Knowledge (XXG)

Wiedemann–Franz law

Source 📝

1763: 31: 1207: 293: 1827:
has a strong dependency on certain system parameters: dimensionality, strength of interatomic interactions and Fermi level. This law is not valid or the value of the Lorenz number can be reduced at least in the following cases: manipulating electronic density of states, varying doping density and
1874:
nanobeams. In the metallic phase, the electronic contribution to thermal conductivity was much smaller than what would be expected from the Wiedemann–Franz law. The results can be explained in terms of independent propagation of charge and heat in a strongly correlated system.
442:(c. 1900) realized that the phenomenological description of conductivity can be formulated quite generally (electron-, ion-, heat- etc. conductivity). Although the phenomenological description is incorrect for conduction electrons, it can serve as a preliminary treatment. 1037: 1429: 920: 683: 1431:
which is very close to experimental values. This is in fact due to 3 mistakes that conspired to make his result more accurate than warranted: the factor of 2 mistake; the specific heat per electron is in fact about 100 times less than
1025: 387:
The mathematical expression of the law can be derived as following. Electrical conduction of metals is a well-known phenomenon and is attributed to the free conduction electrons, which can be measured as sketched in the figure. The
361: 150: 1951: 1797: = 3.2×10VK for tungsten at 100 °C. Rosenberg notes that the Wiedemann–Franz law is generally valid for high temperatures and for low (i.e., a few Kelvins) temperatures, but may not hold at intermediate temperatures. 2031: 519: 743: 575: 1828:
layer thickness in superlattices and materials with correlated carriers. In thermoelectric materials there are also corrections due to boundary conditions, specifically open circuit vs. closed circuit.
1321: 1711: 1202:{\displaystyle {\frac {\kappa }{\sigma }}={\frac {cm\,\langle {v}\rangle ^{2}}{3e^{2}}}={\frac {4}{\pi }}{\frac {k_{\rm {B}}^{2}T}{e^{2}}}=0.94\times 10^{-8}\;\mathrm {V} ^{2}\mathrm {K} ^{-2}} 1521: 1247: 131: 788: 1469: 824: 1316: 1283: 1613: 580:
This would lead, however, to a constant acceleration and, ultimately, to an infinite velocity. The further assumption therefore is that the electrons bump into obstacles (like
2355:
Paothep Pichanusakorn, Prabhakar Bandaru. Nanostructured thermoelectrics, Materials Science and Engineering: R: Reports, Volume 67, Issues 2–4, 29 January 2010, pages 19–63,
1673: 1570: 608: 1852:
diverges with decreasing temperature, reaching a value five orders of magnitude larger than that found in conventional metals obeying the Wiedemann–Franz law. This due to
2054: 1572:
K) the heat and charge currents are carried by the same quasi-particles: electrons or holes. At finite temperatures two mechanisms produce a deviation of the ratio
812: 2635: 943: 288:{\displaystyle L={\frac {\kappa }{\sigma T}}={\frac {\pi ^{2}}{3}}\left({\frac {k_{\rm {B}}}{e}}\right)^{2}=2.44\times 10^{-8}\;\mathrm {V^{2}{\cdot }K} ^{-2},} 1897: 1962: 1887:
derived a Wiedemann-Franz law for molecular systems in which electronic conduction is dominated not by free electron motion as in metals, but instead by
2469:
Lee, Sangwook; Hippalgaonkar, Kedar; Yang, Fan; Hong, Jiawang; Ko, Changhyun; Suh, Joonki; Liu, Kai; Wang, Kevin; Urban, Jeffrey J. (2017-01-27).
