Knowledge (XXG)

Vandermonde's identity

Source 📝

1337: 880: 1332:{\displaystyle {\begin{aligned}\sum _{r=0}^{m+n}{m+n \choose r}x^{r}&=(1+x)^{m+n}\\&=(1+x)^{m}(1+x)^{n}\\&={\biggl (}\sum _{i=0}^{m}{m \choose i}x^{i}{\biggr )}{\biggl (}\sum _{j=0}^{n}{n \choose j}x^{j}{\biggr )}\\&=\sum _{r=0}^{m+n}{\biggl (}\sum _{k=0}^{r}{m \choose k}{n \choose r-k}{\biggr )}x^{r},\end{aligned}}} 703: 2337: 444: 477: 3161: 2712: 166: 2116: 223: 2994: 861: 1575: 1700: 3359: 885: 2004: 2570: 698:{\displaystyle {\biggl (}\sum _{i=0}^{m}a_{i}x^{i}{\biggr )}{\biggl (}\sum _{j=0}^{n}b_{j}x^{j}{\biggr )}=\sum _{r=0}^{m+n}{\biggl (}\sum _{k=0}^{r}a_{k}b_{r-k}{\biggr )}x^{r},} 1844: 2434: 2405: 2376: 1460: 3247: 1769: 2522: 2500: 2478: 2456: 3199: 2861: 2816: 2777: 3021: 3379:
When both sides have been divided by the expression on the left, so that the sum is 1, then the terms of the sum may be interpreted as probabilities. The resulting
1342:
where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all
2332:{\displaystyle \sum _{k_{1}+\cdots +k_{p}=m}{n_{1} \choose k_{1}}{n_{2} \choose k_{2}}\cdots {n_{p} \choose k_{p}}={n_{1}+\dots +n_{p} \choose m}.} 439:{\displaystyle {n_{1}+\dots +n_{p} \choose m}=\sum _{k_{1}+\cdots +k_{p}=m}{n_{1} \choose k_{1}}{n_{2} \choose k_{2}}\cdots {n_{p} \choose k_{p}}.} 2594: 48: 3468: 2876: 748: 187: 2343: 1394: 3012: 2342:
This identity can be obtained through the algebraic derivation above when more than two polynomials are used, or through a simple
1487: 1705:
paths that start on the bottom left vertex and, moving only upwards or rightwards, end at the top right vertex (this is because
1607: 3267: 3473: 3384: 1940: 2527: 3422: 3368: 3380: 3202: 2081:) is confined to be within the square) to obtain the total number of paths that start at (0, 0) and end at ( 208: 3450:, Regional Conference Series in Applied Mathematics, vol. 21, Philadelphia, PA: SIAM, pp. 59–60 3417: 1802: 2410: 2381: 2352: 1415: 3412: 3208: 1735: 39: 191: 2505: 2483: 2461: 2439: 3169: 3156:{\displaystyle \;_{2}F_{1}(a,b;c;1)={\frac {\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}}} 2821: 20: 1385:, both sides of Vandermonde's identity are zero due to the definition of binomial coefficients. 2782: 2743: 2867: 3004: 739: 3000: 2737: 3250: 2733: 2718: 217:
Vandermonde's identity can be generalized in numerous ways, including to the identity
3462: 3443: 3008: 2580:
The identity generalizes to non-integer arguments. In this case, it is known as the
27: 2572:
in the left-hand side, which is also exactly what is done in the right-hand side.
1721:
up moves must be made (or vice versa) in any order, and the total path length is
3011:). The Chu–Vandermonde identity can also be seen to be a special case of 460: 194: 2707:{\displaystyle {s+t \choose n}=\sum _{k=0}^{n}{s \choose k}{t \choose n-k}} 161:{\displaystyle {m+n \choose r}=\sum _{k=0}^{r}{m \choose k}{n \choose r-k}} 201: 3387:. That is the probability distribution of the number of red marbles in 874:, and then the above formula for the product of polynomials, we obtain 172: 2989:{\displaystyle (s+t)_{n}=\sum _{k=0}^{n}{n \choose k}(s)_{k}(t)_{n-k}} 2038: 2732:. It can be proved along the lines of the algebraic proof above by 856:{\displaystyle (1+x)^{m+n}=\sum _{r=0}^{m+n}{m+n \choose r}x^{r}.} 1570:{\displaystyle \sum _{k=0}^{r}{m \choose k}{n \choose r-k}.} 3253:. One regains the Chu–Vandermonde identity by taking 3007:(for more on umbral variants of the binomial theorem, see 1695:{\displaystyle {\binom {r+(m+n-r)}{r}}={\binom {m+n}{r}}} 1902:) upward moves must be made and the path length must be 3354:{\displaystyle {n \choose k}=(-1)^{k}{k-n-1 \choose k}} 2866:
