Knowledge

Variational Monte Carlo

Source đź“ť

953:
is known. (Because the exact wavefunction is an eigenfunction of the Hamiltonian, the variance of the local energy is zero). This means that variance optimization is ideal in that it is bounded from below, it is positive defined and its minimum is known. Energy minimization may ultimately prove more effective, however, as different authors recently showed that the energy optimization is more effective than the variance one.
454: 932:) with less than 30 parameters. In comparison, a configuration interaction calculation may require around 50,000 parameters to reach that accuracy, although it depends greatly on the particular case being considered. In addition, VMC usually scales as a small power of the number of particles in the simulation, usually something like 182: 961:
nodes, and moreover density ratio of the current and initial trial-function increases exponentially with the size of the system. In the second strategy one use a large bin to evaluate the cost function and its derivatives in such way that the noise can be neglected and deterministic methods can be used.
956:
There are different motivations for this: first, usually one is interested in the lowest energy rather than in the lowest variance in both variational and diffusion Monte Carlo; second, variance optimization takes many iterations to optimize determinant parameters and often the optimization can get
952:
Different cost functions and different strategies were used to optimize a many-body trial-function. Usually three cost functions were used in QMC optimization energy, variance or a linear combination of them. The variance optimization method has the advantage that the exact wavefunction's variance
796:
is written as a factorization over the Hilbert space. This particularly simple form is typically not very accurate since it neglects many-body effects. One of the largest gains in accuracy over writing the wave function separably comes from the introduction of the so-called Jastrow factor. In this
960:
The optimization strategies can be divided into three categories. The first strategy is based on correlated sampling together with deterministic optimization methods. Even if this idea yielded very accurate results for the first-row atoms, this procedure can have problems if parameters affect the
748:
VMC is no different from any other variational method, except that the many-dimensional integrals are evaluated numerically. Monte Carlo integration is particularly crucial in this problem since the dimension of the many-body Hilbert space, comprising all the possible values of the configurations
948:
is a very important research topic in numerical simulation. In QMC, in addition to the usual difficulties to find the minimum of multidimensional parametric function, the statistical noise is present in the estimate of the cost function (usually the energy), and its derivatives, required for an
927:
is a variational function to be determined. With this factor, we can explicitly account for particle-particle correlation, but the many-body integral becomes unseparable, so Monte Carlo is the only way to evaluate it efficiently. In chemical systems, slightly more sophisticated versions of this
964:
The third approach, is based on an iterative technique to handle directly with noise functions. The first example of these methods is the so-called Stochastic Gradient Approximation (SGA), that was used also for structure optimization. Recently an improved and faster approach of this kind was
769:, typically grows exponentially with the size of the physical system. Other approaches to the numerical evaluation of the energy expectation values would therefore, in general, limit applications to much smaller systems than those analyzable thanks to the Monte Carlo approach. 957:
stuck in multiple local minimum and it suffers of the "false convergence" problem; third energy-minimized wave functions on average yield more accurate values of other expectation values than variance minimized wave functions do.
694: 449:{\displaystyle E(a)={\frac {\langle \Psi (a)|{\mathcal {H}}|\Psi (a)\rangle }{\langle \Psi (a)|\Psi (a)\rangle }}={\frac {\int |\Psi (X,a)|^{2}{\frac {{\mathcal {H}}\Psi (X,a)}{\Psi (X,a)}}\,dX}{\int |\Psi (X,a)|^{2}\,dX}}.} 981:
used a VMC objective function to train an artificial neural network to find the ground state of a quantum mechanical system. More generally, artificial neural networks are being used as a wave function ansatz (known as
569: 1112:
Snajdr, Martin; Rothstein, Stuart M. (15 March 2000). "Are properties derived from variance-optimized wave functions generally more accurate? Monte Carlo study of non-energy-related properties of H
944:
QMC calculations crucially depend on the quality of the trial-function, and so it is essential to have an optimized wave-function as close as possible to the ground state. The problem of function
866: 77: 1710:
Pfau, David; Spencer, James; Matthews, Alexander G. de G.; Foulkes, W. M. C. (2020). "Ab-initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks".