1836:
In 2011, N. Wakeham et al. found that the ratio of the thermal and electrical Hall conductivities in the metallic phase of quasi-one-dimensional
459: 2339:
A. Putatunda and D.J. Singh. Lorenz number in relation to estimates based on the Seebeck coefficient, Materials Today Physics, 2019, 8, 49-55,
2323:. Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2009, 2, 466–479, 2266: 2221: 2196: 2101: 1717:
scattering values are possible (trajectory b in the figure) and electrons can be transported without the transport of a thermal excitation
1800:
In many high purity metals both the electrical and thermal conductivities rise as temperature is decreased. In certain materials (such as
2261:
Thermal conductivity: theory, properties, and applications, edited by Terry Tritt, Kluwer Academic / Plenum Publishers, New York (2004),
2278: 695: 2640: 1483:, the heat capacity, mean free path and average speed of electrons are modified and the proportionality constant is then corrected to 2246: 525: 2384:
Wakeham, Nicholas; Bangura, Alimamy F.; Xu, Xiaofeng; Mercure, Jean-Francois; Greenblatt, Martha; Hussey, Nigel E. (2011-07-19).
1837: 1732:. At higher temperatures, the contribution of phonons to thermal transport in a system becomes important. This can lead to 1678: 2536: 1486: 1638:
in the figure). For each electron transported, a thermal excitation is also carried and the Lorenz number is reached
1424:{\displaystyle L=3\left({\frac {k_{\rm {B}}}{e}}\right)^{2}=2.22\times 10^{-8}\;\mathrm {V} ^{2}\mathrm {K} ^{-2},} 1219: 100: 2470: 748: 325: 915:{\displaystyle \langle v\rangle ={\sqrt {\frac {8k_{\rm {B}}T}{\pi m}}}={\sqrt {\frac {8}{3\pi }}}v_{\rm {rms}}} 380:
Qualitatively, this relationship is based upon the fact that the heat and electrical transport both involve the
2630: 1820: 1435: 1214: 599: 927: 689: 581: 404: 75: 1288: 1255: 1853: 1575: 791: 1762: 678:{\displaystyle {\frac {d\mathbf {v} }{dt}}=-{\frac {e\mathbf {E} }{m}}-{\frac {1}{\tau }}\mathbf {v} } 340:
has approximately the same value for different metals at the same temperature. The proportionality of
2485: 2449: 2397: 2320: 2130: 1627: 416: 67: 1652: 1549: 2316: 1480: 381: 1812:
also may decrease with temperature. In the purest samples of silver and at very low temperatures,
2607: 2573: 2517: 1868: 408: 306: 2360: 2157: 1867:
also found a large violation of the Wiedemann–Franz law near the insulator-metal transition in
2599: 2591: 2509: 2501: 2431: 2413: 2356: 2262: 2242: 2217: 2192: 2097: 2039: 1888: 314: 1649:. Note that in a perfect metal, inelastic scattering would be completely absent in the limit 2583: 2493: 2421: 2405: 2364: 2340: 2324: 2300: 2169: 2138: 1857: 424: 411:
Ohm's law is expressed here in bold face. The conductivity can in general be expressed as a
797: 1020:{\displaystyle \sigma ={\frac {ne^{2}\tau }{m}}={\frac {ne^{2}\ell }{m\langle v\rangle }}} 389: 17: 2489: 2401: 2134: 1630:. As the temperature tends to 0 K, inelastic scattering becomes weak and promotes large 30: 2426: 2385: 2090: 1884: 1782: 815: 589: 396: 1946:{\displaystyle {\frac {\kappa }{\sigma }}=L_{\text{M}}{\frac {\lambda }{k_{\rm {B}}}}} 2624: 2611: 2521: 2304: 2057: 349: 329: 2026:{\displaystyle L_{\text{M}}={\frac {1}{2}}\left({\frac {k_{\rm {B}}}{e}}\right)^{2}} 34:
Plot of the Wiedemann–Franz law for copper. Left axis: specific electric resistance
450: 431:
is the inverse of the conductivity. Both parameters will be used in the following.
2299:
K. Gloos, C. Mitschka, F. Pobell and P. Smeibidl. Cryogenics, 30 (1990), p. 14,
400: 2587: 2386:"Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor" 2344: 588:) once in a while which limits their free flight. This establishes an average or 2069: 1748: 934: 428: 87: 2561: 2368: 1766:
Sketch of the various scattering process important for the Wiedemann–Franz law.
