 574:10.1016/j.ultramic.2019.06.003 526:10.1016/j.ultramic.2012.06.004 488:10.1016/j.ultramic.2017.12.017 360:10.1016/j.ultramic.2015.10.025 274:10.1016/j.ultramic.2017.12.017 241:10.1016/j.ultramic.2015.11.002 1: 709:10.1016/j.micron.2015.04.011 135:scanning electron microscope 120:crystallographic orientation 90:The main difference between 77:scanning electron microscope 151:annular dark-field detector 1587: 1274:Immune electron microscopy 1192:Annular dark-field imaging 1007:Everhart–Thornley detector 445:10.1016/j.mser.2016.10.001 321:10.1007/s00269-021-01161-7 208:10.1016/j.mser.2016.10.001 1516: 1428:Hitachi High-Technologies 63:), also sometimes called 1453:Thermo Fisher Scientific 1279:Geometric phase analysis 1167:Aberration-Corrected TEM 1202:Charge contrast imaging 1012:Field electron emission 75:(TEM) specimens in the 1392:Thomas Eugene Everhart 1566:Scientific techniques 1397:Vernon Ellis Cosslett 1217:Dark-field microscopy 827:Journal of Microscopy 784:Journal of Microscopy 609:Journal of Microscopy 395:Journal of Microscopy 139:transmitted electrons 1402:Vladimir K. Zworykin 1052:Correlative light EM 961:Electron diffraction 1367:Manfred von Ardenne 1352:Gerasimos Danilatos 1259:Electron tomography 1254:Electron holography 1197:Cathodoluminescence 976:Secondary electrons 966:Electron scattering 910:Electron microscopy 896:Electron microscopy 166:ion milling machine 1489:Digital Micrograph 1095:Environmental SEM 1017:Field emission gun 981:X-ray fluorescence 736:Scripta Materialia 146:spatial resolution 1548: 1547: 1512: 1511: 1382:Nestor J. Zaluzec 1377:Maximilian Haider 1175: 1174: 839:10.1111/jmi.12124 796:10.1111/jmi.12548 621:10.1111/jmi.12007 1578: 1536: 1535: 1524: 1523: 1332:Bodo von Borries 1317: 1077:Photoemission EM 1040: 889: 882: 875: 866: 859: 858: 822: 816: 815: 778: 772: 771: 761: 751: 727: 721: 720: 691: 685: 684: 647: 641: 640: 603: 594: 593: 567: 547: 538: 537: 509: 500: 499: 473: 464: 449: 448: 428: 419: 418: 390: 384: 383: 381: 379: 339: 333: 332: 300: 285: 252: 219: 162:Focused ion beam 153:(STEM-ADF) in a 46: 32: 1586: 1585: 1581: 1580: 1579: 1577: 1576: 1575: 1551: 1550: 1549: 1544: 1508: 1457: 1406: 1387:Ondrej Krivanek 1308: 1171: 1119: 1081: 1067:Liquid-Phase EM 1031: 990:Instrumentation 985: 943: 934: 898: 893: 863: 862: 824: 823: 819: 780: 779: 775: 729: 728: 724: 693: 692: 688: 653:Ultramicroscopy 649: 648: 644: 605: 604: 597: 552:Ultramicroscopy 549: 548: 541: 514:Ultramicroscopy 511: 510: 503: 476:Ultramicroscopy 471: 466: 465: 452: 430: 429: 422: 392: 391: 387: 377: 375: 348:Ultramicroscopy 341: 340: 336: 302: 301: 297: 292: 262:Ultramicroscopy 255: 229:Ultramicroscopy 222: 189: 186: 184:Further reading 112: 54: 53: 52: 51: 50: 47: 38: 37: 36: 33: 24: 23: 17: 12: 11: 5: 1584: 1582: 1574: 1573: 1568: 1563: 1553: 1552: 1546: 1545: 1543: 1542: 1530: 1517: 1514: 1513: 1510: 1509: 1507: 1506: 1501: 1496: 1494:Direct methods 1491: 1486: 1481: 1476: 1471: 1465: 1463: 1459: 1458: 1456: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1414: 1412: 1408: 1407: 1405: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1349: 1344: 1342:Ernst G. Bauer 1339: 1334: 1329: 1323: 1321: 1314: 1310: 1309: 1307: 1306: 1301: 1296: 1291: 1286: 1281: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1235: 1234: 1224: 1219: 1214: 1209: 1204: 