147: 1441:
Casula, Michele; Attaccalite, Claudio; Sorella, Sandro (15 October 2004). "Correlated geminal wave function for molecules: An efficient resonating valence bond approach".
896: 794: 925: 723: 602: 767: 743: 167: 117: 97: 1253:
Kent, P. R. C.; Needs, R. J.; Rajagopal, G. (15 May 1999). "Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions".
607: 1308:
Lin, Xi; Zhang, Hongkai; Rappe, Andrew M. (8 February 2000). "Optimization of quantum Monte Carlo wave functions using analytical energy derivatives".
745:, then optimization is performed in order to minimize the energy and obtain the best possible representation of the ground-state wave-function. 1013: 29: 1633: 1598: 986:) in VMC frameworks for finding ground states of quantum mechanical systems. The use of neural network ansatzes for VMC has been extended to 1153:
Bressanini, Dario; Morosi, Gabriele; Mella, Massimo (2002). "Robust wave function optimization procedures in quantum Monte Carlo methods".
469: 772:
The accuracy of the method then largely depends on the choice of the variational state. The simplest choice typically corresponds to a
1906: 1208:
Umrigar, C. J.; Wilson, K. G.; Wilkins, J. W. (25 April 1988). "Optimized trial wave functions for quantum Monte Carlo calculations".
1003: 123: 983: 1901: 1763:
Hermann, Jan; Schätzle, Zeno; Noé, Frank (2020). "Deep Neural Network Solution of the Electronic Schrödinger Equation".
1649:
Carleo, Giuseppe; Troyer, Matthias (2017). "Solving the Quantum Many-Body Problem with Artificial Neural Networks".
1896: 945: 1068:
Ceperley, D.; Chester, G. V.; Kalos, M. H. (1 September 1977). "Monte Carlo simulation of a many-fermion study".
800: 1008: 572: 994:
calculations that are significantly more accurate than VMC calculations which do not use neural networks.
929: 17: 45: 1847: 1782: 1729: 1668: 1530: 1460: 1413: 1376: 1327: 1272: 1217: 1172: 1125: 1077: 1040: 991: 978: 128: 25: 1837: 1806: 1772: 1745: 1719: 1692: 1658: 1554: 1520: 1492: 1450: 1351: 1317: 1296: 1262: 1196: 1162: 459: 1404:
Tanaka, Shigenori (15 May 1994). "Structural optimization in variational quantum Monte Carlo".
1873: 1798: 1684: 1629: 1594: 1546: 1484: 1476: 1429: 1392: 1343: 1288: 1241: 1233: 1188: 1141: 1093: 1056: 773: 174: 170: 1365:"Stochastic Gradient Approximation: An Efficient Method to Optimize Many-Body Wave Functions" 936:
for calculation of the energy expectation value, depending on the form of the wave function.
1863: 1855: 1790: 1737: 1676: 1621: 1586: 1538: 1505: 1468: 1421: 1384: 1335: 1280: 1225: 1180: 1133: 1085: 1048: 871: 779: 974: 901: 699: 578: 1851: 1786: 1733: 1672: 1534: 1464: 1417: 1380: 1363:
Harju, A.; Barbiellini, B.; Siljamäki, S.; Nieminen, R. M.; Ortiz, G. (18 August 1997).
1331: 1276: 1221: 1176: 1129: 1081: 1044: 1868: 1825: 752: 728: 152: 102: 82: 1890: 1810: 1749: 1741: 1696: 1615: 1580: 1300: 40: 1558: 1496: 1355: 1200: 1364: 689:{\displaystyle E_{\textrm {loc}}(X)={\frac {{\mathcal {H}}\Psi (X,a)}{\Psi (X,a)}}} 33: 1388: 1229: 1859: 1542: 1794: 1625: 1590: 1284: 1550: 1480: 1433: 1396: 1347: 1292: 1237: 1192: 1145: 1097: 1089: 1060: 1052: 1680: 1877: 1802: 1688: 1488: 1245: 1455: 1267: 987: 463: 1525: 1322: 1167: 1585:. Graduate Texts in Physics. Cham: Springer International Publishing. 1472: 1184: 1425: 1339: 1137: 564:{\displaystyle {\frac {|\Psi (X,a)|^{2}}{\int |\Psi (X,a)|^{2}\,dX}}} 1826:"Fermionic Neural-Network States for Ab-initio Electronic Structure" 1842: 1777: 1724: 1663: 965:
proposed the so-called Stochastic Reconfiguration (SR) method.