2471:"Anomalously low electronic thermal conductivity in metallic vanadium dioxide" 1471:; the mean squared velocity of an electron is in fact about 100 times larger. 439: 2595: 2505: 2417: 2173: 2142: 2497: 2216:(Repr ed.). South Melbourne: Brooks/Cole Thomson Learning. p. 23. 446: 420: 321: 2603: 2513: 2435: 514:{\displaystyle \mathbf {F} =-e\mathbf {E} =m{\frac {\;d\mathbf {v} }{dt}}} 1891:
between molecular sites. The molecular Wiedemann-Franz law is given by
1805: 445:
The assumption is that the electrons move freely in the solid like in an
2409: 1751:
the phonon contribution to thermal transport is constant and the ratio
585: 59: 1781:, while roughly constant, is not exactly the same for all materials. 449:. The force applied to the electron by the electric field leads to an 360: 2328: 1801: 1623: 1318:, and also accidentally used a factor of 2. This meant his result is 412: 2537:"For This Metal, Electricity Flows, But Not the Heat | Berkeley Lab" 2118: 2578: 1761: 738:{\displaystyle \kappa ={\frac {1}{3}}cn\,\ell \,\langle v\rangle } 359: 83: 29: 2187:
Simon, Steven H. (2013). "3: Electrons in Metals: Drude Theory".
54:/ K in U/K, pink line. Lorenz number is more or less constant. 570:{\displaystyle \;d\mathbf {v} =-{\frac {e\mathbf {E} }{m}}dt} 2290:
Rosenberg, H. 2004. The Solid State. Oxford University Press
66:
states that the ratio of the electronic contribution of the
38:
in 10 Ω m, red line and specific thermal conductivity
1479:
After taking into account the quantum effects, as in the
368:
The arrows indicate the direction of the electric field
407:. Since the electric field and the current density are 2562:"Wiedemann–Franz Law for Molecular Hopping Transport" 2042: 1965: 1900: 1681: 1655: 1578: 1552: 1489: 1438: 1324: 1291: 1258: 1222: 1040: 946: 827: 800: 751: 698: 611: 528: 462: 153: 103: 1706:{\displaystyle \kappa \rightarrow 0;L\rightarrow 0} 1213:which is the Wiedemann–Franz law with an erroneous 2089: 2048: 2025: 1945: 1705: 1667: 1607: 1564: 1515: 1463: 1423: 1310: 1277: 1241: 1201: 1019: 914: 806: 782: 737: 677: 569: 513: 287: 125: 1516:{\displaystyle {\frac {\pi ^{2}}{3}}\approx 3.29} 602:as becomes evident from the following relations. 2560:Craven, Galen T.; Nitzan, Abraham (2020-02-12). 1622:: (i) other thermal carriers such as phonons or 1546:results from the fact that at low temperatures ( 2158:"Bestimmung der Wärmegrade in absolutem Maasse" 2119:"Ueber die Wärme-Leitungsfähigkeit der Metalle" 2379: 2377: 1793: = 2.23×10VK for copper at 0 °C to 395:is observed to be proportional to the applied 2239:Introduction to the Electron Theory of Metals 1242:{\displaystyle {\frac {4}{\pi }}\approx 1.27} 126:{\displaystyle {\frac {\kappa }{\sigma }}=LT} 8: 2212:Ashcroft, Neil W.; Mermin, N. David (2012). 