This identity may be rewritten in terms of the falling
1465:
The answer is also the sum over all possible values of
16:
Mathematical theorem on convolved binomial coefficients
2531: 2509: 2487: 2465: 2443: 2414: 2385: 2356: 2110:
One can generalize Vandermonde's identity as follows:
3270: 3211: 3172: 3024: 2879: 2824: 2785: 2746: 2597: 2530: 2508: 2486: 2464: 2442: 2413: 2384: 2355: 2119: 1943: 1805: 1738: 1610: 1490: 1418: 883: 751: 480: 226: 190:(1772), although it was already known in 1303 by the 51: 1393:Vandermonde's identity also admits a combinatorial 3353: 3241: 3193: 3155: 2988: 2855: 2810: 2771: 2706: 2564: 2516: 2494: 2472: 2450: 2428: 2399: 2370: 2331: 1998: 1838: 1795:upward moves must be made (and the path length is 1763: 1694: 1569: 1454: 1365:, Vandermonde's identity follows for all integers 1331: 866:Using the binomial theorem also for the exponents 855: 697: 438: 160: 19:For the expression for a special determinant, see 3345: 3318: 3287: 3274: 2942: 2929: 2818:and comparing terms with the binomial series for 2698: 2677: 2668: 2655: 2622: 2601: 2320: 2279: 2267: 2240: 2228: 2201: 2192: 2165: 1990: 1969: 1960: 1947: 1830: 1809: 1755: 1742: 1686: 1665: 1653: 1614: 1558: 1537: 1528: 1515: 1443: 1422: 1307: 1299: 1278: 1269: 1256: 1227: 1183: 1165: 1152: 1123: 1116: 1098: 1085: 1056: 939: 918: 834: 813: 677: 623: 586: 538: 531: 483: 427: 400: 388: 361: 352: 325: 271: 230: 152: 131: 122: 109: 76: 55: 1999:{\displaystyle {\binom {m}{k}}{\binom {n}{r-k}}} 2999:in which form it is clearly recognizable as an 1469:, of the number of subcommittees consisting of 1405:women. In how many ways can a subcommittee of 1397:, as follows. Suppose a committee consists of 3371:is a further generalization of this identity. 2041:of all paths that start at (0, 0) and end at ( 2565:{\displaystyle \textstyle n_{1}+\dots +n_{p}} 8: 3448:Orthogonal polynomials and special functions 3375:The hypergeometric probability distribution 3174: 3026: 3344: 3317: 3315: 3309: 3286: 3273: 3271: 3269: 3210: 3185: 3175: 3171: 3073: 3037: 3027: 3023: 2974: 2958: 2941: 2928: 2926: 2920: 2909: 2896: 2878: 2841: 2823: 2802: 2784: 2763: 2745: 2697: 2676: 2674: 2667: 2654: 2652: 2646: 2635: 2621: 2600: 2598: 2596: 2555: 2536: 2529: 2507: 2485: 2463: 2441: 2419: 2412: 2390: 2383: 2361: 2354: 2319: 2308: 2289: 2278: 2276: 2266: 2259: 2249: 2239: 2237: 2227: 2220: 2210: 2200: 2198: 2191: 2184: 2174: 2164: 2162: 2148: 2129: 2124: 2118: 1989: 1968: 1966: 1959: 1946: 1944: 1942: 1829: 1808: 1806: 1804: 1754: 1741: 1739: 1737: 1685: 1664: 1662: 1652: 1613: 1611: 1609: 1557: 1536: 1534: 1527: 1514: 1512: 1506: 1495: 1489: 1442: 1421: 1419: 1417: 1316: 1306: 1305: 1298: 1277: 1275: 1268: 1255: 1253: 1247: 1236: 1226: 1225: 1213: 1202: 1182: 1181: 1175: 1164: 1151: 1149: 1143: 1132: 1122: 1121: 1115: 1114: 1108: 1097: 1084: 1082: 1076: 1065: 1055: 1054: 1038: 1016: 978: 949: 938: 917: 915: 903: 892: 884: 882: 844: 833: 812: 810: 798: 787: 768: 750: 686: 676: 675: 663: 653: 643: 632: 622: 621: 609: 598: 585: 584: 578: 568: 558: 547: 537: 536: 530: 529: 523: 513: 503: 492: 482: 481: 479: 426: 419: 409: 399: 397: 387: 380: 370: 360: 358: 351: 344: 334: 324: 322: 308: 289: 284: 270: 259: 240: 229: 227: 225: 151: 130: 128: 121: 108: 106: 100: 89: 75: 54: 52: 50: 3434: 2436:out of another set, and so on, through 1729:). Call the bottom left vertex (0, 0). 