Knowledge (XXG)

Lift-induced drag

Source 📝

972: 1015:). An aircraft flying at this speed is operating at its optimal aerodynamic efficiency. According to the above equations, the speed for minimum drag occurs at the speed where the induced drag is equal to the parasitic drag. This is the speed at which for unpowered aircraft, optimum glide angle is achieved. This is also the speed for greatest range (although V 1085:
The engine specific fuel consumption is normally expressed in units of fuel flow rate per unit of thrust or per unit of power depending on whether the engine output is measured in thrust, as for a jet engine, or shaft horsepower, as for a propeller engine. To convert fuel rate per unit thrust to fuel
1027:
since this gives 3-5% greater speed for only 1% less range. Flying higher where the air is thinner will raise the speed at which minimum drag occurs, and so permits a faster voyage for the same amount of fuel. If the plane is flying at the maximum permissible speed, then there is an altitude at which
494:
From this equation it is clear that the induced drag varies with the square of the lift; and inversely with the square of the equivalent airspeed; and inversely with the square of the wingspan. Deviation from the non-planar wing with elliptical lift distribution are taken into account by dividing the
214:
at a high angle of attack will generate an aerodynamic reaction force with a high drag component. By increasing the speed and reducing the angle of attack, the lift generated can be held constant while the drag component is reduced. At the optimum angle of attack, total drag is minimised. If speed is
1031:
The speed for maximum endurance (i.e. time in the air) is the speed for minimum fuel flow rate, and is always less than the speed for greatest range. The fuel flow rate is calculated as the product of the power required and the engine specific fuel consumption (fuel flow rate per unit of power). The
231:
The vortices reduce the wing's ability to generate lift, so that it requires a higher angle of attack for the same lift, which tilts the total aerodynamic force rearwards and increases the drag component of that force. The angular deflection is small and has little effect on the lift. However, there
227:
When producing lift, air below the wing is at a higher pressure than the air pressure above the wing. On a wing of finite span, this pressure difference causes air to flow from the lower surface, around the wingtip, towards the upper surface. This spanwise flow of air combines with chordwise flowing
202:
Lift is produced by the changing direction of the flow around a wing. The change of direction results in a change of velocity (even if there is no speed change), which is an acceleration. To change the direction of the flow therefore requires that a force be applied to the fluid; the total
1457:
Winglets, which are small, nearly vertical, winglike surfaces mounted at the tips of a wing, are intended to provide, for lifting conditions and subsonic Mach numbers, reductions in drag coefficient greater than those achieved by a simple wing-tip extension with the same structural weight
1523: 947:
the wing area is held constant, then induced drag will be inversely proportional to aspect ratio. However, since wingspan can be increased while decreasing aspect ratio, or vice versa, the apparent relationship between aspect ratio and induced drag does not always hold.
652: 175:" is the actual lift on the wing; it is perpendicular to the effective relative airflow in the vicinity of the wing. The lift generated by the wing has been tilted rearwards through an angle equal to the downwash angle in three-dimensional flow. The component of "L 1006:
Induced drag must be added to the parasitic drag to find the total drag. Since induced drag is inversely proportional to the square of the airspeed (at a given lift) whereas parasitic drag is proportional to the square of the airspeed, the combined overall
164: 146:
For a constant amount of lift, induced drag can be reduced by increasing airspeed. A counter-intuitive effect of this is that, up to the speed-for-minimum-drag, aircraft need less power to fly faster. Induced drag is also reduced when the
350: 232:
is an increase in the drag equal to the product of the lift force and the angle through which it is deflected. Since the deflection is itself a function of the lift, the additional drag is proportional to the square of the lift.
1019:
will decrease as the plane consumes fuel and becomes lighter). The speed for greatest range (i.e. distance travelled) is the speed at which a straight line from the origin is tangent to the fuel flow rate curve.
731: 998:
His experiments were carried out at relatively low airspeeds, slower than the speed for minimum drag. He observed that, at these low airspeeds, increasing speed required reducing power. (At higher airspeeds,
943:
wing will produce less induced drag than a wing of low aspect ratio. While induced drag is inversely proportional to the square of the wingspan, not necessarily inversely proportional to aspect ratio,
1028:
the air density will be sufficient to keep it aloft while flying at the angle of attack that minimizes the drag. The optimum altitude will increase during the flight as the plane becomes lighter.
