Knowledge

Troglomorphism

Source 📝

182:
benefit to the organism. If being eyeless and scaleless are linked in the genome, pressure to become eyeless will result in scaleless organisms, even if that brings them little benefit- assuming that any detriment from losing scales does not outweigh the benefit of losing eyes. Alternatively, lacking linkages in the genome might explain why some species are able to adapt to cave life without the loss of traits like eyes and pigment.
28: 213:, is the ultimate evolutionary implications to adaptation to life in caves. Scientists have debated if adaptation to cave life will ultimately lead to evolutionary stagnation, or a point at which evolutionary change becomes minimal. Some literature has suggested that once species adapt to cave life, there is a limit to the diversification and adaptation that they can undergo. Genera like the whip spider genus 231:, before readapting to surface life when conditions are favorable. This would suggest that caves are highly influential in the persistence of species, and the preservation of biodiversity. In fact, many of these lineages show similar rates of speciation and diversity even within these smaller habitats, as uniquely specialized colonists of another environmental niche, rather than an evolutionary trap. 178:, expression of the pax6 gene which regulates many of the eye associated genes in development, is greatly suppressed by other genetic signals. A current theory holds that beneficial traits that have been selected for, also often come with negative associations for these genes, resulting in a double positive for cave dwellers that would otherwise be selected against in surface populations. 181:
These genetic linkages may be a potential explanation for the loss of otherwise unrelated traits like scales, or the maintaining of pigment in some species. Some of these trait losses or gains may be due to these associations with genes that are actually selected for, rather than any evolutionary
226:
This evolutionary break however, has also been suggested to instead act as an evolutionary time capsule, an advantage to the survival of species. Due to the relatively stable nature of caves, some species have been suggested to endure periods of climatic instability, like the
115:
species must adapt to unique elements of subterranean life, like continual darkness, reduced season queues, and limited food availability. The reduction of characters like eyes and pigmentation is generally considered to be an evolutionary tradeoff in
128:, that allow them to navigate in this unconventional setting. Additionally, as a result of poor resource availability, these species tend towards low rates of metabolism and activity, to maximize what little energy input they are able to achieve. 139:
trend towards eyelessness, there are still many that maintain their eyes even in darkness, or even still some that retain pigmentation that are not well understood. Additionally, there are traits like reduction of scales in some
46:
adaptation of an animal to living in the constant darkness of caves, characterised by features such as loss of pigment, reduced eyesight or blindness, and frequently with attenuated bodies or appendages. The terms
155:, some populations may retain their eyes, while others have varying stages of eye loss, and can interbreed with one another. Other species like the cave amphipod also display this relationship of surface and 219:
point to the ability for species to remain mostly the same as their ancestral state, by taking to cave life. Another example of this type of ancestral state outside of caves would be the infamous
120:
species. While these characters, which are no longer useful to them in continual darkness, begin to be selected against, improved secondary sensory structures are selected for. Many
746:
Stern, David B.; Breinholt, Jesse; Pedraza-Lara, Carlos; López-Mejía, Marilú; Owen, Christopher L.; Bracken-Grissom, Heather; Fetzner, James W.; Crandall, Keith A. (October 2017).
456:"Parallel morphological evolution and habitat-dependent sexual dimorphism in cave- vs. surface populations of the Asellus aquaticus (Crustacea: Isopoda: Asellidae) species complex" 511:
Gainett, Guilherme; Ballesteros, Jesús A.; Kanzler, Charlotte R.; Zehms, Jakob T.; Zern, John M.; Aharon, Shlomi; Gavish-Regev, Efrat; Sharma, Prashant P. (December 2020).
174:
have been directly tied to changes in expression of key developmental genes, altering the expression of particularly vision associated genes entirely. In species like the
374: 316: 322: 264: 395:
Simon, Victor; Elleboode, Romain; Mahé, Kélig; Legendre, Laurent; Ornelas-Garcia, Patricia; Espinasa, Luis; Rétaux, Sylvie (2017-12-01).
572:"Rapid evolution of troglomorphic characters suggests selection rather than neutral mutation as a driver of eye reduction in cave crabs" 873: 186: 189:
found that reductive changes in freshwater cave crabs evolved at the same rate as constructive changes. This shows that both
159:
populations retaining a species relationship, adding to the complexity in understanding this unique evolutionary phenomenon.
805:"Caves as microrefugia: Pleistocene phylogeography of the troglophilic North American scorpion Pseudouroctonus reddelli" 570:
Klaus, Sebastian; Mendoza, José C. E.; Liew, Jia Huan; Plath, Martin; Meier, Rudolf; Yeo, Darren C. J. (2013-04-23).
888: 197:
have a role in advancing reductive changes (e.g smaller eyes) and constructive changes (e.g larger claws), making
893: 32: 748:"Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end" 816: 648: 397:"Comparing growth in surface and cave morphs of the species Astyanax mexicanus: insights from scales" 171: 43: 240: 617: 296: 156: 260: 852: 834: 785: 767: 725: 684: 666: 609: 591: 552: 534: 493: 475: 436: 418: 366: 312: 190: 125: 842: 824: 775: 759: 715: 674: 656: 599: 583: 542: 524: 483: 467: 426: 408: 358: 304: 635:
Garwood, Russell J.; Dunlop, Jason A.; Knecht, Brian J.; Hegna, Thomas A. (December 2017).
86:) and reptiles. To date no mammals or birds have been found to live exclusively in caves. 83: 803:
Bryson, Robert W.; Prendini, Lorenzo; Savary, Warren E.; Pearman, Peter B. (2014-01-16).
820: 652: 847: 804: 780: 747: 679: 636: 604: 571: 547: 513:"Systemic paralogy and function of retinal determination network homologs in arachnids" 512: 488: 455: 454:
Balázs, Gergely; Biró, Anna; Fišer, Žiga; Fišer, Cene; Herczeg, Gábor (November 2021).
431: 396: 27: 882: 308: 175: 152: 136: 87: 621: 228: 95: 67: 56: 529: 661: 413: 220: 215: 100: 91: 52: 48: 838: 771: 729: 720: 703: 670: 595: 538: 479: 422: 370: 17: 201:
adaptations subject to strong factors that affect an organism's morphology.
194: 124:
display impressive and exaggerated sensory elements, like greatly elongated
75: 856: 829: 789: 688: 613: 587: 556: 497: 440: 346: 79: 71: 60: 362: 763: 471: 26: 135:
species can be highly variable. While some species like the
63:
or hypogeic, are often used for cave-dwelling organisms.
223:, which greatly resembles fossils of the same lineage. 151:can vary within a species. In species like the 704:"Why Coelacanths Are Almost "Living Fossils"?" 209:One point of contention in the discussion of 8: 98:. The first Troglobiont to be described was 846: 828: 779: 719: 678: 660: 603: 546: 528: 487: 430: 412: 144:fish that have yet to be well explained. 295:Culver, David C.; Pipan, Tanja (2007), 252: 702:Cavin, Lionel; Alvarez, Nadir (2022). 637:"The phylogeny of fossil whip spiders" 267:from the original on 23 September 2015 741: 739: 131:While general trends are maintained, 7: 340: 338: 290: 288: 286: 284: 282: 66:Troglomorphism occurs in molluscs, 708:Frontiers in Ecology and Evolution 25: 205:Caves as Evolutionary "Dead Ends" 187:National University of Singapore 185:A 2012 study by a team from the 874:"The Olm and Other Troglobites" 377:from the original on 2024-05-24 325:from the original on 2018-06-27 309:10.1016/b0-12-226865-2/00262-5 1: 347:"The Evolution of Cave Life" 301:Encyclopedia of Biodiversity 163:Mechanisms of Troglomorphism 108:Morphology of Troglomorphism 303:, Elsevier, pp. 1–19, 910: 530:10.1186/s12864-020-07149-x 662:10.1186/s12862-017-0931-1 414:10.1186/s13227-017-0086-6 345:Romero, Aldemaro (2011). 297:"Subterranean Ecosystems" 809:BMC Evolutionary Biology 721:10.3389/fevo.2022.896111 641:BMC Evolutionary Biology 78:, crustaceans, insects, 101:Leptodirus hochenwartii 830:10.1186/1471-2148-14-9 588:10.1098/rsbl.2012.1098 90:are classed as either 82:, amphibians (notably 36: 460:Ecology and Evolution 33:Texas cave salamander 30: 821:2014BMCEE..14....9B 653:2017BMCEE..17..105G 466:(21): 15389–15403. 363:10.1511/2011.89.144 261:"FishBase Glossary" 241:List of troglobites 351:American Scientist 37: 889:Animal morphology 764:10.1111/evo.13326 758:(10): 2522–2532. 472:10.1002/ece3.8233 318:978-0-12-226865-6 16:(Redirected from 901: 861: 860: 850: 832: 800: 794: 793: 783: 743: 734: 733: 723: 699: 693: 692: 682: 664: 632: 626: 625: 607: 567: 561: 560: 550: 532: 508: 502: 501: 491: 451: 445: 444: 434: 416: 392: 386: 385: 383: 382: 342: 333: 332: 331: 330: 292: 277: 276: 274: 272: 257: 167:Changes in this 84:cave salamanders 21: 909: 908: 904: 903: 902: 900: 899: 898: 879: 878: 870: 865: 864: 802: 801: 797: 745: 744: 737: 701: 700: 696: 634: 633: 629: 582:(2): 20121098. 576:Biology Letters 569: 568: 564: 510: 509: 505: 453: 452: 448: 394: 393: 389: 380: 378: 344: 343: 336: 328: 326: 319: 294: 293: 280: 270: 268: 259: 258: 254: 249: 237: 207: 165: 110: 35: 23: 22: 15: 12: 11: 5: 907: 905: 897: 896: 891: 881: 880: 877: 876: 869: 868:External links 866: 863: 862: 795: 735: 694: 627: 562: 503: 446: 387: 334: 317: 278: 251: 250: 248: 245: 244: 243: 236: 233: 211:troglomorphism 206: 203: 164: 161: 149:troglomorphism 147:Additionally, 109: 106: 94:, or possibly 88:Pickerel frogs 51:, stygobitic, 40:Troglomorphism 31: 24: 14: 13: 10: 9: 6: 4: 3: 2: 906: 895: 892: 890: 887: 886: 884: 875: 872: 871: 867: 858: 854: 849: 844: 840: 836: 831: 826: 822: 818: 814: 810: 806: 799: 796: 791: 787: 782: 777: 773: 769: 765: 761: 757: 753: 749: 742: 740: 736: 731: 727: 722: 717: 713: 709: 705: 698: 695: 690: 686: 681: 676: 672: 668: 663: 658: 654: 650: 646: 642: 638: 631: 628: 623: 619: 615: 611: 606: 601: 597: 593: 589: 585: 581: 577: 573: 566: 563: 558: 554: 