575:
function, sample it, and evaluate the energy expectation value
1031:
McMillan, W. L. (19 April 1965). "Ground State of Liquid He".
928:
factor can obtain 80–90% of the correlation energy (see
119:
is then found upon minimizing the total energy of the system.
1506:"Variance-minimization scheme for optimizing Jastrow factors" 640: 340: 226: 134: 1824:
Choo, Kenny; Mezzacapo, Antonio; Carleo, Giuseppe (2020).
898:
is the distance between a pair of quantum particles and
803: 904: 874: 782: 755: 731: 702: 610: 581: 472: 185: 155: 131: 105: 85: 48: 1261:(19). American Physical Society (APS): 12344–12351. 725:is known for a given set of variational parameters 1216:(17). American Physical Society (APS): 1719–1722. 1039:(2A). American Physical Society (APS): A442–A451. 919: 890: 860: 788: 761: 737: 717: 688: 596: 563: 448: 161: 141: 111: 91: 71: 1375:(7). American Physical Society (APS): 1173–1177. 1076:(7). American Physical Society (APS): 3081–3099. 1504:Drummond, N. D.; Needs, R. J. (18 August 2005). 1519:(8). American Physical Society (APS): 085124. 604:as the average of the so-called local energy 8: 861:{\textstyle \Psi (X)=\exp(\sum {u(r_{ij})})} 285: 253: 248: 204: 66: 1867: 1841: 1776: 1723: 1662: 1524: 1454: 1321: 1266: 1166: 903: 879: 873: 842: 831: 802: 781: 754: 730: 701: 639: 638: 635: 616: 615: 609: 580: 551: 545: 540: 516: 505: 500: 476: 473: 471: 433: 427: 422: 398: 386: 339: 338: 335: 329: 324: 300: 294: 268: 231: 225: 224: 219: 201: 184: 154: 133: 132: 130: 104: 84: 49: 47: 1617:Monte Carlo Methods in Quantum Problems 1571: 99:. The optimal values of the parameters 1014:Time-dependent variational Monte Carlo 39:The basic building block is a generic 797:case the wave function is written as 7: 1620:. Dordrecht: Springer Netherlands. 804: 783: 665: 645: 521: 481: 403: 365: 345: 305: 273: 256: 236: 207: 54: 14: 1412:(10). AIP Publishing: 7416–7420. 1161:(13). AIP Publishing: 5345–5350. 1124:(11). AIP Publishing: 4935–4941. 1106:Wave-function optimization in VMC 940:Wave function optimization in VMC 177:of the energy can be written as: 72:{\displaystyle |\Psi (a)\rangle } 1742:10.1103/PhysRevResearch.2.033429 1316:(6). AIP Publishing: 2650–2654. 1443:The Journal of Chemical Physics 1406:The Journal of Chemical Physics 1310:The Journal of Chemical Physics 1155:The Journal of Chemical Physics 1118:The Journal of Chemical Physics 1614:Kalos, Malvin H., ed. (1984). 1579:Scherer, Philipp O.J. (2017). 