1771:paths starting at (0, 0) that end at ( 7: 2009:paths that start at (0, 0), end at ( 2480:elements have been chosen from the 3322: 3278: 3212: 3132: 3114: 3088: 3076: 2933: 2681: 2659: 2605: 2283: 2244: 2205: 2169: 2106:Generalized Vandermonde's identity 1973: 1951: 1813: 1746: 1669: 1618: 1541: 1519: 1426: 1409:members be formed? The answer is 1282: 1260: 1156: 1089: 922: 817: 404: 365: 329: 234: 135: 113: 59: 14: 1839:{\displaystyle {\binom {n}{r-k}}} 708:where we use the convention that 2429:{\displaystyle \textstyle k_{2}} 2400:{\displaystyle \textstyle n_{1}} 2371:{\displaystyle \textstyle k_{1}} 1455:{\displaystyle {m+n \choose r}.} 730: = 0 for all integers 715: = 0 for all integers 38:) is the following identity for 3242:{\displaystyle \Gamma (n+1)=n!} 2378:elements out of a first set of 1764:{\displaystyle {\binom {m}{k}}} 459:In general, the product of two 188:Alexandre-Théophile Vandermonde 186:. The identity is named after 3306: 3296: 3227: 3215: 3147: 3135: 3129: 3117: 3109: 3091: 3085: 3079: 3067: 3043: 3013:Gauss's hypergeometric theorem 2971: 2964: 2955: 2948: 2893: 2880: 2838: 2825: 2799: 2786: 2760: 2747: 2585: 2582:Chu–Vandermonde identity 2576:Chu–Vandermonde identity 1644: 1626: 1035: 1022: 1013: 1000: 975: 962: 765: 752: 1: 3469:Factorial and binomial topics 2728:and any non-negative integer 2502:sets. One therefore chooses 2349:On the one hand, one chooses 1361:By comparing coefficients of 2517:{\displaystyle \textstyle m} 2495:{\displaystyle \textstyle p} 2473:{\displaystyle \textstyle m} 2458:such sets, until a total of 2451:{\displaystyle \textstyle p} 471:, respectively, is given by 3385:hypergeometric distribution 3194:{\displaystyle \;_{2}F_{1}} 2856:{\displaystyle (1+x)^{s+t}} 2586:Askey 1975, pp. 59–60 1585:Take a rectangular grid of 207:to this theorem called the 3490: 3261:and applying the identity 18: 2811:{\displaystyle (1+x)^{t}} 2772:{\displaystyle (1+x)^{s}} 36:Vandermonde's convolution 3381:probability distribution 2105: 1799:). Similarly, there are 3395:from an urn containing 3203:hypergeometric function 3355: 3243: 3195: 3157: 2990: 2925: 2857: 2812: 2773: 2708: 2651: 2566: 2518: 2496: 2474: 2452: 2430: 2401: 2372: 2333: 2000: 1840: 1765: 1696: 1571: 1511: 1456: 1381:. For larger integers 1333: 1252: 1224: 1148: 1081: 914: 857: 809: 699: 648: 620: 563: 508: 440: 162: 105: 32:Vandermonde's identity 3418:Hockey-stick identity 3356: 3244: 3196: 3158: 2991: 2905: 2858: 2813: 2774: 2709: 2631: 2588:) and takes the form 2567: 2519: 2497: 2475: 2453: 2431: 2402: 2373: 2334: 2001: 1841: 1766: 1697: 1601:) squares. There are 1572: 1491: 1457: 1395:double counting proof 1334: 1232: 1198: 1128: 1061: 888: 858: 783: 700: 628: 594: 543: 488: 441: 212:-Vandermonde identity 192:Chinese mathematician 163: 85: 40:binomial coefficients 3474:Algebraic identities 3423:Rothe–Hagen identity 3369:Rothe–Hagen identity 3268: 3209: 3170: 3022: 3015:, which states that 2877: 2822: 2783: 2744: 2595: 2528: 2506: 2484: 2462: 2440: 2411: 2382: 2353: 2117: 1941: 1803: 1736: 1608: 1488: 1416: 881: 749: 478: 224: 171:for any nonnegative 49: 3393:without replacement 2025:), and go through ( 1846:paths starting at ( 1389:Combinatorial proof 