785: 527: 1406:
With infinite span, fluid motion is 2-D and in the direction of flow perpendicular to the span. Infinite span can, for example, be simulated using a foil completely spanning a wind tunnel.
408: 895:
segment (or a 2D wing) would experience no induced drag. The drag characteristics of a wing with infinite span can be simulated using an airfoil segment the width of a
102: 438: 465: 228:
air, which twists the airflow and produces vortices along the wing trailing edge. Induced drag is the cause of the vortices; the vortices do not cause induced drag.
866: 141: 1376: 835: 812: 488: 378: 515: 187:
acting on a body is usually thought of as having two components, lift and drag. By definition, the component of force parallel to the oncoming flow is called
261: 171:
in the vicinity of the wing. The grey vertical line labeled "L" is the force required to counteract the weight of the aircraft. The red vector labeled "L
910:
to reduce the induced drag. Winglets also provide some benefit by increasing the vertical height of the wing system. Wingtip mounted fuel tanks and wing
906:
used curved trailing edges on their rectangular wings. Some early aircraft had fins mounted on the tips. More recent aircraft have wingtip-mounted
963:
is the largest component of total drag, at almost 48%. Reducing induced drag can therefore significantly reduce cost and environmental impact.
1689: 1655: 1613: 1357: 1265: 659: 987:
published the results of his experiments on various flat plates. At the same airspeed and the same angle of attack, plates with higher
1311: 887:
According to the equations above, for wings generating the same lift, the induced drag is inversely proportional to the square of the
1727: 1558: 1470: 1399: 1335: 1213: 1193: 925:
wing of a given span. A small number of aircraft have a planform approaching the elliptical — the most famous examples being the
879:. Similar methods can also be used to compute the minimum induced drag for non-planar wings or for arbitrary lift distributions. 1133: 1781: 521:
To compare with other sources of drag, it can be convenient to express this equation in terms of lift and drag coefficients:
647:{\displaystyle C_{D,i}={\frac {D_{\text{i}}}{{\frac {1}{2}}\rho _{0}V_{E}^{2}S}}={\frac {C_{L}^{2}}{\pi A\!\!{\text{R}}e}}} 742: 1791: 1421: 1766: 988: 959:
speed, induced drag is the second-largest component of total drag, accounting for approximately 37% of total drag.
204: 1111: 1464: 1051: 496: 841:
This indicates how, for a given wing area, high aspect ratio wings are beneficial to flight efficiency. With
1786: 1023:
The curve of range versus airspeed is normally very shallow and it is customary to operate at the speed for
1449:
A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted winglets
1447: 971: 1593: 1024: 956: 929: 902:
An increase in wingspan or a solution with a similar effect is one way to reduce induced drag. The
876: 788: 441: 1737: 1370: 960: 952: 922: 911: 385: 1585: 1723: 1685: 1651: 1619: 1609: 1554: 1546: 1395: 1353: 1331: 1307: 1261: 1209: 1189: 1041: 940: 184: 80: 415: 1601: 1066: 933: 449: 236: 50: 1760: 844: 1715: 1181: 918: 903: 869: 196: 1364:
For a two-dimensional wing at low Mach numbers, the drag contains no induced or wave drag
819: 796: 472: 362: 113: 1597: 1745:
Invariant Formulation for the Minimum Induced Drag Conditions of Nonplanar Wing Systems
1237: 1056: 1046: 1000: 984: 976: 907: 500: 345:{\displaystyle D_{\text{i}}={\frac {L^{2}}{{\frac {1}{2}}\rho _{0}V_{E}^{2}\pi b^{2}}}} 152: 1775: 1280: 1392:
Marine rudders and control surfaces : principles, data, design and applications
1003:
came to dominate, causing the power required to increase with increasing airspeed.)
163: 1647:
Taking Flight: Inventing the Aerial Age, from Antiquity Through the First World War
1501: 992: 926: 216: 66: 62: 46: 1679: 1645: 936:. For modern wings with winglets, the ideal lift distribution is not elliptical. 1605: 896: 211: 1681:
The Bird Is on the Wing: Aerodynamics and the Progress of the American Airplane
1008: 1623: 1061: 74: 27:
Type of aerodynamic resistance against the motion of a wing or other airfoil
1491:
by Daniel O. Dommasch, Sydney S. Sherby, Thomas F. Connolly, 3rd ed. (1961)
1208:, Figure 3.29, Ninth edition. Longman Scientific & Technical, England. 17: 1743:
Luciano Demasi, Antonio Dipace, Giovanni Monegato, and Rauno Cavallaro.