914: 908: 855: 851: 835: 825: 813: 807: 712: 706: 680: 668: 660: 648: 629: 623: 591: 585: 541: 536: 524: 517: 501: 496: 484: 477: 423: 418: 406: 399: 380: 368: 360: 348: 325: 320: 308: 301: 282: 276: 269: 265: 259: 245: 239: 232: 220: 216: 210: 195: 189: 142:{\displaystyle {\mathcal {H}}} 63: 57: 50: 1: 1004:Metropolis–Hastings algorithm 984:neural network quantum states 79:depending on some parameters 22:variational Monte Carlo (VMC) 1389:10.1103/physrevlett.79.1173 1230:10.1103/physrevlett.60.1719 1923: 1860:10.1038/s41467-020-15724-9 1543:10.1103/physrevb.72.085124 1907:Mathematical optimization 1795:10.1038/s41557-020-0544-y 1626:10.1007/978-94-009-6384-9 1591:10.1007/978-3-319-61088-7 1285:10.1103/physrevb.59.12344 122:In particular, given the 1712:Physical Review Research 1090:10.1103/physrevb.16.3081 1053:10.1103/physrev.138.a442 949:efficient optimization. 573:probability distribution 28:method that applies the 1681:10.1126/science.aag2302 1369:Physical Review Letters 1210:Physical Review Letters 930:electronic correlation 921: 892: 891:{\displaystyle r_{ij}} 862: 790: 776:form, where the state 763: 739: 719: 690: 598: 565: 450: 163: 143: 113: 93: 73: 1830:Nature Communications 1582:Computational Physics 969:VMC and deep learning 922: 893: 863: 791: 789:{\displaystyle \Psi } 764: 740: 720: 691: 599: 566: 451: 164: 144: 114: 94: 74: 36:of a quantum system. 18:computational physics 1009:Rayleigh–Ritz method 992:electronic structure 920:{\displaystyle u(r)} 902: 872: 801: 780: 753: 729: 718:{\displaystyle E(a)} 700: 608: 597:{\displaystyle E(a)} 579: 470: 183: 153: 149:, and denoting with 129: 103: 83: 46: 1902:Quantum Monte Carlo 1852:2020NatCo..11.2368C 1787:2020NatCh..12..891H 1734:2020PhRvR...2c3429P 1673:2017Sci...355..602C 1535:2005PhRvB..72h5124D 1465:2004JChPh.121.7110C 1418:1994JChPh.100.7416T 1381:1997PhRvL..79.1173H 1332:2000JChPh.112.2650L 1277:1999PhRvB..5912344K 1222:1988PhRvL..60.1719U 1177:2002JChPh.116.5345B 1130:2000JChPh.112.4935S 1082:1977PhRvB..16.3081C 1045:1965PhRv..138..442M 466:, we can interpret 173:configuration, the 32:to approximate the 26:quantum Monte Carlo 917: 888: 858: 786: 759: 735: 715: 686: 594: 561: 460:Monte Carlo method 446: 159: 139: 109: 89: 69: 30:variational method 1897:Quantum chemistry 1657:(6325): 602–606. 1635:978-94-009-6386-3 1600:978-3-319-61087-0 1513:Physical Review B 1473:10.1063/1.1794632 1449:(15): 7110–7126. 1255:Physical Review B 1185:10.1063/1.1455618 1070:Physical Review B 762:{\displaystyle X} 738:{\displaystyle a} 684: 619: 559: 441: 384: 289: 175:expectation value 162:{\displaystyle X} 112:{\displaystyle a} 92:{\displaystyle a} 1914: 1882: 1881: 1871: 1845: 1821: 1815: 1814: 1780: 1765:Nature Chemistry 1760: 1754: 1753: 1727: 1707: 1701: 1700: 1666: 1646: 1640: 1639: 1611: 1605: 1604: 1576: 1562: 1528: 1510: 1500: 1458: 1456:cond-mat/0409644 1437: 1426:10.1063/1.466885 1400: 1359: 1340:10.1063/1.480839 1325: 1304: 1270: 1268:cond-mat/9902300 1249: 1204: 1170: 1149: 1138:10.1063/1.481047 1116:, He, and LiH". 