Knowledge (XXG)

van der Waals surface

Source 📝

687: 570: 585: 686: 330:, vdWSA, VSA, and WSA. A van der Waals surface area is an abstract conception of the surface area of atoms or molecules from a mathematical estimation, either computing it from first principles or by integrating over a corresponding van der Waals volume. In simplest case, for a spherical monatomic gas, it is simply the computed surface area of a sphere of radius equal to the van der Waals radius of the gaseous atom: 586: 554: 25: 668: 406:, and is defined as the volume occupied by an individual atom, or in a combined sense, by all atoms of a molecule. It may be calculated for atoms if the van der Waals radius is known, and for molecules if its atoms radii and the inter-atomic distances and angles are known. As above, in simplest case, for a spherical monatomic gas, V 541:
of a number of different experimental values, and, for this reason, different tables will be seen to present different values for the van der Waals radius of the same atom. As well, it has been argued that the van der Waals radius is not a fixed property of an atom in all circumstances, rather, that
237:
when they interacted (theoretical constructions that also bear his name). van der Waals surfaces are therefore a tool used in the abstract representations of molecules, whether accessed, as they were originally, via hand calculation, or via physical wood/plastic models, or now digitally, via
667: 569: 489:
presumes ability to describe and compute a van der Waals surface. van der Waals volumes of molecules are always smaller than the sum of the van der Waals volumes of their constituent atoms, due to the fact that the interatomic distances resulting from
267: 472: 553: 661:
barriers to rotation about its carbon-carbon bonds (giving the carbon "chain" great flexibility). normally is composed of a very large number of different such conformations (e.g., in solution).
258:, were the first widely used physical molecular models based on van der Waals radii, and allowed broad pedagogical and research use of a model showing the van der Waals surfaces of molecules. 385: 696:
S, space-filling, Van der Waal's-based representation, ball-and-stick model superimposed, sulfur (S) in yellow, hydrogen (H) in white over-shaded with blue. It also shows on its surface the
498:
molecule can be viewed as an pictorial overlap of the two spherical van der Waals surfaces of the individual atoms, likewise for larger molecules like methane, ammonia, etc. (see images).
217:
is an abstract representation or model of that molecule, illustrating where, in very rough terms, a surface might reside for the molecule based on the hard cutoffs of
763:
Rowland RS, Taylor R (1996). "Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from Van der Waals radii".
221:
for individual atoms, and it represents a surface through which the molecule might be conceived as interacting with other molecules. Also referred to as a
35: 917: 579:, space-filling, Van der Waal's-based representation, ball-and-stick model superimposed, phosphorus (P) in orange, hydrogen (H) in white. 525:
quantities. van der Waals volumes of a single atom or molecules are arrived at by dividing the macroscopically determined volumes by the
513:
measurements of the spacing between pairs of unbonded atoms in crystals, or from measurements of electrical or optical properties (i.e.,
879: 64: 46: 858: 822: 501:
van der Waals radii and volumes may be determined from the mechanical properties of gases (the original method, determining the
415: 506: 907: 226: 795: 39: 912: 335: 847: 45:
Help add sources such as review articles, monographs, or textbooks. Please also establish the relevance for any
652: 701: 697: 283: 239: 410:
is simply the computed volume of a sphere of radius equal to the van der Waals radius of the gaseous atom:
733: 502: 495: 230: 529:. The various methods give radius values which are similar, but not identical—generally within 1–2  820:
Robert B. Corey & Linus Pauling, 1953, "Molecular models of amino acids, peptides, and proteins,"
494:
are less than the sum of the atomic van der Waals radii. In this sense, a van der Waals surface of a
274:, space-filling, Van der Waal's-based representation, carbon (C ) in black, hydrogen (H) in white. In 743: 738: 674: 403: 673:
An example of a three-dimensional, space-filling, Van der Waal's-based model of a complex molecule,