888: 168: 148: 1394:(1st ed.). Amsterdam: Elsevier/Butterworth-Heinemann. p. 41. 1245:. 2005 Boeing Performance and Flight Operations Engineering Conference. 892: 235:
The vortices created are unstable, and they quickly combine to produce
215:
increased beyond this, total drag will increase again due to increased
70: 54: 1748: 1390:
Molland, Anthony F. (2007). "Physics of control surface operation".
726:{\displaystyle C_{L}={\frac {L}{{\frac {1}{2}}\rho _{0}V_{E}^{2}S}}} 1260:(Sixth ed.). New York, NY: McGraw-Hill Education. p. 20. 868:
being a function of angle of attack, induced drag increases as the
1531: 970: 162: 191:; and the component perpendicular to the oncoming flow is called 1416: 1414: 58: 1684:. College Station: Texas A&M University Press. p. 23. 995:
and experienced lower drag than those with lower aspect ratio.
179:" parallel to the free stream is the induced drag on the wing. 1547:"Control of Turbulent Flows for Skin Friction Drag Reduction" 1747:, AIAA Journal, Vol. 52, No. 10 (2014), pp. 2223–2240. 1297: 1295: 1293: 1011:
shows a minimum at some airspeed - the minimum drag speed (V
1134:"Why Aspect Ratio doesn't Matter – Understanding Aerospace" 467:
is the ratio of circumference to diameter of a circle, and
1304:
Understanding Aerodynamics: Arguing from the Real Physics
251:
wing with an elliptical lift distribution, induced drag D
57:
coming at it. This drag force occurs in airplanes due to
53:
force that occurs whenever a moving object redirects the
1545:
Coustols, Eric (1996). Meier, GEA; Schnerr, GH (eds.).
116: 83: 1032:
power required is equal to the drag times the speed.
847: 822: 799: 745: 662: 530: 503: 475: 452: 418: 388: 365: 264: 1732:
Abbott, Ira H., and Von Doenhoff, Albert E. (1959),
780:{\displaystyle A\!\!{\text{R}}={\frac {b^{2}}{S}}\,} 167:
Induced drag is related to the angle of the induced
1762:Doug McLean, Common Misconceptions in Aerodynamics 1455:(Technical report). NASA. 19760019075. p. 1: 860: 829: 806: 779: 725: 646: 509: 482: 459: 432: 402: 372: 344: 135: 96: 1112:"Bjorn's Corner: Aircraft drag reduction, Part 3" 1086:rate per unit power one must divide by the speed. 750: 749: 632: 631: 1551:Control of Flow Instabilities and Unsteady Flows 1239:Wingtip Devices: What They Do and How They Do It 1528:Special Course on Skin Friction Drag Reduction 1650:. Oxford University Press, USA. p. 147. 8: 1522:Robert, JP (March 1992). Cousteix, J (ed.). 1485:The Elements of Aerofoil and Airscrew Theory 919:the elliptical spanwise distribution of lift 410:is the standard density of air at sea level, 1586:"Drag Reduction: A Major Task for Research" 1352:(Sixth ed.). Waltham, MA. p. 61. 1375:: CS1 maint: location missing publisher ( 1524:"Drag reduction: an industrial challenge" 1127: 1125: 852: 846: 826: 821: 803: 798: 776: 765: 759: 751: 744: 711: 706: 696: 682: 676: 667: 661: 633: 618: 613: 607: 592: 587: 577: 563: 556: 550: 535: 529: 502: 479: 474: 456: 451: 429: 423: 417: 399: 393: 387: 369: 364: 333: 320: 315: 305: 291: 284: 278: 269: 263: 121: 115: 88: 82: 1579: 1577: 1231: 1229: 1227: 1225: 1223: 1221: 1177: 1175: 1173: 1171: 1169: 1167: 921:produces the minimum induced drag for a 875:The above equation can be derived using 1590:Aerodynamic Drag Reduction Technologies 1105: 1103: 1099: 1078: 967:Combined effect with other drag sources 1722:, Pitman Publishing Limited, London. 