1101: 1064: 926: 924: 923: 918: 897: 895: 894: 889: 887: 886: 867: 865: 864: 859: 854: 850: 849: 795: 793: 792: 787: 768: 766: 765: 760: 744: 742: 741: 736: 724: 722: 721: 716: 695: 693: 692: 687: 685: 683: 663: 644: 643: 636: 622: 621: 620: 617: 603: 601: 600: 595: 570: 568: 567: 562: 560: 558: 550: 549: 544: 520: 511: 510: 509: 504: 480: 474: 455: 453: 452: 447: 442: 440: 432: 431: 426: 402: 393: 385: 383: 363: 344: 343: 336: 334: 333: 328: 304: 295: 290: 288: 272: 251: 235: 230: 229: 223: 202: 168: 166: 165: 160: 148: 146: 145: 140: 138: 137: 118: 116: 115: 110: 98: 96: 95: 90: 78: 76: 75: 70: 53: 1922: 1921: 1917: 1916: 1915: 1913: 1912: 1911: 1887: 1886: 1885: 1823: 1822: 1818: 1771:(10): 891–897. 1762: 1761: 1757: 1709: 1708: 1704: 1648: 1647: 1643: 1636: 1613: 1612: 1608: 1601: 1578: 1577: 1573: 1569: 1526:physics/0505072 1508: 1503: 1440: 1403: 1362: 1323:physics/9911005 1307: 1252: 1207: 1168:physics/0110003 1152: 1115: 1111: 1108: 1067: 1033:Physical Review 1030: 1027: 1022: 1020:Further reading 1000: 979:Matthias Troyer 975:Giuseppe Carleo 971: 942: 900: 899: 875: 870: 869: 838: 799: 798: 778: 777: 751: 750: 727: 726: 698: 697: 664: 637: 611: 606: 605: 577: 576: 539: 512: 499: 475: 468: 467: 462:for evaluating 421: 394: 364: 337: 323: 296: 252: 203: 181: 180: 151: 150: 127: 126: 101: 100: 81: 80: 44: 43: 12: 11: 5: 1920: 1918: 1910: 1909: 1904: 1899: 1889: 1888: 1884: 1883: 1816: 1755: 1702: 1641: 1634: 1606: 1599: 1570: 1568: 1565: 1564: 1563: 1501: 1438: 1401: 1360: 1305: 1250: 1205: 1150: 1113: 1107: 1104: 1103: 1102: 1065: 1026: 1023: 1021: 1018: 1017: 1016: 1011: 1006: 999: 996: 970: 967: 941: 938: 916: 913: 910: 907: 885: 882: 878: 857: 853: 848: 845: 841: 837: 834: 830: 827: 824: 821: 818: 815: 812: 809: 806: 785: 758: 734: 714: 711: 708: 705: 682: 679: 676: 673: 670: 667: 662: 659: 656: 653: 650: 647: 642: 634: 631: 628: 625: 614: 593: 590: 587: 584: 557: 554: 548: 543: 538: 535: 532: 529: 526: 523: 519: 515: 508: 503: 498: 495: 492: 489: 486: 483: 479: 458:Following the 445: 439: 436: 430: 425: 420: 417: 414: 411: 408: 405: 401: 397: 392: 389: 382: 379: 376: 373: 370: 367: 362: 359: 356: 353: 350: 347: 342: 332: 327: 322: 319: 316: 313: 310: 307: 303: 299: 293: 287: 284: 281: 278: 275: 271: 267: 264: 261: 258: 255: 250: 247: 244: 241: 238: 234: 228: 222: 218: 215: 212: 209: 206: 200: 197: 194: 191: 188: 158: 136: 108: 88: 68: 65: 62: 59: 56: 52: 13: 10: 9: 6: 4: 3: 2: 1919: 1908: 1905: 1903: 1900: 1898: 1895: 1894: 1892: 1879: 1875: 1870: 1865: 1861: 1857: 1853: 1849: 1844: 1839: 1835: 1831: 1827: 1820: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1779: 1774: 1770: 1766: 1759: 1756: 1751: 1747: 1743: 1739: 1735: 1731: 1726: 1721: 1718:(3): 033429. 