1675:K and the thermal conductivity would vanish 1299: 1292: 1272: 1259: 1073: 1064: 1011: 1005: 834: 828: 732: 726: 136:Theoretically, the proportionality constant 2450:"Bristol physicists break 150-year-old law" 783:{\displaystyle c={\frac {3}{2}}k_{\rm {B}}} 1390: 1171: 529: 491: 364:Electric circuit with metal and a battery 251: 2577: 2425: 2088:Jones, William; March, Norman H. (1985). 2041: 2017: 2001: 2000: 1994: 1979: 1970: 1964: 1934: 1933: 1924: 1918: 1901: 1899: 1777:Experiments have shown that the value of 1680: 1654: 1588: 1577: 1551: 1523:, which agrees with experimental values. 1496: 1490: 1488: 1464:{\displaystyle {\frac {3}{2}}k_{\rm {B}}} 1454: 1453: 1439: 1437: 1409: 1404: 1397: 1392: 1381: 1362: 1346: 1345: 1339: 1323: 1302: 1290: 1266: 1257: 1223: 1221: 1190: 1185: 1178: 1173: 1162: 1141: 1127: 1121: 1120: 1113: 1103: 1091: 1076: 1067: 1063: 1054: 1041: 1039: 991: 981: 963: 953: 945: 899: 898: 877: 852: 851: 840: 826: 799: 773: 772: 758: 750: 725: 721: 705: 697: 670: 660: 646: 640: 618: 612: 610: 550: 544: 533: 527: 495: 488: 477: 463: 461: 273: 264: 258: 253: 242: 223: 207: 206: 200: 184: 178: 160: 152: 104: 102: 50:in 100 U/K, blue line and Lorenz number 2080: 2036:is the Lorenz number for molecules and 1863:A Berkeley-led study in 2016 by S. Lee 1816:can drop by as much as a factor of 10. 598:. The drift velocity is related to the 419:). Here we restrict the discussion to 2636:Electrical resistance and conductance 1311:{\displaystyle \langle v\rangle ^{2}} 1278:{\displaystyle \langle v^{2}\rangle } 42:in W/(K m), green line. Right axis: 7: 1608:{\displaystyle L=\kappa /(\sigma T)} 403:where the prefactor is the specific 2279:Introduction to Solid State Physics 2191:. Oxford: Oxford university press. 348:with temperature was discovered by 2002: 1935: 1615:from the theoretical Lorenz value 1455: 1405: 1393: 1347: 1252:In Drude's original paper he used 1186: 1174: 1122: 906: 903: 900: 853: 774: 269: 255: 208: 25: 2117:Franz, R.; Wiedemann, G. (1853). 372:and the electric current density 1838:lithium molybdenum purple bronze 671: 647: 619: 551: 534: 496: 478: 464: 2092:Theoretical Solid State Physics 2241:. CAMBRIDGE UNIVERSITY PRESS. 2096:. Courier Dover Publications. 1713:. At finite temperature small 1697: 1685: 1668:{\displaystyle T\rightarrow 0} 1659: 1634:scattering values (trajectory 1602: 1593: 1565:{\displaystyle T\rightarrow 0} 1556: 930:of the particles in the gas. 1: 2189:The Oxford solid state basics 2162:Annalen der Physik und Chemie 2588:10.1021/acs.nanolett.9b04070 2345:10.1016/j.mtphys.2019.01.001 2305:10.1016/0011-2275(90)90107-N 332:, who in 1853 reported that 1759:) is again found constant. 427:conductivity. The specific 2657: 2535:Yang, Sarah (2017-01-26). 2369:10.1016/j.mser.2009.10.001 2237:Mizutani, Uichiro (2003). 