1369:with 0 ≤  3351: 3239: 3191: 3153: 2986: 2868:Pochhammer symbols 2853: 2808: 2769: 2704: 2562: 2561: 2514: 2513: 2492: 2491: 2470: 2469: 2448: 2447: 2426: 2425: 2397: 2396: 2368: 2367: 2329: 2161: 1996: 1836: 1761: 1692: 1567: 1452: 1329: 1327: 853: 695: 436: 321: 158: 21:Vandermonde matrix 3413:Pascal's identity 3343: 3285: 3151: 2940: 2696: 2666: 2620: 2318: 2265: 2226: 2190: 2120: 1988: 1958: 1934:. Thus there are 1882:right moves and ( 1874:), as a total of 1828: 1753: 1684: 1651: 1581:Geometrical proof 1556: 1526: 1441: 1297: 1267: 1163: 1096: 937: 832: 425: 386: 350: 280: 269: 150: 120: 74: 3481: 3453: 3452:for the history. 3451: 3439: 3360: 3358: 3357: 3352: 3350: 3349: 3348: 3339: 3321: 3314: 3313: 3292: 3291: 3290: 3277: 3248: 3246: 3245: 3240: 3200: 3198: 3197: 3192: 3190: 3189: 3180: 3179: 3162: 3160: 3159: 3154: 3152: 3150: 3112: 3074: 3042: 3041: 3032: 3031: 3005:binomial theorem 2995: 2993: 2992: 2987: 2985: 2984: 2963: 2962: 2947: 2946: 2945: 2932: 2924: 2919: 2901: 2900: 2862: 2860: 2859: 2854: 2852: 2851: 2817: 2815: 2814: 2809: 2807: 2806: 2778: 2776: 2775: 2770: 2768: 2767: 2713: 2711: 2710: 2705: 2703: 2702: 2701: 2695: 2680: 2673: 2672: 2671: 2658: 2650: 2645: 2627: 2626: 2625: 2616: 2604: 2571: 2569: 2568: 2563: 2560: 2559: 2541: 2540: 2524:elements out of 2523: 2521: 2520: 2515: 2501: 2499: 2498: 2493: 2479: 2477: 2476: 2471: 2457: 2455: 2454: 2449: 2435: 2433: 2432: 2427: 2424: 2423: 2406: 2404: 2403: 2398: 2395: 2394: 2377: 2375: 2374: 2369: 2366: 2365: 2338: 2336: 2335: 2330: 2325: 2324: 2323: 2314: 2313: 2312: 2294: 2293: 2282: 2272: 2271: 2270: 2264: 2263: 2254: 2253: 2243: 2233: 2232: 2231: 2225: 2224: 2215: 2214: 2204: 2197: 2196: 2195: 2189: 2188: 2179: 2178: 2168: 2160: 2153: 2152: 2134: 2133: 2005: 2003: 2002: 1997: 1995: 1994: 1993: 1987: 1972: 1965: 1964: 1963: 1950: 1845: 1843: 1842: 1837: 1835: 1834: 1833: 1827: 1812: 1787:right moves and 1770: 1768: 1767: 1762: 1760: 1759: 1758: 1745: 1709:right moves and 1701: 1699: 1698: 1693: 1691: 1690: 1689: 1680: 1668: 1658: 1657: 1656: 1647: 1617: 1576: 1574: 1573: 1568: 1563: 1562: 1561: 1555: 1540: 1533: 1532: 1531: 1518: 1510: 1505: 1461: 1459: 1458: 1453: 1448: 1447: 1446: 1437: 1425: 1358:, respectively. 1354: >  1346: >  1338: 1336: 1335: 1330: 1328: 1321: 1320: 1311: 1310: 1304: 1303: 1302: 1296: 1281: 1274: 1273: 1272: 1259: 1251: 1246: 1231: 1230: 1223: 1212: 1191: 1187: 1186: 1180: 1179: 1170: 1169: 1168: 1155: 1147: 1142: 1127: 1126: 1120: 1119: 1113: 1112: 1103: 1102: 1101: 1088: 1080: 1075: 1060: 1059: 1047: 1043: 1042: 1021: 1020: 993: 989: 988: 954: 953: 944: 943: 942: 933: 921: 913: 902: 862: 860: 859: 854: 849: 848: 839: 838: 837: 828: 816: 808: 797: 779: 778: 740:binomial theorem 734: >  719: >  704: 702: 701: 696: 691: 690: 681: 680: 674: 673: 658: 657: 647: 642: 627: 626: 619: 608: 590: 589: 583: 582: 573: 572: 562: 557: 542: 541: 535: 534: 528: 527: 518: 517: 507: 502: 487: 486: 445: 443: 442: 437: 432: 431: 430: 424: 423: 414: 413: 403: 393: 392: 391: 385: 384: 375: 374: 364: 357: 356: 355: 349: 348: 339: 338: 328: 320: 313: 312: 294: 293: 276: 275: 274: 265: 264: 263: 245: 244: 233: 167: 165: 164: 159: 157: 156: 155: 149: 134: 127: 126: 125: 112: 104: 99: 81: 80: 79: 70: 58: 3489: 3488: 3484: 3483: 3482: 3480: 3479: 3478: 3459: 3458: 3457: 3456: 3442: 3440: 3436: 3431: 3409: 3377: 3323: 3316: 3305: 3272: 3266: 3265: 3207: 3206: 3181: 3173: 3168: 