Knowledge (XXG)

Unparticle physics

Source 📝

25: 263: 332:(LHC) team announced it will begin probing a higher energy frontier in 2009, some theoretical physicists have begun to consider the properties of unparticle stuff and how it may appear in LHC experiments. One of the great hopes for the LHC is that it might come up with some discoveries that will help us update or replace our best description of the particles that make up matter and the forces that glue them together. 87: 368:
These particle interactions would appear to have "missing" energy and momentum that would not be detected by the experimental apparatus. Certain distinct distributions of missing energy would signify the production of unparticle stuff. If such signatures are not observed, bounds on the model can be
324:
The idea of unparticles comes from conjecturing that there may be "stuff" that does not necessarily have zero mass but is still scale-invariant, with the same physics regardless of a change of length (or equivalently energy). This stuff is unlike particles, and described as unparticle. The
213:
proposed this theory in two 2007 papers, "Unparticle Physics" and "Another Odd Thing About Unparticle Physics". His papers were followed by further work by other researchers into the properties and phenomenology of unparticle physics and its potential impact on
360:
This scale invariant sector would interact very weakly with the rest of the Standard Model, making it possible to observe evidence for unparticle stuff, if it exists. The unparticle theory is a high-energy theory that contains both Standard Model fields and
356:
A similar technique could be used to search for evidence of unparticles. According to scale invariance, a distribution containing unparticles would become apparent because it would resemble a distribution for a fractional number of massless particles.
348:. Neutrinos barely interact with matter – most of the time physicists can infer their presence only by calculating the "missing" energy and momentum after an interaction. By looking at the same interaction many times, a 352:
is built up that tells more specifically how many and what sort of neutrinos are involved. They couple very weakly to ordinary matter at low energies, and the effect of the coupling increases as the energy increases.
365:, which have scale-invariant behavior at an infrared point. The two fields can interact through the interactions of ordinary particles if the energy of the interaction is sufficiently high. 979: 749: 1068: 328:
Such unparticle stuff has not been observed, which suggests that if it exists, it must couple with normal matter weakly at observable energies. Since the
947: 313:
of particle physics, particles of the same type cannot exist in another state with all these properties scaled up or down by a common factor –
317:, for example, always have the same mass regardless of their energy or momentum. But this is not always the case: massless particles, such as 46: 377:
Unparticle physics has been proposed as an explanation for anomalies in superconducting cuprate materials, where the charge measured by
742: 170: 68: 108: 101: 151: 123: 895: 597: 130: 1094: 735: 1032: 39: 33: 648: 137: 863: 836: 234: 97: 1089: 50: 969: 349: 119: 1099: 403: 1053: 915: 382: 321:, can exist with their properties scaled equally. This immunity to scaling is called "scale invariance". 1058: 1027: 890: 811: 679:
Cheung, Kingman; Wai-Yee Keung; Tzu-Chiang Yuan (2007). "Collider Phenomenology of Unparticle Physics".
329: 242: 362: 1017: 841: 801: 700: 538: 485: 422: 992: 851: 846: 831: 806: 783: 759: 294: 196: 184: 16:
Speculative theory that conjectures a form of matter that cannot be explained in terms of particles
668: 1048: 925: 920: 873: 716: 690: 639: 562: 528: 501: 475: 446: 412: 144: 1063: 1012: 957: 937: 823: 681: 554: 466: 438: 1002: 942: 868: 708: 546: 493: 430: 215: 204: 1022: 932: 878: 778: 345: 584: 704: 542: 489: 426: 276:
Please help update this article to reflect recent events or newly available information.
952: 907: 885: 773: 310: 200: 1083: 720: 246: 210: 505: 450: 987: 497: 227: 219: 566: 434: 325:
unparticle stuff is equivalent to particles with a continuous spectrum of mass.
86: 712: 1007: 997: 550: 519:
Nikolić, Hrvoje (2008-10-10). "Unparticle as a particle with arbitrary mass".
558: 858: 727: 631: 622: 223: 442: 652: 341: 314: 302: 417: 632:"Physicists Build Unparticle Models Guided by Big Bang and Supernovae" 962: 318: 298: 231: 192: 464:
Howard Georgi (2007). "Another Odd Thing About Unparticle Physics".