1462: 1368: 891:. A wing of infinite span and uniform 1350:Aerodynamics for engineering students 1188:. Pitman Publishing Limited, London. 7: 199:the lift greatly exceeds the drag. 73:wings that redirect air to cause a 1740:, Standard Book Number 486-60586-8 1487:(1926); referenced in Fig. 5.4 of 25: 1446:Richard T. Whitcomb (July 1976). 207:of the fluid acting on the wing. 1161:, Figure 1.30, NAVWEPS 00-80T-80 1132:Illsley, Michael (4 July 2017). 239:which trail behind the wingtip. 203:aerodynamic force is simply the 1644:Hallion, Richard (8 May 2003). 1348:Houghton, E. L. (2012). "1.6". 1283:, and Von Doenhoff, Albert E., 1159:Aerodynamics for Naval Aviators 914:may also provide some benefit. 1256:Anderson, John D. Jr. (2017). 939:For a given wing area, a high 837:is the span efficiency factor. 255:can be calculated as follows: 1: 1469:: CS1 maint: date and year ( 1287:, Section 1.2 and Appendix IV 877:Prandtl's lifting-line theory 151:is higher, or for wings with 107:lift-induced drag coefficient 1592:. Springer. pp. 17–27. 1258:Fundamentals of aerodynamics 1606:10.1007/978-3-540-45359-8_3 1110:Bjorn Fehrm (Nov 3, 2017). 403:{\displaystyle \rho _{0}\,} 243:Calculation of induced drag 1808: 1422:"Induced Drag Coefficient" 1326:Anderson, John D. (2005), 951:For a typical twin-engine 1678:Hansen, James R. (2004). 1588:. In Peter Thiede (ed.). 814:is a reference wing area, 495:induced drag by the span 97:{\textstyle D_{\text{i}}} 65:redirecting air to cause 1502:"Skybrary: Induced Drag" 1052:Oswald efficiency number 1734:Theory of Wing Sections 1285:Theory of Wing Sections 1138:Understanding Aerospace 433:{\displaystyle V_{E}\,} 1749:doi: 10.2514/1.J052837 1328:Introduction to Flight 1204:Kermode, A.C. (1972). 980: 862: 831: 808: 781: 727: 648: 511: 484: 461: 460:{\displaystyle \pi \,} 434: 404: 374: 346: 180: 137: 98: 77:. It is symbolized as 69:and also in cars with 1782:Aircraft aerodynamics 1584:Marec, J.-P. (2001). 1489:Airplane Aerodynamics 1302:McLean, Doug (2012). 1236:McLean, Doug (2005). 974: 883:Reducing induced drag 863: 861:{\displaystyle C_{L}} 832: 809: 782: 728: 649: 512: 485: 462: 435: 405: 375: 347: 166: 138: 99: 1530:. AGARD Report 786. 845: 820: 797: 743: 660: 528: 501: 473: 450: 416: 386: 363: 262: 136:{\textstyle C_{D,i}} 114: 81: 1598:2001adrt.conf...17M 1206:Mechanics of Flight 1157:Hurt, H. H. (1965) 830:{\displaystyle e\,} 807:{\displaystyle S\,} 716: 623: 597: 483:{\displaystyle b\,} 442:equivalent airspeed 373:{\displaystyle L\,} 325: 1792:Gliding technology 1738:Dover Publications 981: 961:Skin friction drag 953:wide-body aircraft 858: 827: 804: 777: 723: 702: 644: 609: 583: 507: 497:efficiency factor 480: 457: 430: 400: 370: 342: 311: 181: 