3167: 3113: 3075: 3033: 3025: 3020: 3019: 3003:variant of the 2970: 2954: 2927: 2892: 2875: 2874: 2837: 2820: 2819: 2798: 2781: 2780: 2759: 2742: 2741: 2738:binomial series 2685: 2675: 2653: 2606: 2599: 2593: 2592: 2578: 2551: 2532: 2526: 2525: 2504: 2503: 2482: 2481: 2460: 2459: 2438: 2437: 2415: 2409: 2408: 2407:elements; then 2386: 2380: 2379: 2357: 2351: 2350: 2344:double counting 2304: 2285: 2284: 2277: 2255: 2245: 2238: 2216: 2206: 2199: 2180: 2170: 2163: 2144: 2125: 2115: 2114: 2108: 2103: 2101:Generalizations 2069:(as the point ( 2057:), so sum from 1977: 1967: 1945: 1939: 1938: 1858:) that end at ( 1817: 1807: 1801: 1800: 1740: 1734: 1733: 1725: +  1670: 1663: 1619: 1612: 1606: 1605: 1583: 1545: 1535: 1513: 1486: 1485: 1477: −  1427: 1420: 1414: 1413: 1391: 1377: +  1326: 1325: 1312: 1286: 1276: 1254: 1189: 1188: 1171: 1150: 1104: 1083: 1045: 1044: 1034: 1012: 991: 990: 974: 955: 945: 923: 916: 879: 878: 840: 818: 811: 764: 747: 746: 728: 713: 682: 659: 649: 574: 564: 519: 509: 476: 475: 457: 455:Algebraic proof 452: 415: 405: 398: 376: 366: 359: 340: 330: 323: 304: 285: 255: 236: 235: 228: 222: 221: 139: 129: 107: 60: 53: 47: 46: 24: 17: 12: 11: 5: 3487: 3485: 3477: 3476: 3471: 3461: 3460: 3455: 3454: 3444:Askey, Richard 3433: 3432: 3430: 3427: 3426: 3425: 3420: 3415: 3408: 3405: 3403:blue marbles. 3376: 3373: 3362: 3361: 3347: 3342: 3338: 3335: 3332: 3329: 3326: 3320: 3312: 3308: 3304: 3301: 3298: 3295: 3289: 3284: 3281: 3276: 3257: = − 3251:gamma function 3238: 3235: 3232: 3229: 3226: 3223: 3220: 3217: 3214: 3188: 3184: 3178: 3164: 3163: 3149: 3146: 3143: 3140: 3137: 3134: 3131: 3128: 3125: 3122: 3119: 3116: 3111: 3108: 3105: 3102: 3099: 3096: 3093: 3090: 3087: 3084: 3081: 3078: 3072: 3069: 3066: 3063: 3060: 3057: 3054: 3051: 3048: 3045: 3040: 3036: 3030: 2997: 2996: 2983: 2980: 2977: 2973: 2969: 2966: 2961: 2957: 2953: 2950: 2944: 2939: 2936: 2931: 2923: 2918: 2915: 2912: 2908: 2904: 2899: 2895: 2891: 2888: 2885: 2882: 2850: 2847: 2844: 2840: 2836: 2833: 2830: 2827: 2805: 2801: 2797: 2794: 2791: 2788: 2766: 2762: 2758: 2755: 2752: 2749: 2719:complex-valued 2715: 2714: 2700: 2694: 2691: 2688: 2684: 2679: 2670: 2665: 2662: 2657: 2649: 2644: 2641: 2638: 2634: 2630: 2624: 2619: 2615: 2612: 2609: 2603: 2577: 2574: 2558: 2554: 2550: 2547: 2544: 2539: 2535: 2512: 2490: 2468: 2446: 2422: 2418: 2393: 2389: 2364: 2360: 2340: 2339: 2328: 2322: 2317: 2311: 2307: 2303: 2300: 2297: 2292: 2288: 2281: 2275: 2269: 2262: 2258: 2252: 2248: 2242: 2236: 2230: 2223: 2219: 2213: 2209: 2203: 2194: 2187: 2183: 2177: 2173: 2167: 2159: 2156: 2151: 2147: 2143: 2140: 2137: 2132: 2128: 2123: 2107: 2104: 2102: 2099: 2007: 2006: 1992: 1986: 1983: 1980: 1976: 1971: 1962: 1957: 1954: 1949: 1832: 1826: 1823: 1820: 1816: 1811: 1757: 1752: 1749: 1744: 1703: 1702: 1688: 1683: 1679: 1676: 1673: 1667: 1661: 1655: 1650: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1616: 1582: 1579: 1578: 1577: 1566: 1560: 1554: 1551: 1548: 1544: 1539: 1530: 1525: 1522: 1517: 1509: 1504: 1501: 1498: 1494: 1463: 1462: 1451: 1445: 1440: 1436: 1433: 1430: 1424: 1390: 1387: 1340: 1339: 1324: 1319: 1315: 1309: 1301: 1295: 1292: 1289: 1285: 1280: 1271: 1266: 1263: 1258: 1250: 1245: 1242: 1239: 1235: 1229: 1222: 1219: 1216: 1211: 1208: 1205: 1201: 1197: 1194: 1192: 1190: 1185: 1178: 1174: 1167: 1162: 1159: 1154: 1146: 1141: 1138: 1135: 1131: 1125: 1118: 1111: 1107: 1100: 1095: 1092: 1087: 1079: 1074: 