598:"Electrons are not enough: Cuprate superconductors defy convention" 585:‘Unparticles’ May Hold The Key To Superconductivity, Say Physicists 695: 649:"'Unparticle' Matter may be the stuff that glues physics together" 580: 533: 480: 378: 306: 238: 731: 256: 80: 18: 579:
James P. F. LeBlanc, Adolfo G. Grushin, Arxiv preprint:
344:, which have almost zero mass and are therefore nearly 297:
exist in states that may be characterized by a certain
1041: 978: 906: 822: 794: 766: 191:is a speculative theory that conjectures a form of 623:"Professor proposes theory of unparticle physics" 340:Unparticles would have properties in common with 203:of particle physics, because its components are 743: 8: 401:Howard Georgi (2007). "Unparticle Physics". 750: 736: 728: 694: 532: 479: 416: 171:Learn how and when to remove this message 69:Learn how and when to remove this message 640:"Weird Physics Theory: Unparticle Stuff" 32:This article includes a list of general 393: 948:Atomic, molecular, and optical physics 107:Please improve this article by adding 581:Unparticle mediated superconductivity 195:that cannot be explained in terms of 7: 381:appears to exceed predictions from 38:it lacks sufficient corresponding 14: 261: 85: 23: 1069:Timeline of physics discoveries 385:for the quantity of electrons. 651:. whyfiles.org. Archived from 498:10.1016/j.physletb.2007.05.037 1: 435:10.1103/PhysRevLett.98.221601 109:secondary or tertiary sources 1033:Quantum information science 1116: 864:Classical electromagnetism 713:10.1103/PhysRevD.76.055003 551:10.1142/S021773230802820X 270:This article needs to be 970:Condensed matter physics 587:(accessed 8 August 2014) 521:Modern Physics Letters A 373:Experimental indications 350:probability distribution 404:Physical Review Letters 53:more precise citations. 1054:Nobel Prize in Physics 916:Relativistic mechanics 96:relies excessively on 1059:Philosophy of physics 330:Large Hadron Collider 243:neutrino oscillations 1018:Mathematical physics 669:"Unparticle Physics" 120:"Unparticle physics" 1095:Theoretical physics 993:Atmospheric physics 832:Classical mechanics 760:branches of physics 705:2007PhRvD..76e5003C 642:. ScienceDaily.com. 543:2008MPLA...23.2645N 490:2007PhLB..650..275G 427:2007PhRvL..98v1601G 383:Luttinger's theorem 185:theoretical physics 1049:History of physics 583:; see Arxiv blog, 189:unparticle physics 1077: 1076: 1064:Physics education 1013:Materials science 980:Interdisciplinary 938:Quantum mechanics 682:Physical Review D 674:. hep.ps.uci.edu. 527:(31): 2645–2649. 467:Physics Letters B 369:set and refined. 363:Banks–Zaks fields 309:. In most of the 291: 290: 181: 180: 173: 155: 79: 78: 71: 1107: 1090:Particle physics 1003:Chemical physics 943:Particle physics 869:Classical optics 752: 745: 738: 729: 724: 698: 675: 673: 667:Feng, Jonathan. 663: 661: 660: 647:Siegfried, Tom. 643: 635: 626: 609: 608: 606: 604: 594: 588: 577: 571: 570: 536: 516: 510: 509: 483: 461: 455: 454: 420: 398: 286: 283: 277: 265: 264: 257: 216:particle physics 176: 169: 165: 162: 156: 154: 113: 89: 81: 74: 67: 63: 60: 54: 49:this article by 40:inline citations 27: 26: 19: 1115: 1114: 1110: 1109: 1108: 1106: 1105: 1104: 1080: 1079: 1078: 1073: 1037: 1023:Medical physics 974: 933:Nuclear physics 902: 896:Non-equilibrium 818: 790: 762: 756: 678: 671: 666: 658: 656: 646: 638: 629: 620: 617: 612: 602: 600: 596: 595: 591: 578: 574: 518: 517: 513: 463: 462: 458: 400: 399: 395: 391: 375: 346:scale invariant 338: 287: 281: 278: 275: 266: 262: 255: 205:scale invariant 177: 166: 160: 157: 114: 112: 106: 102:primary sources 90: 75: 64: 58: 55: 45:Please help to 44: 28: 24: 17: 12: 11: 5: 1113: 1111: 1103: 1102: 1100:Fringe physics 1097: 1092: 1082: 1081: 1075: 1074: 1072: 1071: 1066: 1061: 1056: 1051: 1045: 1043: 1039: 1038: 1036: 1035: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 990: 984: 982: 976: 975: 973: 972: 967: 966: 965: 960: 955: 945: 940: 935: 930: 929: 928: 923: 912: 910: 904: 903: 901: 900: 899: 898: 893: 886:Thermodynamics 883: 882: 881: 876: 866: 861: 856: 855: 854: 849: 844: 839: 828: 826: 820: 819: 817: 816: 815: 814: 804: 798: 796: 792: 791: 789: 788: 787: 786: 776: 770: 768: 764: 763: 757: 755: 754: 747: 740: 732: 726: 725: 676: 664: 644: 636: 634:. PhysOrg.com. 627: 625:. PhysOrg.com. 616: 615:External links 613: 611: 610: 589: 572: 511: 474:(4): 275–278. 