728: 295: 255: 243: 234: 218: 563:, space-filling, Van der Waal's-based representation, nitrogen (N) in blue, hydrogen (H) in white. 518: 891: 723: 709: 705: 658: 526: 885: 803: 772: 521:). In all cases, measurements are made on macroscopic samples and results are expressed as 307: 859:
On the Analytical Calculation of van der Waals Surfaces and Volumes: Some Numerical Aspects
510: 287: 233:
that accounted for the non-zero volume of atoms and molecules, and on their exhibiting an
875: 302:. Center-to-center distances of the atoms are proportional to the distances between the 514: 303: 229:, a Dutch theoretical physicist and thermodynamicist who developed theory to provide a 901: 538: 491: 251: 831: 299: 247: 206:"Molecular volume" redirects here. The term may also refer to Amount of substance. 599: 522: 148: 537:). Useful tabulated values of van der Waals radii are obtained by taking a 534: 275: 888:, Structural Biology Glossary, Image Library of Biological Macromolecules. 49:
cited. Unsourced or poorly sourced material may be challenged and removed.
530: 214: 168: 138: 118: 98: 90: 807: 776: 266: 592: 178: 158: 128: 108: 310:
are usually represented by spheres of different colors, see below.
265: 291: 18: 467:{\displaystyle V_{\rm {w}}={4 \over 3}\pi r_{\rm {w}}^{3}} 700:, (computed for the molecule in unknown fashion), using 542:
it will vary with the chemical environment of the atom.
294:
are represented by spheres whose radii are, either as
854:, Volume 23, Numbers 3-4, 1998, pp. 377–397(21). 793:
Bondi, A. (1964). "Van der Waals Volumes and Radii".
418: 338: 657:
of a population of molecules, which, because of low
602:
composed of 8 carbons and 18 hydrogens, formulae: CH
679:
You may have to click on the image to see rotation.
262:
van der Waals volume and van der Waals surface area
466: 379: 848:van der Waals surface graphs and molecular shape 380:{\displaystyle A_{\rm {w}}=4\pi r_{\rm {w}}^{2}} 314:Related to the title concept are the ideas of a 865:, Volume 15, Number 5, 1994, pp. 507–523. 830:(8), pp. 621–627, DOI 10.1063/1.1770803, see 8: 306:, all in the same scale. Atoms of different 788: 786: 677:, the active agent in medical marijuana. 649:. Note, the representative shown is of a 458: 452: 451: 434: 424: 423: 417: 371: 365: 364: 344: 343: 337: 65:Learn how and when to remove this message 79: 755: 549: 225:the van der Waals surface is named for 894:of van der Waals surfaces and volumes. 402:is a property directly related to the 7: 880:The Wolfram Demonstrations Project 863:Journal of Computational Chemistry 704:tools. It is shaded from blue for 453: 425: 366: 345: 298:or otherwise, proportional to the 14: 852:Journal of Mathematical Chemistry 242:software. Practically speaking, 685: 666: 584: 568: 552: 23: 698:electrostatic potential surface 918:Johannes Diderik van der Waals 598:, the straight chain (normal) 481:is the volume enclosed by the 227:Johannes Diderik van der Waals 189:van der Waals radii taken from 1: 246:, developed by and named for 193:Values from other sources may 40:secondary or tertiary sources 231:liquid-gas equation of state 324:van der Waals surface area, 191:Bondi's compilation (1964). 934: 876:VSAs for various molecules 485:; hence, computation of V 326:abbreviated variously as A 205: 16:Molecule interaction model 591:A space-filling model of 509:(e.g., of a fluid), from 187: 47:primary research articles 833:, accessed 23 June 2015. 32:This scientific article 702:computational chemistry 240:computational chemistry 223:van der Waals envelope, 892:Analytical calculation 734:van der Waals molecule 503:van der Waals constant 468: 381: 311: 195:differ significantly ( 908:Intermolecular forces 483:van der Waals surface 469: 382: 269: 211:van der Waals surface 750:References and notes 744:van der Waals strain 739:van der Waals radius 496:homonuclear diatomic 416: 404:van der Waals radius 392:van der Waals volume 336: 316:van der Waals volume 81:van der Waals radii 886:van der Waals radii 808:10.1021/j100785a001 729:van der Waals force 692:Hydrogen sulfide, H 463: 376: 296:van der Waals radii 280:space-filling model 219:van der Waals radii 82: 913:Physical chemistry 878:by Anton Antonov, 823:Rev. Sci. Instrum. 519:molar refractivity 464: 447: 377: 360: 312: 300:radii of the atoms 80: 777:10.1021/jp953141+ 771:(18): 7384–7391. 