1071: 1068: 1064: 1058: 1053: 1050: 1048: 1046: 1041: 1037: 1033: 1030: 1027: 1024: 1019: 1015: 1011: 1008: 1005: 1002: 999: 996: 994: 992: 987: 984: 981: 977: 973: 970: 967: 964: 961: 958: 956: 952: 948: 941: 936: 932: 929: 926: 920: 912: 909: 906: 901: 898: 895: 891: 887: 886: 864: 863: 852: 847: 843: 836: 831: 827: 824: 821: 815: 807: 804: 801: 796: 793: 790: 786: 782: 777: 774: 771: 767: 763: 760: 757: 754: 726: 711: 706: 705: 694: 689: 685: 679: 672: 669: 666: 662: 656: 652: 646: 641: 638: 635: 631: 625: 618: 615: 612: 607: 604: 601: 597: 593: 588: 581: 577: 571: 567: 561: 556: 553: 550: 546: 540: 533: 526: 522: 516: 512: 506: 501: 498: 495: 491: 485: 456: 453: 451: 448: 447: 446: 435: 429: 422: 418: 412: 408: 402: 396: 390: 383: 379: 373: 369: 363: 354: 347: 343: 337: 333: 327: 319: 316: 311: 307: 303: 300: 297: 292: 288: 283: 279: 273: 268: 262: 258: 254: 251: 248: 243: 239: 232: 169: 168: 154: 148: 145: 142: 138: 133: 124: 119: 116: 111: 103: 98: 95: 92: 88: 84: 78: 73: 69: 66: 63: 57: 15: 13: 10: 9: 6: 4: 3: 2: 3486: 3475: 3472: 3470: 3467: 3466: 3464: 3449: 3445: 3438: 3435: 3428: 3424: 3421: 3419: 3416: 3414: 3411: 3410: 3406: 3404: 3402: 3398: 3394: 3390: 3386: 3382: 3374: 3372: 3370: 3365: 3340: 3336: 3333: 3330: 3327: 3324: 3310: 3302: 3299: 3293: 3282: 3279: 3264: 3263: 3262: 3260: 3256: 3252: 3236: 3233: 3230: 3224: 3221: 3218: 3204: 3186: 3182: 3176: 3144: 3141: 3138: 3126: 3123: 3120: 3106: 3103: 3100: 3097: 3094: 3082: 3070: 3064: 3061: 3058: 3055: 3052: 3049: 3046: 3038: 3034: 3028: 3018: 3017: 3016: 3014: 3010: 3009:binomial type 3006: 3002: 2981: 2978: 2975: 2967: 2959: 2951: 2937: 2934: 2921: 2916: 2913: 2910: 2906: 2902: 2897: 2889: 2886: 2883: 2873: 2872: 2871: 2869: 2864: 2848: 2845: 2842: 2834: 2831: 2828: 2803: 2795: 2792: 2789: 2764: 2756: 2753: 2750: 2739: 2735: 2731: 2727: 2723: 2720: 2692: 2689: 2686: 2682: 2663: 2660: 2647: 2642: 2639: 2636: 2632: 2628: 2617: 2613: 2610: 2607: 2591: 2590: 2589: 2587: 2583: 2575: 2573: 2556: 2552: 2548: 2545: 2542: 2537: 2533: 2510: 2488: 2466: 2444: 2420: 2416: 2391: 2387: 2362: 2358: 2347: 2345: 2326: 2315: 2309: 2305: 2301: 2298: 2295: 2290: 2286: 2273: 2260: 2256: 2250: 2246: 2234: 2221: 2217: 2211: 2207: 2185: 2181: 2175: 2171: 2157: 2154: 2149: 2145: 2141: 2138: 2135: 2130: 2126: 2121: 2113: 2112: 2111: 2100: 2098: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2037:). This is a 2036: 2032: 2028: 2024: 2020: 2016: 2012: 1984: 1981: 1978: 1974: 1955: 1952: 1937: 1936: 1935: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1824: 1821: 1818: 1814: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1750: 1747: 1730: 1728: 1724: 1720: 1716: 1712: 1708: 1681: 1677: 1674: 1671: 1659: 1648: 1641: 1638: 1635: 1632: 1629: 1623: 1620: 1604: 1603: 1602: 1600: 1596: 1592: 1588: 1580: 1564: 1552: 1549: 1546: 1542: 1523: 1520: 1507: 1502: 1499: 1496: 1492: 1484: 1483: 1482: 1480: 1476: 1472: 1468: 1449: 1438: 1434: 1431: 1428: 1412: 1411: 1410: 1408: 1404: 1400: 1396: 1388: 1386: 1384: 1380: 1376: 1373: ≤  1372: 1368: 1364: 1359: 1357: 1353: 1349: 1345: 1322: 1317: 1313: 1293: 1290: 1287: 1283: 1264: 1261: 1248: 1243: 1240: 1237: 1233: 1220: 1217: 1214: 1209: 1206: 1203: 1199: 1195: 1193: 1176: 1172: 1160: 1157: 1144: 1139: 1136: 1133: 1129: 1109: 1105: 1093: 1090: 1077: 1072: 1069: 1066: 1062: 1051: 1049: 1039: 1031: 1028: 1025: 1017: 1009: 1006: 1003: 997: 995: 985: 982: 979: 971: 968: 