456: 418:hep-ph/0703260 411:(22): 221601. 392: 390: 387: 374: 371: 337: 334: 311:Standard Model 289: 288: 269: 267: 260: 254: 251: 201:Standard Model 179: 178: 161:September 2023 93: 91: 84: 77: 76: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1112: 1101: 1098: 1096: 1093: 1091: 1088: 1087: 1085: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1046: 1044: 1040: 1034: 1031: 1029: 1028:Ocean physics 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 985: 983: 981: 977: 971: 968: 964: 963:Modern optics 961: 959: 956: 954: 951: 950: 949: 946: 944: 941: 939: 936: 934: 931: 927: 924: 922: 919: 918: 917: 914: 913: 911: 909: 905: 897: 894: 892: 889: 888: 887: 884: 880: 877: 875: 872: 871: 870: 867: 865: 862: 860: 857: 853: 850: 848: 845: 843: 840: 838: 835: 834: 833: 830: 829: 827: 825: 821: 813: 812:Computational 810: 809: 808: 805: 803: 800: 799: 797: 793: 785: 782: 781: 780: 777: 775: 772: 771: 769: 765: 761: 753: 748: 746: 741: 739: 734: 733: 730: 722: 718: 714: 710: 706: 702: 697: 692: 689:(5): 055003. 688: 684: 683: 677: 670: 665: 655:on 2008-05-12 654: 650: 645: 641: 637: 633: 628: 624: 619: 618: 614: 599: 593: 590: 586: 582: 576: 573: 568: 564: 560: 556: 552: 548: 544: 540: 535: 530: 526: 522: 515: 512: 507: 503: 499: 495: 491: 487: 482: 477: 473: 469: 468: 460: 457: 452: 448: 444: 440: 436: 432: 428: 424: 419: 414: 410: 406: 405: 397: 394: 388: 386: 384: 380: 372: 370: 366: 364: 358: 354: 351: 347: 343: 335: 333: 331: 326: 322: 320: 316: 312: 308: 304: 300: 296: 285: 282:November 2010 273: 268: 259: 258: 252: 250: 248: 247:supersymmetry 244: 240: 236: 233: 229: 225: 221: 217: 212: 211:Howard Georgi 208: 206: 202: 198: 194: 190: 186: 175: 172: 164: 153: 150: 146: 143: 139: 136: 132: 129: 125: 122: –  121: 117: 116:Find sources: 110: 104: 103: 99: 94:This article 92: 88: 83: 82: 73: 70: 62: 52: 48: 42: 41: 35: 30: 21: 20: 988:Astrophysics 802:Experimental 686: 680: 657:. Retrieved 653:the original 630:Zyga, Lisa. 621:Zyga, Lisa. 601:. Retrieved 592: 575: 524: 520: 514: 471: 465: 459: 408: 402: 396: 376: 367: 359: 355: 339: 327: 323: 292: 279: 271: 228:CP violation 220:astrophysics 209: 188: 182: 167: 158: 148: 141: 134: 127: 115: 95: 65: 56: 37: 891:Statistical 807:Theoretical 784:Engineering 237:violation, 59:August 2011 51:introducing 1084:Categories 1008:Geophysics 998:Biophysics 842:Analytical 795:Approaches 659:2008-01-29 389:References 336:Properties 253:Background 239:muon decay 199:using the 131:newspapers 98:references 34:references 958:Molecular 859:Acoustics 852:Continuum 847:Celestial 837:Newtonian 824:Classical 767:Divisions 721:119612474 696:0706.3155 559:0217-7323 534:0801.4471 481:0704.2457 342:neutrinos 315:electrons 295:particles 224:cosmology 197:particles 603:25 March 506:17824418 451:14734493 443:17677831 303:momentum 1042:Related 926:General 921:Special 779:Applied 701:Bibcode 539:Bibcode 486:Bibcode 423:Bibcode 319:photons 272:updated 235:flavour 145:scholar 47:improve 953:Atomic 908:Modern 758:Major 719:  567:374948 565:  557:  504:  449:  441:  299:energy 245:, and 232:lepton 193:matter 147:  140:  133:  126:  118:  36:, but 717:S2CID 691:arXiv 672:(PDF) 563:S2CID 529:arXiv 502:S2CID 476:arXiv 447:S2CID 413:arXiv 379:ARPES 152:JSTOR 138:books 879:Wave 774:Pure 605:2013 555:ISSN 439:PMID 307:mass 305:and 293:All 124:news 874:Ray 709:doi 547:doi 494:doi 472:650 431:doi 249:. 183:In 100:to 1086:: 715:. 707:. 699:. 687:76 685:. 561:. 553:. 545:. 537:. 525:23 523:. 500:. 492:. 484:. 470:. 445:. 437:. 429:. 421:. 409:98 407:. 301:, 241:, 230:, 226:, 222:, 218:, 207:. 187:, 111:. 751:e 744:t 737:v 723:. 711:: 703:: 693:: 662:. 607:. 569:. 549:: 541:: 531:: 508:. 496:: 488:: 478:: 453:. 433:: 425:: 415:: 284:) 280:( 274:. 174:) 168:( 163:) 159:( 149:· 142:· 135:· 128:· 105:. 72:) 66:( 61:) 57:( 43:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message

references
primary sources
secondary or tertiary sources
"Unparticle physics"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
theoretical physics
matter
particles
Standard Model
scale invariant
Howard Georgi
particle physics
astrophysics
cosmology
CP violation
lepton
flavour
muon decay
neutrino oscillations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.