724:Molecular surface 708:areas to red for 527:Avogadro constant 477:For a molecule, V 442: 400:molecular volume, 308:chemical elements 284:three-dimensional 204: 203: 200: 75: 74: 67: 34:needs additional 925: 834: 818: 812: 811: 790: 781: 780: 760: 689: 670: 648: 647: 646: 638: 637: 588: 572: 556: 511:crystallographic 473: 471: 470: 465: 462: 457: 456: 443: 435: 430: 429: 428: 386: 384: 383: 378: 375: 370: 369: 350: 349: 348: 235:attractive force 188: 83: 70: 63: 59: 56: 50: 27: 26: 19: 933: 932: 928: 927: 926: 924: 923: 922: 898: 897: 872: 843: 841:Further reading 838: 837: 819: 815: 792: 791: 784: 762: 761: 757: 752: 720: 713: 710:electronegative 706:electropositive 695: 690: 681: 671: 662: 645: 642: 641: 640: 636: 633: 632: 631: 629: 625: 621: 617: 613: 609: 605: 589: 580: 578: 573: 564: 562: 557: 548: 488: 480: 475: 419: 414: 413: 409: 388: 339: 334: 333: 329: 321: 288:molecular model 273: 264: 207: 194: 192: 190: 77: 71: 60: 54: 51: 44: 28: 24: 17: 12: 11: 5: 931: 929: 921: 920: 915: 910: 900: 899: 896: 895: 889: 883: 871: 870:External links 868: 867: 866: 857:M. Petitjean, 855: 842: 839: 836: 835: 813: 796:J. Phys. Chem. 782: 754: 753: 751: 748: 747: 746: 741: 736: 731: 726: 719: 716: 715: 714: 693: 691: 684: 682: 672: 665: 663: 653:conformational 643: 634: 623: 619: 615: 611: 607: 603: 590: 583: 581: 576: 574: 567: 565: 560: 558: 551: 547: 544: 533:(100–200  515:polarizability 507:critical point 486: 478: 461: 455: 450: 446: 441: 438: 433: 427: 422: 412: 407: 374: 368: 363: 359: 356: 353: 347: 342: 332: 327: 319: 271: 263: 260: 202: 201: 185: 184: 181: 175: 174: 171: 165: 164: 161: 155: 154: 151: 145: 144: 141: 135: 134: 131: 125: 124: 121: 115: 114: 111: 105: 104: 101: 95: 94: 87: 73: 72: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 930: 919: 916: 914: 911: 909: 906: 905: 903: 893: 890: 887: 884: 881: 877: 874: 873: 869: 864: 860: 856: 853: 849: 845: 844: 840: 832: 829: 826: 824: 817: 814: 809: 805: 802:(3): 441–51. 801: 798: 797: 789: 787: 783: 778: 774: 770: 766: 765:J. Phys. Chem 759: 756: 749: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 721: 717: 711: 707: 703: 699: 688: 683: 680: 676: 669: 664: 660: 656: 654: 628: 601: 597: 595: 587: 582: 575:Phosphine, PH 571: 566: 555: 550: 545: 543: 540: 539:weighted mean 536: 532: 528: 524: 520: 516: 512: 508: 504: 499: 497: 493: 492:chemical bond 484: 459: 448: 444: 439: 436: 431: 420: 411: 405: 401: 397: 393: 372: 361: 357: 354: 351: 340: 331: 325: 317: 309: 305: 304:atomic nuclei 301: 297: 293: 289: 285: 282:is a type of 281: 277: 268: 261: 259: 257: 256:Walter Koltun 253: 252:Linus Pauling 249: 245: 241: 236: 232: 228: 224: 220: 216: 212: 198: 186: 182: 180: 177: 176: 172: 170: 167: 166: 162: 160: 157: 156: 152: 150: 147: 146: 142: 140: 137: 136: 132: 130: 127: 126: 122: 120: 117: 116: 112: 110: 107: 106: 102: 100: 97: 96: 92: 88: 85: 84: 78: 69: 66: 58: 48: 42: 41: 37: 30: 21: 20: 862: 851: 846:DC Whitley, 827: 821: 816: 799: 794: 768: 764: 758: 678: 659:Gibbs energy 650: 626: 593: 505:), from the 500: 482: 476: 399: 395: 394:, a type of 391: 389: 323: 315: 313: 279: 248:Robert Corey 222: 210: 208: 196: 76: 61: 52: 33: 600:hydrocarbon 559:Ammonia, NH 270:Methane, CH 103:1.2 (1.09) 902:Categories 290:where the 244:CPK models 149:Phosphorus 445:π 358:π 276:chemistry 55:June 2015 36:citations 718:See also 712:areas. 322:, and a 215:molecule 197:see text 169:Chlorine 139:Fluorine 119:Nitrogen 99:Hydrogen 89:radius ( 882:, 2007. 651:single 596:-octane 546:Gallery 86:Element 655:"pose" 396:atomic 254:, and 179:Copper 159:Sulfur 129:Oxygen 109:Carbon 523:molar 292:atoms 286:(3D) 213:of a 173:1.75 143:1.47 133:1.52 123:1.55 390:The 278:, a 209:The 183:1.4 163:1.8 153:1.8 113:1.7 804:doi 773:doi 769:100 675:THC 610:(CH 517:or 398:or 318:, V 38:to 904:: 861:, 850:, 828:24 800:68 785:^ 767:. 644:18 627:or 622:CH 618:CH 606:CH 535:pm 250:, 93:) 825:, 810:. 806:: 779:. 775:: 694:2 639:H 635:8 630:C 624:3 620:2 616:4 614:) 612:2 608:2 604:3 594:n 577:3 561:3 531:Å 487:w 479:w 474:. 460:3 454:w 449:r 440:3 437:4 432:= 426:w 421:V 408:w 387:. 373:2 367:w 362:r 355:4 352:= 346:w 341:A 328:w 320:w 272:4 199:) 91:Å 68:) 62:( 57:) 53:( 43:.

Index

citations
secondary or tertiary sources
primary research articles
Learn how and when to remove this message
Å
Hydrogen
Carbon
Nitrogen
Oxygen
Fluorine
Phosphorus
Sulfur
Chlorine
Copper
molecule
van der Waals radii
Johannes Diderik van der Waals
liquid-gas equation of state
attractive force
computational chemistry
CPK models
Robert Corey
Linus Pauling
Walter Koltun

chemistry
three-dimensional
molecular model
atoms
van der Waals radii

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.