965: 959: 957: 950: 946: 934: 930: 927: 924: 910: 907: 904: 899: 896: 893: 889: 877: 876: 875: 873: 869: 850: 845: 841: 829: 825: 822: 819: 805: 802: 799: 794: 791: 788: 784: 780: 775: 772: 769: 761: 758: 755: 745: 744: 743: 741: 737: 733: 729: 722: 718: 714: 692: 687: 683: 670: 667: 664: 660: 654: 650: 644: 639: 636: 633: 629: 616: 613: 610: 605: 602: 599: 595: 591: 579: 575: 569: 565: 559: 554: 551: 548: 544: 524: 520: 514: 510: 504: 499: 496: 493: 489: 474: 473: 472: 470: 466: 463:with degrees 462: 454: 449: 433: 420: 416: 410: 406: 394: 381: 377: 371: 367: 345: 341: 335: 331: 317: 314: 309: 305: 301: 298: 295: 290: 286: 281: 277: 266: 260: 256: 252: 249: 246: 241: 237: 220: 219: 218: 215: 213: 211: 206: 204: 198: 196: 193: 189: 185: 181: 177: 174: 146: 143: 140: 136: 117: 114: 101: 96: 93: 90: 86: 82: 71: 67: 64: 61: 45: 44: 43: 41: 37: 33: 29: 28:combinatorics 22: 3447: 3437: 3400: 3396: 3392: 3388: 3378: 3366: 3363: 3258: 3254: 3165: 2998: 2865: 2729: 2725: 2721: 2717:for general 2716: 2581: 2579: 2348: 2341: 2109: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2008: 1931: 1927: 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1731: 1726: 1722: 1718: 1714: 1710: 1706: 1704: 1598: 1594: 1590: 1586: 1584: 1478: 1474: 1470: 1466: 1464: 1406: 1402: 1398: 1392: 1382: 1378: 1374: 1370: 1366: 1362: 1360: 1355: 1351: 1347: 1343: 1341: 871: 867: 865: 735: 731: 724: 720: 716: 709: 707: 468: 464: 458: 216: 209: 202: 199: 183: 179: 175: 170: 35: 31: 25: 3364:liberally. 2734:multiplying 461:polynomials 200:There is a 3463:Categories 3429:References 2346:argument. 1732:There are 195:Zhu Shijie 3334:− 3328:− 3300:− 3213:Γ 3142:− 3133:Γ 3124:− 3115:Γ 3104:− 3098:− 3089:Γ 3077:Γ 2979:− 2907:∑ 2690:− 2633:∑ 2546:⋯ 2299:⋯ 2235:⋯ 2139:⋯ 2122:∑ 1982:− 1822:− 1639:− 1550:− 1493:∑ 1291:− 1234:∑ 1200:∑ 1130:∑ 1063:∑ 890:∑ 785:∑ 738:. By the 668:− 630:∑ 596:∑ 545:∑ 490:∑ 395:⋯ 299:⋯ 282:∑ 250:⋯ 144:− 87:∑ 3446:(1975), 3407:See also 3399:red and 1473:men and 1401:men and 173:integers 3383:is the 3249:is the 3201:is the 2061:= 0 to 1481:women: 205:-analog 3391:draws 3166:where 3001:umbral 2039:subset 1783:), as 450:Proofs 2584:(see 1922:) − ( 1894:) − ( 3441:See 3367:The 3205:and 2779:and 2740:for 2736:the 2724:and 1930:) = 1350:and 870:and 723:and 467:and 34:(or 2870:as 2097:). 1910:+ ( 1589:x ( 26:In 3465:: 2863:. 2085:, 2073:, 2065:= 2045:, 2029:, 2013:, 1862:, 1850:, 1775:, 742:, 214:. 197:. 182:, 178:, 42:: 30:, 3401:m 3397:n 3389:r 3346:) 3341:k 3337:1 3331:n 3325:k 3319:( 3311:k 3307:) 3303:1 3297:( 3294:= 3288:) 3283:k 3280:n 3275:( 3259:n 3255:a 3237:! 3234:n 3231:= 3228:) 3225:1 3222:+ 3219:n 3216:( 3187:1 3183:F 3177:2 3148:) 3145:b 3139:c 3136:( 3130:) 3127:a 3121:c 3118:( 3110:) 3107:b 3101:a 3095:c 3092:( 3086:) 3083:c 3080:( 3071:= 3068:) 3065:1 3062:; 3059:c 3056:; 3053:b 3050:, 3047:a 3044:( 3039:1 3035:F 3029:2 2982:k 2976:n 2972:) 2968:t 2965:( 2960:k 2956:) 2952:s 2949:( 2943:) 2938:k 2935:n 2930:( 2922:n 2917:0 2914:= 2911:k 2903:= 2898:n 2894:) 2890:t 2887:+ 2884:s 2881:( 2849:t 2846:+ 2843:s 2839:) 2835:x 2832:+ 2829:1 2826:( 2804:t 2800:) 2796:x 2793:+ 2790:1 2787:( 2765:s 2761:) 2757:x 2754:+ 2751:1 2748:( 2730:n 2726:t 2722:s 2699:) 2693:k 2687:n 2683:t 2678:( 2669:) 2664:k 2661:s 2656:( 2648:n 2643:0 2640:= 2637:k 2629:= 2623:) 2618:n 2614:t 2611:+ 2608:s 2602:( 2557:p 2553:n 2549:+ 2543:+ 2538:1 2534:n 2511:m 2489:p 2467:m 2445:p 2421:2 2417:k 2392:1 2388:n 2363:1 2359:k 2327:. 