1199: 1194: 1189: 1183: 1181: 1177: 1176: 1173: 1172: 1170: 1169: 1164: 1163: 1162: 1152: 1147: 1142: 1141: 1140: 1129: 1127: 1121: 1120: 1118: 1117: 1112: 1107: 1102: 1097: 1091: 1089: 1083: 1082: 1080: 1079: 1074: 1069: 1064: 1059: 1054: 1048: 1046: 1037: 1033: 1032: 1030: 1029: 1024: 1019: 1014: 1009: 1004: 999: 993: 991: 987: 986: 984: 983: 978: 973: 968: 963: 958: 956:Bremsstrahlung 953: 947: 945: 936: 935: 933: 932: 927: 922: 917: 912: 906: 904: 900: 899: 894: 892: 891: 884: 877: 869: 861: 860: 833:(3): 129–136. 817: 773: 722: 686: 642: 595: 539: 501: 450: 420: 401:(3): 245–251. 385: 334: 294: 293: 291: 288: 287: 286: 253: 220: 185: 182: 124:microstructure 111: 108: 48: 41: 40: 39: 34: 27: 26: 25: 21: 20: 19: 18: 15: 13: 10: 9: 6: 4: 3: 2: 1583: 1572: 1569: 1567: 1564: 1562: 1559: 1558: 1556: 1541: 1540: 1531: 1529: 1528: 1519: 1518: 1515: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1466: 1464: 1460: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1418:Carl Zeiss AG 1416: 1415: 1413: 1411:Manufacturers 1409: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1362:James Hillier 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1324: 1322: 1318: 1315: 1311: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1233: 1230: 1229: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1184: 1182: 1178: 1168: 1165: 1161: 1158: 1157: 1156: 1153: 1151: 1148: 1146: 1143: 1139: 1136: 1135: 1134: 1131: 1130: 1128: 1126: 1122: 1116: 1115:Ultrafast SEM 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1092: 1090: 1088: 1084: 1078: 1075: 1073: 1072:Low-energy EM 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1049: 1047: 1045: 1041: 1038: 1034: 1028: 1025: 1023: 1022:Magnetic lens 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 994: 992: 988: 982: 979: 977: 974: 972: 971:Kikuchi lines 969: 967: 964: 962: 959: 957: 954: 952: 949: 948: 946: 941: 937: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 907: 905: 901: 897: 890: 885: 883: 878: 876: 871: 870: 867: 856: 852: 848: 844: 840: 836: 832: 828: 821: 818: 813: 809: 805: 801: 797: 793: 789: 785: 777: 774: 769: 765: 760: 755: 750: 745: 741: 737: 733: 726: 723: 718: 714: 710: 706: 702: 698: 690: 687: 682: 678: 674: 670: 666: 662: 658: 654: 646: 643: 638: 634: 630: 626: 622: 618: 614: 610: 602: 600: 596: 591: 587: 583: 579: 575: 571: 566: 561: 557: 553: 546: 544: 540: 535: 531: 527: 523: 519: 515: 508: 506: 502: 497: 493: 489: 485: 481: 477: 470: 463: 461: 459: 457: 455: 451: 446: 442: 438: 434: 427: 425: 421: 416: 412: 408: 404: 400: 396: 389: 386: 373: 369: 365: 361: 357: 353: 349: 345: 338: 335: 330: 326: 322: 318: 314: 310: 306: 299: 296: 289: 283: 279: 275: 271: 267: 263: 259: 254: 250: 246: 242: 238: 234: 230: 226: 221: 217: 213: 209: 205: 201: 197: 193: 188: 187: 183: 181: 177: 173: 169: 167: 163: 158: 156: 152: 147: 142: 140: 136: 131: 129: 125: 121: 117: 109: 107: 105: 102: 101:ultramylonite 97: 96:Kikuchi bands 93: 88: 86: 80: 78: 74: 70: 66: 62: 58: 45: 31: 1571:Spectroscopy 1537: 1525: 1479:EM Data Bank 1443:Nion Company 1337:Dennis Gabor 1327:Albert Crewe 1231: 1105:Confocal SEM 1002:Electron gun 951:Auger effect 830: 826: 820: 790:(1): 70–80. 