1883:In 2020, Galen Craven and 18:Wiedemann–Franz–Lorenz law 2641:Eponymous laws of physics 1821:degenerate semiconductors 1773:Limitations of the theory 2174:10.1002/andp.18722231107 2143:10.1002/andp.18531650802 2049:{\displaystyle \lambda } 1808:) however, the value of 1215:proportionality constant 415:of the second rank (3×3 2498:10.1126/science.aag0410 2060:for electron transfer. 818:of the electrons, and 690:kinetic theory of gases 600:average scattering time 405:electrical conductivity 86:is proportional to the 76:electrical conductivity 2050: 2027: 1947: 1854:spin-charge separation 1767: 1707: 1669: 1609: 1566: 1527:Temperature dependence 1517: 1465: 1425: 1312: 1279: 1243: 1203: 1021: 916: 808: 784: 739: 679: 571: 515: 435:Drude model derivation 377: 289: 127: 55: 2390:Nature Communications 2281:. John Wiley and Sons 2058:reorganization energy 2051: 2028: 1948: 1856:and it behaving as a 1785:gives some values of 1765: 1708: 1670: 1610: 1567: 1518: 1466: 1426: 1313: 1280: 1244: 1204: 1022: 917: 809: 807:{\displaystyle \ell } 785: 740: 680: 572: 516: 363: 290: 128: 33: 2040: 1963: 1898: 1823:, the Lorenz number 1679: 1653: 1628:Inelastic scattering 1576: 1550: 1487: 1436: 1322: 1289: 1256: 1220: 1038: 944: 825: 798: 749: 696: 609: 526: 460: 151: 101: 68:thermal conductivity 2490:2017Sci...355..371L 2402:2011NatCo...2..396W 2214:Solid state physics 2156:Lorenz, L. (1872). 2135:1853AnP...165..497F 1481:free electron model 1475:Free electron model 1132: 324:law is named after 64:Wiedemann–Franz law 2410:10.1038/ncomms1406 2277:Kittel, C., 2005. 2123:Annalen der Physik 2046: 2023: 1943: 1768: 1703: 1665: 1605: 1562: 1513: 1461: 1421: 1308: 1275: 1239: 1199: 1116: 1017: 912: 804: 780: 735: 675: 567: 511: 378: 307:Boltzmann constant 285: 123: 56: 2484:(6323): 371–374. 2317:M. S. Dresselhaus 2267:978-0-387-26017-4 2223:978-0-03-083993-1 2198:978-0-19-968077-1 2103:978-0-486-65016-6 2011: 1987: 1973: 1941: 1921: 1909: 1889:electron transfer 1879:Molecular systems 1749:Debye temperature 1740:) >  1725:) <  1505: 1447: 1356: 1231: 1147: 1111: 1098: 1049: 1015: 976: 892: 891: 872: 871: 766: 713: 668: 655: 632: 559: 509: 315:elementary charge 217: 193: 173: 112: 16:(Redirected from 2648: 2616: 2615: 2581: 2557: 2551: 2550: 2548: 2547: 2532: 2526: 2525: 2475: 2466: 2460: 2459: 2457: 2456: 2446: 2440: 2439: 2429: 2381: 2372: 2353: 2347: 2337: 2331: 2329:10.1039/b822664b 2319:, Z. F. Ren and 2313: 2307: 2297: 2291: 2288: 2282: 2275: 2269: 2259: 2253: 2252: 2234: 2228: 2227: 2209: 2203: 2202: 2184: 2178: 2177: 2153: 2147: 2146: 2114: 2108: 2107: 2095: 2085: 2055: 2053: 2052: 2047: 2032: 2030: 2029: 2024: 2022: 2021: 2016: 2012: 2007: 2006: 2005: 1995: 1988: 1980: 1975: 1974: 1971: 1952: 1950: 1949: 1944: 1942: 1940: 1939: 1938: 1925: 1923: 1922: 1919: 