2321:) 2316:m 2310:p 2306:n 2302:+ 2296:+ 2291:1 2287:n 2280:( 2274:= 2268:) 2261:p 2257:k 2251:p 2247:n 2241:( 2229:) 2222:2 2218:k 2212:2 2208:n 2202:( 2193:) 2186:1 2182:k 2176:1 2172:n 2166:( 2158:m 2155:= 2150:p 2146:k 2142:+ 2136:+ 2131:1 2127:k 2095:r 2093:− 2091:n 2089:+ 2087:m 2083:r 2079:k 2077:− 2075:m 2071:k 2067:r 2063:k 2059:k 2055:r 2053:− 2051:n 2049:+ 2047:m 2043:r 2035:k 2033:− 2031:m 2027:k 2023:r 2021:− 2019:n 2017:+ 2015:m 2011:r 1991:) 1985:k 1979:r 1975:n 1970:( 1961:) 1956:k 1953:m 1948:( 1932:n 1928:k 1926:− 1924:m 1920:r 1918:− 1916:n 1914:+ 1912:m 1908:k 1906:− 1904:r 1900:k 1898:− 1896:m 1892:r 1890:− 1888:n 1886:+ 1884:m 1880:k 1878:− 1876:r 1872:r 1870:− 1868:n 1866:+ 1864:m 1860:r 1856:k 1854:− 1852:m 1848:k 1831:) 1825:k 1819:r 1815:n 1810:( 1797:m 1793:k 1791:− 1789:m 1785:k 1781:k 1779:− 1777:m 1773:k 1756:) 1751:k 1748:m 1743:( 1727:n 1723:m 1719:r 1717:- 1715:n 1713:+ 1711:m 1707:r 1687:) 1682:r 1678:n 1675:+ 1672:m 1666:( 1660:= 1654:) 1649:r 1645:) 1642:r 1636:n 1633:+ 1630:m 1627:( 1624:+ 1621:r 1615:( 1599:r 1597:− 1595:n 1593:+ 1591:m 1587:r 1565:. 1559:) 1553:k 1547:r 1543:n 1538:( 1529:) 1524:k 1521:m 1516:( 1508:r 1503:0 1500:= 1497:k 1479:k 1475:r 1471:k 1467:k 1450:. 1444:) 1439:r 1435:n 1432:+ 1429:m 1423:( 1407:r 1403:n 1399:m 1383:r 1379:n 1375:m 1371:r 1367:r 1363:x 1356:n 1352:j 1348:m 1344:i 1323:, 1318:r 1314:x 1308:) 1300:) 1294:k 1288:r 1284:n 1279:( 1270:) 1265:k 1262:m 1257:( 1249:r 1244:0 1241:= 1238:k 1228:( 1221:n 1218:+ 1215:m 1210:0 1207:= 1204:r 1196:= 1184:) 1177:j 1173:x 1166:) 1161:j 1158:n 1153:( 1145:n 1140:0 1137:= 1134:j 1124:( 1117:) 1110:i 1106:x 1099:) 1094:i 1091:m 1086:( 1078:m 1073:0 1070:= 1067:i 1057:( 1052:= 1040:n 1036:) 1032:x 1029:+ 1026:1 1023:( 1018:m 1014:) 1010:x 1007:+ 1004:1 1001:( 998:= 986:n 983:+ 980:m 976:) 972:x 969:+ 966:1 963:( 960:= 951:r 947:x 940:) 935:r 931:n 928:+ 925:m 919:( 911:n 908:+ 905:m 900:0 897:= 894:r 872:n 868:m 851:. 846:r 842:x 835:) 830:r 826:n 823:+ 820:m 814:( 806:n 803:+ 800:m 795:0 792:= 789:r 781:= 776:n 773:+ 770:m 766:) 762:x 759:+ 756:1 753:( 736:n 732:j 727:j 725:b 721:m 717:i 712:i 710:a 693:, 688:r 684:x 678:) 671:k 665:r 661:b 655:k 651:a 645:r 640:0 637:= 634:k 624:( 617:n 614:+ 611:m 606:0 603:= 600:r 592:= 587:) 580:j 576:x 570:j 566:b 560:n 555:0 552:= 549:j 539:( 532:) 525:i 521:x 515:i 511:a 505:m 500:0 497:= 494:i 484:( 469:n 465:m 434:. 428:) 421:p 417:k 411:p 407:n 401:( 389:) 382:2 378:k 372:2 368:n 362:( 353:) 346:1 342:k 336:1 332:n 326:( 318:m 315:= 310:p 306:k 302:+ 296:+ 291:1 287:k 278:= 272:) 267:m 261:p 257:n 253:+ 247:+ 242:1 238:n 231:( 210:q 203:q 184:n 180:m 176:r 153:) 147:k 141:r 137:n 132:( 123:) 118:k 115:m 110:( 102:r 97:0 94:= 91:k 83:= 77:) 72:r 68:n 65:+ 62:m 56:( 23:.

Index

Vandermonde matrix
combinatorics
binomial coefficients
integers
Alexandre-Théophile Vandermonde
Chinese mathematician
Zhu Shijie
q-analog
q-Vandermonde identity
polynomials
binomial theorem
double counting proof
subset
double counting
Askey 1975, pp. 59–60
complex-valued
multiplying
binomial series
Pochhammer symbols
umbral
binomial theorem
binomial type
Gauss's hypergeometric theorem
hypergeometric function
gamma function
Rothe–Hagen identity
probability distribution
hypergeometric distribution
Pascal's identity
Hockey-stick identity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.