133: 94: 1691:978-1-58544-243-0 1657:978-0-19-516035-2 1615:978-3-642-07541-4 1359:978-0-08-096632-8 1267:978-1-259-12991-9 1042:Aerodynamic force 991:produced greater 979:plus induced drag 774: 754: 721: 690: 642: 636: 602: 571: 559: 510:{\displaystyle e} 340: 299: 272: 185:aerodynamic force 91: 43:drag due to lift, 31:Lift-induced drag 16:(Redirected from 1799: 1763: 1703: 1702: 1700: 1698: 1675: 1669: 1668: 1666: 1664: 1641: 1635: 1634: 1632: 1630: 1581: 1572: 1571: 1569: 1567: 1542: 1536: 1535: 1519: 1513: 1512: 1510: 1508: 1498: 1492: 1481: 1475: 1474: 1468: 1465:cite tech report 1460: 1454: 1443: 1437: 1436: 1434: 1432: 1426:www.grc.nasa.gov 1418: 1409: 1408: 1387: 1381: 1380: 1374: 1366: 1345: 1339: 1324: 1318: 1317: 1299: 1288: 1278: 1272: 1271: 1253: 1247: 1246: 1244: 1233: 1216: 1202: 1196: 1179: 1162: 1155: 1149: 1148: 1146: 1144: 1129: 1120: 1119: 1107: 1087: 1083: 1067:Wingtip vortices 867: 865: 864: 859: 857: 856: 836: 834: 833: 828: 813: 811: 810: 805: 786: 784: 783: 778: 775: 770: 769: 760: 755: 752: 732: 730: 729: 724: 722: 720: 715: 710: 701: 700: 691: 683: 677: 672: 671: 653: 651: 650: 645: 643: 641: 637: 634: 622: 617: 608: 603: 601: 596: 591: 582: 581: 572: 564: 561: 560: 557: 551: 546: 545: 516: 514: 513: 508: 490:is the wingspan. 489: 487: 486: 481: 466: 464: 463: 458: 439: 437: 436: 431: 428: 427: 409: 407: 406: 401: 398: 397: 379: 377: 376: 371: 351: 349: 348: 343: 341: 339: 338: 337: 324: 319: 310: 309: 300: 292: 289: 288: 279: 274: 273: 270: 237:wingtip vortices 197:angles of attack 142: 140: 139: 134: 132: 131: 103: 101: 100: 95: 93: 92: 89: 51:aerodynamic drag 21: 1807: 1806: 1802: 1801: 1800: 1798: 1797: 1796: 1772: 1771: 1761: 1757: 1712: 1707: 1706: 1696: 1694: 1692: 1677: 1676: 1672: 1662: 1660: 1658: 1643: 1642: 1638: 1628: 1626: 1616: 1583: 1582: 1575: 1565: 1563: 1561: 1544: 1543: 1539: 1521: 1520: 1516: 1506: 1504: 1500: 1499: 1495: 1482: 1478: 1461: 1452: 1445: 1444: 1440: 1430: 1428: 1420: 1419: 1412: 1402: 1389: 1388: 1384: 1367: 1360: 1347: 1346: 1342: 1330:, McGraw-Hill. 1325: 1321: 1314: 1301: 1300: 1291: 1279: 1275: 1268: 1255: 1254: 1250: 1242: 1235: 1234: 1219: 1203: 1199: 1180: 1165: 1156: 1152: 1142: 1140: 1131: 1130: 1123: 1109: 1108: 1101: 1096: 1091: 1090: 1084: 1080: 1075: 1038: 1018: 1014: 969: 904:Wright brothers 885: 870:angle of attack 848: 843: 842: 818: 817: 795: 794: 761: 741: 740: 692: 681: 663: 658: 657: 624: 573: 562: 552: 531: 526: 525: 499: 498: 471: 470: 448: 447: 419: 414: 413: 389: 384: 383: 361: 360: 329: 301: 290: 280: 265: 260: 259: 254: 245: 225: 210:An aircraft in 195:. At practical 178: 174: 161: 153:wingtip devices 117: 112: 111: 84: 79: 78: 41:, or sometimes 28: 23: 22: 15: 12: 11: 5: 1805: 1803: 1795: 1794: 1789: 1787:Drag (physics) 1784: 1774: 1773: 1770: 1769: 1756: 1755:External links 1753: 1752: 1751: 1741: 1730: 1711: 1708: 1705: 1704: 1690: 1670: 1656: 1636: 1614: 1573: 1559: 1537: 1514: 1493: 1476: 1438: 1410: 1400: 1382: 1358: 1340: 1319: 1313:978-1119967514 1312: 1289: 1281:Abbott, Ira H. 1273: 1266: 1248: 