1910: 1902: 1858:Luttinger liquid 1712: 1710: 1709: 1704: 1674: 1672: 1671: 1666: 1614: 1612: 1611: 1606: 1592: 1571: 1569: 1568: 1563: 1545: 1543: 1522: 1520: 1519: 1514: 1506: 1501: 1500: 1491: 1470: 1468: 1467: 1462: 1460: 1459: 1458: 1448: 1440: 1430: 1428: 1427: 1422: 1417: 1416: 1408: 1402: 1401: 1396: 1389: 1388: 1367: 1366: 1361: 1357: 1352: 1351: 1350: 1340: 1317: 1315: 1314: 1309: 1307: 1306: 1284: 1282: 1281: 1276: 1271: 1270: 1248: 1246: 1245: 1240: 1232: 1224: 1208: 1206: 1205: 1200: 1198: 1197: 1189: 1183: 1182: 1177: 1170: 1169: 1148: 1146: 1145: 1136: 1131: 1126: 1125: 1114: 1112: 1104: 1099: 1097: 1096: 1095: 1082: 1081: 1080: 1071: 1055: 1050: 1042: 1026: 1024: 1023: 1018: 1016: 1014: 1000: 996: 995: 982: 977: 972: 968: 967: 954: 921: 919: 918: 913: 911: 910: 909: 893: 890: 879: 878: 873: 870: 862: 858: 857: 856: 842: 841: 813: 811: 810: 805: 789: 787: 786: 781: 779: 778: 777: 767: 759: 744: 742: 741: 736: 714: 706: 684: 682: 681: 676: 674: 669: 661: 656: 651: 650: 641: 633: 631: 623: 622: 613: 576: 574: 573: 568: 560: 555: 554: 545: 537: 520: 518: 517: 512: 510: 508: 500: 499: 489: 481: 467: 326:Gustav Wiedemann 294: 292: 291: 286: 281: 280: 272: 268: 263: 262: 250: 249: 228: 227: 222: 218: 213: 212: 211: 201: 194: 189: 188: 179: 174: 172: 161: 132: 130: 129: 124: 113: 105: 21: 2656: 2655: 2651: 2650: 2649: 2647: 2646: 2645: 2631:Heat conduction 2621: 2620: 2619: 2559: 2558: 2554: 2545: 2543: 2534: 2533: 2529: 2473: 2468: 2467: 2463: 2454: 2452: 2448: 2447: 2443: 2383: 2382: 2375: 2354: 2350: 2338: 2334: 2315:A. J. Minnich, 2314: 2310: 2298: 2294: 2289: 2285: 2276: 2272: 2260: 2256: 2249: 2236: 2235: 2231: 2224: 2211: 2210: 2206: 2199: 2186: 2185: 2181: 2168:(11): 429–452. 2155: 2154: 2150: 2116: 2115: 2111: 2104: 2087: 2086: 2082: 2078: 2066: 2038: 2037: 1996: 1990: 1989: 1966: 1961: 1960: 1929: 1914: 1896: 1895: 1881: 1872: 1851: 1847: 1843: 1834: 1775: 1746: 1731: 1677: 1676: 1651: 1650: 1648: 1621: 1574: 1573: 1548: 1547: 1541: 1539: 1537: 1529: 1492: 1485: 1484: 1477: 1449: 1434: 1433: 1403: 1391: 1377: 1341: 1335: 1334: 1320: 1319: 1298: 1287: 1286: 1262: 1254: 1253: 1218: 1217: 1184: 1172: 1158: 1137: 1115: 1087: 1083: 1072: 1056: 1036: 1035: 1001: 987: 983: 959: 955: 942: 941: 894: 883: 863: 847: 843: 823: 822: 796: 795: 768: 747: 746: 694: 693: 642: 624: 614: 607: 606: 597: 546: 524: 523: 501: 490: 458: 457: 437: 390:current density 358: 304: 254: 252: 238: 202: 196: 195: 180: 165: 149: 148: 140:, known as the 99: 98: 28: 23: 22: 15: 12: 11: 5: 2654: 2652: 2644: 2643: 2638: 2633: 2623: 2622: 2618: 2617: 2572:(2): 989–993. 2552: 2527: 2461: 2441: 2373: 2348: 2332: 2308: 2292: 2283: 2270: 2254: 2247: 2229: 2222: 2204: 2197: 2179: 2148: 2129:(8): 497–531. 