787: 783: 776: 739: 735: 725: 700: 696: 689: 656: 652: 645: 612: 608: 555: 551: 517: 513: 479: 475: 436: 432: 398: 394: 388: 376:. Retrieved 351: 347: 337: 312: 308: 298: 265: 261: 232: 228: 199: 195: 178: 174: 170: 159: 143: 132: 113: 89: 81: 68: 64: 60: 56: 55: 1561:Diffraction 1423:FEI Company 1357:Harald Rose 1347:Ernst Ruska 1036:Microscopes 944:with matter 942:interaction 615:(1): 1–14. 482:: 158–170. 354:: 256–264. 268:: 158–170. 110:Description 92:diffraction 1555:Categories 1504:Multislice 1320:Developers 1180:Techniques 925:Microscope 920:Micrograph 749:1808.10055 565:1904.04140 315:(10): 38. 290:References 104:peridotite 94:spots and 1372:Max Knoll 1027:Stigmator 768:119075799 742:: 36–41. 681:205526130 659:: 39–45. 590:102350683 520:: 16–24. 329:1432-2021 282:0304-3991 249:0304-3991 235:: 17–22. 216:0927-796X 164:(FIB) or 1527:Category 1474:CrysTBox 1462:Software 1133:Cryo-TEM 940:Electron 855:25006562 847:24660836 804:28328010 717:25974882 703:: 1–10. 673:30496887 637:20435127 629:23346885 582:31234103 558:: 5–12. 534:22796555 496:29335225 439:: 1–12. 415:39521418 378:20 March 372:Archived 368:26579885 202:: 1–12. 1539:Commons 1187:4D STEM 1160:4D STEM 1138:Cryo-ET 1110:SEM-XRF 1100:CryoSEM 1057:Cryo-EM 915:History 812:7988685 1484:EMsoft 1469:CASINO 1448:TESCAN 1313:Others 1212:cryoEM 903:Basics 853:  845:  810:  802:  766:  715:  697:Micron 679:  671:  635:  627:  588:  580:  532:  494:  413:  366:  327:  280:  247:  214:  69:t-EBSD 1438:Leica 1284:PINEM 1150:HRTEM 1145:EFTEM 851:S2CID 808:S2CID 764:S2CID 744:arXiv 677:S2CID 633:S2CID 586:S2CID 560:arXiv 472:(PDF) 411:S2CID 1499:IUCr 1433:JEOL 1304:WBDF 1299:WDXS 1249:EBIC 1244:EELS 1239:ECCI 1227:EBSD 1207:CBED 1155:STEM 843:PMID 800:PMID 713:PMID 669:PMID 625:PMID 578:PMID 530:PMID 492:PMID 380:2023 364:PMID 325:ISSN 278:ISSN 245:ISSN 212:ISSN 122:and 1269:FEM 1264:FIB 1232:TKD 1222:EDS 1125:TEM 1087:SEM 1062:EMP 835:doi 831:254 792:doi 788:267 754:doi 740:164 705:doi 661:doi 657:197 617:doi 613:250 570:doi 556:205 522:doi 518:120 484:doi 480:186 441:doi 437:110 403:doi 399:245 356:doi 352:160 317:doi 270:doi 266:186 237:doi 233:161 204:doi 200:110 61:TKD 1557:: 1044:EM 849:. 841:. 829:. 806:. 798:. 786:. 762:. 752:. 738:. 734:. 711:. 701:75 699:. 675:. 667:. 655:. 631:. 623:. 611:. 598:^ 584:. 576:. 568:. 554:. 542:^ 528:. 516:. 504:^ 490:. 478:. 474:. 453:^ 435:. 423:^ 409:. 397:. 370:. 362:. 350:. 346:. 323:. 313:48 311:. 307:. 276:. 264:. 260:. 243:. 231:. 227:. 210:. 198:. 194:. 888:e 881:t 874:v 857:. 837:: 814:. 794:: 770:. 756:: 746:: 719:. 707:: 683:. 663:: 639:. 619:: 592:. 572:: 562:: 536:. 524:: 498:. 486:: 447:. 443:: 417:. 405:: 382:. 358:: 331:. 319:: 284:. 272:: 251:. 239:: 218:. 206:: 67:( 59:(

Index



transmission electron microscopy
scanning electron microscope
Electron backscatter diffraction
diffraction
Kikuchi bands
ultramylonite
peridotite
Electron backscatter diffraction
crystallographic orientation
microstructure
convergent-beam electron diffraction
scanning electron microscope
transmitted electrons
spatial resolution
annular dark-field detector
scanning transmission electron microscope
Focused ion beam
ion milling machine
"Transmission Kikuchi diffraction in a scanning electron microscope: A review"
doi
10.1016/j.mser.2016.10.001
ISSN
0927-796X
"Orientation mapping by transmission-SEM with an on-axis detector"
doi
10.1016/j.ultramic.2015.11.002
ISSN
0304-3991

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