1717: 1713: 1706: 1703: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1665: 1660: 1656: 1652: 1645: 1642: 1637: 1631: 1627: 1623: 1619: 1618: 1610: 1607: 1602: 1596: 1592: 1588: 1584: 1583: 1575: 1572: 1566: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1527: 1522: 1518: 1514: 1507: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1457: 1452: 1448: 1444: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1324: 1319: 1315: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1269: 1264: 1260: 1256: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1169: 1164: 1160: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1110: 1109: 1105: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1029: 1028: 1024: 1019: 1015: 1012: 1010: 1007: 1005: 1002: 1001: 997: 995: 993: 989: 985: 980: 976: 968: 966: 962: 958: 954: 950: 947: 939: 937: 935: 931: 911: 905: 883: 880: 876: 846: 843: 839: 832: 828: 822: 819: 816: 810: 775: 770: 756: 746: 732: 709: 703: 677: 674: 671: 657: 654: 651: 632: 626: 612: 588: 582: 574: 555: 552: 546: 533: 530: 527: 513: 506: 493: 490: 487: 465: 461: 456: 443: 437: 434: 428: 415: 412: 409: 395: 390: 387: 377: 374: 371: 357: 354: 351: 330: 317: 314: 311: 297: 291: 279: 262: 242: 213: 198: 192: 186: 178: 176: 172: 156: 125: 120: 106: 86: 60: 42: 41:wave function 37: 35: 31: 27: 23: 19: 1833: 1829: 1819: 1768: 1764: 1758: 1715: 1711: 1705: 1654: 1650: 1644: 1616: 1609: 1581: 1574: 1516: 1512: 1446: 1442: 1409: 1405: 1372: 1368: 1313: 1309: 1258: 1254: 1213: 1209: 1158: 1154: 1121: 1117: 1073: 1069: 1036: 1032: 972: 963: 959: 955: 951: 946:optimization 943: 933: 771: 747: 457: 179: 121: 38: 34:ground state 21: 15: 1836:(1): 2368. 990:, enabling 124:Hamiltonian 1891:Categories 1843:1909.12852 1778:1909.08423 1725:1909.02487 1664:1606.02318 1567:References 774:mean-field 1811:202660909 1750:202120723 1697:206651104 1551:1098-0121 1481:0021-9606 1434:0021-9606 1397:0031-9007 1348:0021-9606 1301:119427778 1293:0163-1829 1238:0031-9007 1193:0021-9606 1146:0021-9606 1098:0556-2805 1061:0031-899X 973:In 2017, 829:∑ 823:⁡ 805:Ψ 784:Ψ 666:Ψ 646:Ψ 522:Ψ 514:∫ 482:Ψ 464:integrals 404:Ψ 396:∫ 366:Ψ 346:Ψ 306:Ψ 298:∫ 286:⟩ 274:Ψ 257:Ψ 254:⟨ 249:⟩ 237:Ψ 208:Ψ 205:⟨ 171:many-body 67:⟩ 55:Ψ 1878:32398658 1803:32968231 1689:28183973 1559:15821314 1497:43446194 1489:15473777 1356:17114142 1246:10038122 1201:34980080 998:See also 988:fermions 868:, where 1869:7217823 1848:Bibcode 1783:Bibcode 1730:Bibcode 1669:Bibcode 1651:Science 1531:Bibcode 1461:Bibcode 1414:Bibcode 1377:Bibcode 1328:Bibcode 1273:Bibcode 1218:Bibcode 1173:Bibcode 1126:Bibcode 1078:Bibcode 1041:Bibcode 1025:General 696:. Once 1876:  1866:  1809:  1801:  1748:  1695:  1687:  1632:  1597:  1557:  1549:  1495:  1487:  1479:  1432:  1395:  1354:  1346:  1299:  1291:  1244:  1236:  1199:  1191:  1144:  1096:  1059:  1838:arXiv 1807:S2CID 1773:arXiv 1746:S2CID 1720:arXiv 1693:S2CID 1659:arXiv 1555:S2CID 1521:arXiv 1509:(PDF) 1493:S2CID 1451:arXiv 1352:S2CID 1318:arXiv 