549: 544: 540: 536: 531: 526: 522: 518: 514: 507: 504: 499: 495: 490: 485: 481: 477: 473: 469: 465: 461: 457: 450: 447: 442: 438: 433: 428: 424: 420: 415: 410: 406: 402: 398: 391: 388: 376: 372: 368: 364: 360: 356: 352: 348: 341: 339: 335: 324: 320: 314: 310: 306: 302: 298: 291: 289: 287: 285: 283: 279: 266: 262: 256: 253: 246: 242: 239: 238: 234: 232: 230: 224: 222: 218: 217: 212: 204: 202: 200: 199:troglomorphic 196: 192: 188: 183: 179: 177: 176:Mexican tetra 173: 170: 169:troglomorphic 162: 160: 158: 154: 153:Mexican tetra 150: 145: 143: 142:troglomorphic 138: 137:Mexican tetra 134: 133:troglomorphic 129: 127: 123: 119: 118:troglomorphic 114: 113:Troglomorphic 107: 105: 104: 102: 97: 93: 89: 85: 81: 77: 73: 69: 64: 62: 58: 54: 50: 45: 44:morphological 41: 34: 29: 19: 18:Troglomorphic 894:Cave animals 812: 808: 798: 755: 751: 711: 707: 697: 644: 640: 630: 579: 575: 565: 520: 517:BMC Genomics 516: 506: 463: 459: 449: 404: 400: 390: 379:. Retrieved 354: 350: 327:, retrieved 300: 269:. Retrieved 255: 225: 214: 210: 208: 198: 184: 180: 168: 166: 157:subterranean 148: 146: 141: 132: 130: 122:troglomorphs 121: 117: 112: 111: 99: 96:troglophiles 68:velvet worms 65: 39: 38: 229:Pleistocene 92:trogloxenes 57:troglofauna 49:troglobitic 883:Categories 647:(1): 105. 523:(1): 811. 381:2023-05-10 357:(2): 144. 329:2023-03-01 271:19 October 247:References 221:Coelacanth 216:Paracharon 172:morphology 53:stygofauna 839:1471-2148 772:0014-3820 752:Evolution 730:2296-701X 671:1471-2148 596:1744-9561 539:1471-2164 480:2045-7758 423:2041-9139 407:(1): 23. 371:0003-0996 195:evolution 191:selection 76:myriapods 72:arachnids 857:24428910 815:(1): 9. 790:28804900 689:28431496 614:23345534 557:33225889 498:34765185 441:29214008 375:Archived 323:archived 265:Archived 235:See also 126:antennae 61:hypogean 848:3902065 817:Bibcode 781:5656817 680:5399839 649:Bibcode 622:7024721 605:3639761 548:7681978 489:8571603 432:5710000 401:EvoDevo 42:is the 855:  845:  837:  788:  778:  770:  728:  687:  677:  669:  620:  612:  602:  594:  555:  545:  537:  496:  486:  478:  439:  429:  421:  369:  315:  59:, and 618:S2CID 853:PMID 835:ISSN 786:PMID 768:ISSN 726:ISSN 685:PMID 667:ISSN 610:PMID 592:ISSN 553:PMID 535:ISSN 494:PMID 476:ISSN 437:PMID 419:ISSN 367:ISSN 313:ISBN 273:2016 193:and 80:fish 843:PMC 825:doi 776:PMC 760:doi 716:doi 675:PMC 657:doi 600:PMC 584:doi 543:PMC 525:doi 484:PMC 468:doi 427:PMC 409:doi 359:doi 305:doi 885:: 851:. 841:. 833:. 823:. 813:14 811:. 807:. 784:. 774:. 766:. 756:71 754:. 750:. 738:^ 724:. 714:. 712:10 710:. 706:. 683:. 673:. 665:. 655:. 645:17 643:. 639:. 616:. 608:. 598:. 590:. 578:. 574:. 551:. 541:. 533:. 521:21 519:. 515:. 492:. 482:. 474:. 464:11 462:. 458:. 435:. 425:. 417:. 403:. 399:. 373:. 365:. 355:99 353:. 349:. 337:^ 321:, 311:, 299:, 281:^ 263:. 74:, 70:, 55:, 859:. 827:: 819:: 792:. 762:: 732:. 718:: 691:. 659:: 651:: 624:. 586:: 580:9 559:. 527:: 500:. 470:: 443:. 411:: 405:8 384:. 361:: 307:: 275:. 103:. 20:)

Index

Troglomorphic

Texas cave salamander
morphological
troglobitic
stygofauna
troglofauna
hypogean
velvet worms
arachnids
myriapods
fish
cave salamanders
Pickerel frogs
trogloxenes
troglophiles
Leptodirus hochenwartii
antennae
Mexican tetra
Mexican tetra
subterranean
morphology
Mexican tetra
National University of Singapore
selection
evolution
Paracharon
Coelacanth
Pleistocene
List of troglobites

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.