1217: 1197: 1163: 1150: 1121: 1098: 1097: 1095: 1092: 1089: 1088: 1077: 1076: 1074: 1071: 1070: 1069: 1064: 1059: 1057:Parasitic drag 1054: 1049: 1044: 1037: 1034: 1025:99% best range 1016: 1012: 1001:parasitic drag 985:Samuel Langley 977:parasitic drag 975:Total drag is 968: 965: 884: 881: 855: 851: 839: 838: 825: 815: 802: 792: 773: 768: 764: 758: 748: 734: 733: 719: 714: 709: 705: 699: 695: 689: 686: 680: 675: 670: 666: 655: 640: 630: 627: 621: 616: 612: 606: 600: 595: 590: 586: 580: 576: 570: 567: 555: 549: 544: 541: 538: 534: 506: 492: 491: 478: 468: 455: 445: 426: 422: 411: 396: 392: 381: 368: 354: 353: 336: 332: 328: 323: 318: 314: 308: 304: 298: 295: 287: 283: 277: 268: 252: 244: 241: 224: 221: 205:reaction force 176: 172: 160: 157: 130: 127: 124: 120: 87: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1804: 1793: 1790: 1788: 1785: 1783: 1780: 1779: 1777: 1768: 1764: 1759: 1758: 1754: 1750: 1746: 1742: 1739: 1735: 1731: 1729: 1728:0-273-01120-0 1725: 1721: 1717: 1714: 1713: 1709: 1693: 1687: 1683: 1682: 1674: 1671: 1659: 1653: 1649: 1648: 1640: 1637: 1625: 1621: 1617: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1580: 1578: 1574: 1562: 1560:9783709126882 1556: 1552: 1548: 1541: 1538: 1533: 1529: 1525: 1518: 1515: 1503: 1497: 1494: 1490: 1486: 1480: 1477: 1472: 1466: 1459: 1451: 1450: 1442: 1439: 1427: 1423: 1417: 1415: 1411: 1407: 1403: 1401:9780750669443 1397: 1393: 1386: 1383: 1378: 1372: 1365: 1361: 1355: 1351: 1344: 1341: 1337: 1336:0-07-123818-2 1333: 1329: 1323: 1320: 1315: 1309: 1305: 1298: 1296: 1294: 1290: 1286: 1282: 1277: 1274: 1269: 1263: 1259: 1252: 1249: 1241: 1240: 1232: 1230: 1228: 1226: 1224: 1222: 1218: 1215: 1214:0-582-42254-X 1211: 1207: 1201: 1198: 1195: 1194:0-273-01120-0 1191: 1187: 1183: 1178: 1176: 1174: 1172: 1170: 1168: 1164: 1160: 1154: 1151: 1139: 1135: 1128: 1126: 1122: 1117: 1113: 1106: 1104: 1100: 1093: 1082: 1079: 1072: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1039: 1035: 1033: 1029: 1026: 1021: 1010: 1004: 1002: 996: 994: 990: 986: 978: 973: 966: 964: 962: 958: 954: 949: 946: 942: 937: 935: 931: 928: 924: 920: 915: 913: 909: 905: 900: 898: 894: 890: 882: 880: 878: 873: 871: 853: 849: 823: 816: 800: 793: 790: 771: 766: 762: 756: 746: 739: 738: 737: 717: 712: 707: 703: 697: 693: 687: 684: 678: 673: 668: 664: 656: 638: 628: 625: 619: 614: 610: 604: 598: 593: 588: 584: 578: 574: 568: 565: 553: 547: 542: 539: 536: 532: 524: 523: 522: 519: 517: 504: 476: 469: 453: 446: 443: 424: 420: 412: 394: 390: 382: 366: 359: 358: 357: 334: 330: 326: 321: 316: 312: 306: 302: 296: 293: 285: 281: 275: 266: 258: 257: 256: 250: 242: 240: 238: 233: 229: 222: 220: 218: 213: 208: 206: 200: 198: 194: 190: 186: 170: 165: 158: 156: 154: 150: 144: 128: 125: 122: 118: 109: 108: 85: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 1744: 1733: 1720:Aerodynamics 1719: 1716:L. J. Clancy 1710:Bibliography 1695:. Retrieved 1680: 1673: 1661:. Retrieved 1646: 1639: 1627:. Retrieved 1589: 1564:. Retrieved 1550: 1540: 1527: 1517: 1505:. Retrieved 1496: 1488: 