2109: 2102: 2079: 2077: 2074: 2073: 2072: 2065: 2062: 2045: 2034: 2033: 2020: 2015: 2010: 2004: 1999: 1993: 1986: 1983: 1978: 1969: 1954: 1953: 1937: 1932: 1928: 1917: 1913: 1908: 1905: 1885:Abraham Nitzan 1880: 1877: 1870: 1849: 1845: 1841: 1833: 1830: 1774: 1771: 1744: 1729: 1702: 1699: 1696: 1693: 1690: 1687: 1684: 1664: 1661: 1658: 1646: 1619: 1604: 1601: 1598: 1595: 1591: 1587: 1584: 1581: 1561: 1558: 1555: 1535: 1528: 1525: 1512: 1509: 1504: 1499: 1495: 1476: 1473: 1457: 1452: 1446: 1443: 1420: 1415: 1412: 1407: 1400: 1395: 1387: 1384: 1380: 1376: 1373: 1370: 1365: 1360: 1355: 1349: 1344: 1338: 1333: 1330: 1327: 1305: 1301: 1297: 1294: 1274: 1269: 1265: 1261: 1238: 1235: 1230: 1227: 1211: 1210: 1196: 1193: 1188: 1181: 1176: 1168: 1165: 1161: 1157: 1154: 1151: 1144: 1140: 1135: 1130: 1124: 1119: 1110: 1107: 1102: 1094: 1090: 1086: 1079: 1075: 1070: 1066: 1062: 1059: 1053: 1048: 1045: 1029: 1028: 1013: 1010: 1007: 1004: 999: 994: 990: 986: 980: 975: 971: 966: 962: 958: 952: 949: 924: 923: 908: 905: 902: 897: 889: 886: 882: 876: 869: 866: 861: 855: 850: 846: 839: 836: 833: 830: 816:mean free path 803: 794:per electron, 776: 771: 765: 762: 757: 754: 734: 731: 728: 724: 720: 717: 712: 709: 704: 701: 686: 685: 673: 667: 664: 659: 654: 649: 645: 639: 636: 630: 627: 621: 617: 595: 590:drift velocity 578: 577: 566: 563: 558: 553: 549: 543: 540: 536: 532: 521: 507: 504: 498: 494: 487: 484: 480: 476: 473: 470: 466: 436: 433: 397:electric field 384:in the metal. 382:free electrons 357: 354: 302: 296: 295: 284: 279: 276: 271: 267: 261: 257: 248: 245: 241: 237: 234: 231: 226: 221: 216: 210: 205: 199: 192: 187: 183: 177: 171: 168: 164: 159: 156: 144:, is equal to 134: 133: 122: 119: 116: 111: 108: 27:Law of physics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2653: 2642: 2639: 2637: 2634: 2632: 2629: 2628: 2626: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2580: 2575: 2571: 2567: 2563: 2556: 2553: 2542: 2538: 2531: 2528: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2472: 2465: 2462: 2451: 2445: 2442: 2437: 2433: 2428: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2380: 2378: 2374: 2370: 2366: 2362: 2358: 2352: 2349: 2346: 2342: 2336: 2333: 2330: 2326: 2322: 2318: 2312: 2309: 2306: 2302: 2296: 2293: 2287: 2284: 2280: 2274: 2271: 2268: 2264: 2258: 2255: 2250: 2248:9780511612626 2244: 2240: 2233: 2230: 2225: 2219: 2215: 2208: 2205: 2200: 2194: 2190: 2183: 2180: 2175: 2171: 2167: 2164:(in German). 2163: 2159: 2152: 2149: 2144: 2140: 2136: 2132: 2128: 2125:(in German). 