1297:S2CID 1263:arXiv 1197:S2CID 1163:arXiv 571:as a 24:is a 1874:PMID 1799:PMID 1685:PMID 1630:ISBN 1595:ISBN 1547:ISSN 1485:PMID 1477:ISSN 1430:ISSN 1393:ISSN 1344:ISSN 1289:ISSN 1242:PMID 1234:ISSN 1189:ISSN 1142:ISSN 1094:ISSN 1057:ISSN 977:and 1864:PMC 1856:doi 1791:doi 1738:doi 1677:doi 1655:355 1622:doi 1587:doi 1539:doi 1469:doi 1447:121 1422:doi 1410:100 1385:doi 1336:doi 1314:112 1281:doi 1226:doi 1181:doi 1159:116 1134:doi 1122:112 1086:doi 1049:doi 1037:138 820:exp 618:loc 16:In 1893:: 1872:. 1862:. 1854:. 1846:. 1834:11 1832:. 1828:. 1805:. 1797:. 1789:. 1781:. 1769:12 1767:. 1744:. 1736:. 1728:. 1714:. 1691:. 1683:. 1675:. 1667:. 1653:. 1628:. 1593:. 1553:. 1545:. 1537:. 1529:. 1517:72 1515:. 1511:. 1491:. 1483:. 1475:. 1467:. 1459:. 1445:. 1428:. 1420:. 1408:. 1391:. 1383:. 1373:79 1371:. 1367:. 1350:. 1342:. 1334:. 1326:. 1312:. 1295:. 1287:. 1279:. 1271:. 1259:59 1257:. 1240:. 1232:. 1224:. 1214:60 1212:. 1195:. 1187:. 1179:. 1171:. 1157:. 1140:. 1132:. 1120:. 1092:. 1084:. 1074:16 1072:. 1055:. 1047:. 1035:. 169:a 20:, 1880:. 1858:: 1850:: 1840:: 1813:. 1793:: 1785:: 1775:: 1752:. 1740:: 1732:: 1722:: 1716:2 1699:. 1679:: 1671:: 1661:: 1638:. 1624:: 1603:. 1589:: 1561:. 1541:: 1533:: 1523:: 1499:. 1471:: 1463:: 1453:: 1436:. 1424:: 1416:: 1399:. 1387:: 1379:: 1358:. 1338:: 1330:: 1320:: 1303:. 1283:: 1275:: 1265:: 1248:. 1228:: 1220:: 1203:. 1183:: 1175:: 1165:: 1148:. 1136:: 1128:: 1114:2 1100:. 1088:: 1080:: 1063:. 1051:: 1043:: 934:N 915:) 912:r 909:( 906:u 884:j 881:i 877:r 856:) 852:) 847:j 844:i 840:r 836:( 833:u 826:( 817:= 814:) 811:X 808:( 757:X 733:a 713:) 710:a 707:( 704:E 681:) 678:a 675:, 672:X 669:( 661:) 658:a 655:, 652:X 649:( 641:H 633:= 630:) 627:X 624:( 613:E 592:) 589:a 586:( 583:E 556:X 553:d 547:2 542:| 537:) 534:a 531:, 528:X 525:( 518:| 507:2 502:| 497:) 494:a 491:, 488:X 485:( 478:| 444:. 438:X 435:d 429:2 424:| 419:) 416:a 413:, 410:X 407:( 400:| 391:X 388:d 381:) 378:a 375:, 372:X 369:( 361:) 358:a 355:, 352:X 349:( 341:H 331:2 326:| 321:) 318:a 315:, 312:X 309:( 302:| 292:= 283:) 280:a 277:( 270:| 266:) 263:a 260:( 246:) 243:a 240:( 233:| 227:H 221:| 217:) 214:a 211:( 199:= 196:) 193:a 190:( 187:E 157:X 135:H 107:a 87:a 64:) 61:a 58:( 51:|

Index

computational physics
quantum Monte Carlo
variational method
ground state
wave function
Hamiltonian
many-body
expectation value
Monte Carlo method
integrals
probability distribution
mean-field
electronic correlation
optimization
Giuseppe Carleo
Matthias Troyer
neural network quantum states
fermions
electronic structure
Metropolis–Hastings algorithm
Rayleigh–Ritz method
Time-dependent variational Monte Carlo
Bibcode
1965PhRv..138..442M
doi
10.1103/physrev.138.a442
ISSN
0031-899X
Bibcode
1977PhRvB..16.3081C

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