1484: 1483:Glauert, H. 1479: 1456: 1448: 1441: 1429:. Retrieved 1425: 1405: 1391: 1385: 1363: 1349: 1343: 1327: 1322: 1303: 1284: 1276: 1257: 1251: 1238: 1205: 1200: 1186:Aerodynamics 1185: 1182:Clancy, L.J. 1158: 1153: 1141:. Retrieved 1137: 1115: 1081: 1030: 1022: 1005: 997: 989:aspect ratio 982: 950: 944: 941:aspect ratio 938: 927:World War II 916: 901: 886: 874: 840: 789:aspect ratio 735: 520: 493: 380:is the lift, 355: 248: 246: 234: 230: 226: 217:profile drag 209: 201: 192: 188: 182: 145: 106: 105: 63:lifting body 47:aerodynamics 42: 38: 35:induced drag 34: 30: 29: 934:Thunderbolt 917:Typically, 897:wind tunnel 872:increases. 212:slow flight 159:Explanation 39:vortex drag 18:Vortex drag 1776:Categories 1431:9 February 1094:References 1009:drag curve 183:The total 104:, and the 1624:0179-9614 1371:cite book 1062:Wave drag 983:In 1891, 694:ρ 654:, where 626:π 575:ρ 454:π 391:ρ 327:π 303:ρ 75:downforce 1718:(1975), 1697:13 April 1663:13 April 1629:22 March 1566:24 March 1458:penalty. 1143:25 March 1036:See also 930:Spitfire 908:winglets 889:wingspan 223:Vortices 169:downwash 149:wingspan 49:, is an 1767:YouTube 1594:Bibcode 1553:: 156. 1534:: 2-13. 1184:(1975) 912:washout 893:airfoil 787:is the 440:is the 71:airfoil 55:airflow 1726:  1688:  1654:  1622:  1612:  1557:  1398:  1356:  1338:. p318 1334:  1310:  1264:  1212:  1192:  1116:Leeham 957:cruise 923:planar 356:where 249:planar 247:For a 1532:AGARD 1507:5 May 1453:(PDF) 1243:(PDF) 1073:Notes 61:or a 59:wings 1724:ISBN 1699:2022 1686:ISBN 1665:2022 1652:ISBN 1631:2022 1620:ISSN 1610:ISBN 1568:2022 1555:ISBN 1509:2015 1471:link 1433:2023 1396:ISBN 1377:link 1354:ISBN 1332:ISBN 1308:ISBN 1262:ISBN 1210:ISBN 1190:ISBN 1145:2022 1047:Drag 993:lift 932:and 736:and 193:lift 189:drag 67:lift 1765:on 1602:doi 955:at 177:eff 173:eff 110:as 45:in 1778:: 1736:, 1618:. 1608:. 1600:. 1576:^ 1549:. 1526:. 1467:}} 1463:{{ 1424:. 1413:^ 1404:. 1373:}} 1369:{{ 1362:. 1306:. 1292:^ 1220:^ 1166:^ 1136:. 1124:^ 1114:. 1102:^ 1017:MD 1013:MD 945:if 899:. 518:. 219:. 155:. 143:. 37:, 33:, 1701:. 1667:. 1633:. 1604:: 1596:: 1570:. 1511:. 1473:) 1435:. 1379:) 1316:. 1270:. 1147:. 1118:. 854:L 850:C 824:e 801:S 791:, 772:S 767:2 763:b 757:= 753:R 747:A 718:S 713:2 708:E 704:V 698:0 688:2 685:1 679:L 674:= 669:L 665:C 639:e 635:R 629:A 620:2 615:L 611:C 605:= 599:S 594:2 589:E 585:V 579:0 569:2 566:1 558:i 554:D 548:= 543:i 540:, 537:D 533:C 505:e 477:b 444:, 425:E 421:V 395:0 367:L 352:, 335:2 331:b 322:2 317:E 313:V 307:0 297:2 294:1 286:2 282:L 276:= 271:i 267:D 253:i 129:i 126:, 123:D 119:C 90:i 86:D 20:)

Index

Vortex drag
aerodynamics
aerodynamic drag
airflow
wings
lifting body
lift
airfoil
downforce
wingspan
wingtip devices

downwash
aerodynamic force
angles of attack
reaction force
slow flight
profile drag
wingtip vortices
equivalent airspeed
efficiency factor e {\displaystyle e}
aspect ratio
angle of attack
Prandtl's lifting-line theory
wingspan
airfoil
wind tunnel
Wright brothers
winglets
washout

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.