2124: 2120: 2113: 2110: 2105: 2099: 2094: 2093: 2084: 2081: 2075: 2071: 2068: 2067: 2063: 2061: 2059: 2043: 2018: 2013: 2008: 1997: 1991: 1984: 1981: 1976: 1967: 1959: 1958: 1957: 1930: 1926: 1915: 1911: 1906: 1903: 1894: 1893: 1892: 1890: 1886: 1878: 1876: 1873: 1866: 1861: 1859: 1855: 1839: 1831: 1829: 1826: 1822: 1817: 1815: 1811: 1807: 1803: 1798: 1796: 1792: 1789:ranging from 1788: 1784: 1780: 1772: 1770: 1764: 1760: 1758: 1754: 1750: 1743: 1739: 1735: 1728: 1724: 1720: 1716: 1700: 1694: 1691: 1688: 1682: 1662: 1656: 1645: 1642: =  1641: 1637: 1633: 1629: 1625: 1618: 1599: 1596: 1589: 1585: 1582: 1579: 1559: 1553: 1534: 1526: 1524: 1510: 1507: 1502: 1497: 1493: 1482: 1474: 1472: 1450: 1444: 1441: 1418: 1413: 1410: 1398: 1385: 1382: 1378: 1374: 1371: 1368: 1363: 1358: 1353: 1342: 1336: 1331: 1328: 1325: 1303: 1295: 1267: 1263: 1250: 1236: 1233: 1228: 1225: 1216: 1194: 1191: 1179: 1166: 1163: 1159: 1155: 1152: 1149: 1142: 1138: 1133: 1128: 1117: 1108: 1105: 1100: 1092: 1088: 1084: 1077: 1068: 1060: 1057: 1051: 1046: 1043: 1034: 1033: 1032: 1008: 1002: 997: 992: 988: 984: 978: 973: 969: 964: 960: 956: 950: 947: 940: 939: 938: 936: 931: 929: 928:average speed 895: 887: 884: 880: 874: 867: 864: 859: 848: 844: 837: 831: 821: 820: 819: 817: 801: 793: 792:heat capacity 769: 763: 760: 755: 752: 729: 722: 718: 715: 710: 707: 702: 699: 691: 665: 662: 657: 652: 643: 637: 634: 628: 625: 615: 605: 604: 603: 601: 594: 591: 587: 583: 564: 561: 556: 547: 541: 538: 530: 522: 505: 502: 492: 485: 482: 474: 471: 468: 456: 455: 454: 453:according to 452: 448: 443: 441: 434: 432: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 391: 385: 383: 375: 371: 367: 362: 355: 353: 351: 350:Ludvig Lorenz 347: 343: 339: 335: 331: 330:Rudolph Franz 327: 323: 318: 316: 312: 308: 301: 282: 277: 274: 265: 259: 246: 243: 239: 235: 232: 229: 224: 219: 214: 203: 197: 190: 185: 181: 175: 169: 166: 162: 157: 154: 147: 146: 145: 143: 142:Lorenz number 139: 120: 117: 114: 109: 106: 97: 96: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 53: 52:ρ λ 49: 45: 41: 37: 32: 19: 2569: 2566:Nano Letters 2565: 2555: 2544:. Retrieved 2540: 2530: 2481: 2477: 2464: 2453:. Retrieved 2444: 2393: 2389: 2351: 2335: 2311: 2295: 2286: 2273: 2257: 2238: 2232: 2213: 2207: 2188: 2182: 2165: 2161: 2151: 2126: 2122: 2112: 2091: 2083: 2035: 1955: 1882: 1864: 1862: 1835: 1824: 1818: 1813: 1809: 1799: 1794: 1790: 1786: 1778: 1776: 1769: 1756: 1752: 1747:. Above the 1741: 1737: 1733: 1726: 1722: 1718: 1714: 1643: 1639: 1635: 1631: 1616: 1532: 1530: 1478: 1251: 1212: 1031:Therefore, 1030: 932: 925: 687: 592: 579: 451:acceleration 444: 438: 399:and follows 392: 386: 379: 373: 369: 365: 345: 341: 337: 333: 319: 310: 299: 297: 141: 137: 135: 91: 79: 71: 63: 57: 51: 47: 43: 39: 35: 2541:News Center 2070:Drude model 1544:10 V⋅K 1285:instead of 935:Drude model 429:resistivity 88:temperature 2625:Categories 2579:1909.06220 2546:2017-01-28 2455:2017-01-28 2076:References 1832:Violations 1531:The value 440:Paul Drude 356:Derivation 2612:202572812 2596:1530-6984 2522:206650639 2506:0036-8075 2418:2041-1723 2361:0927-796X 2044:λ 1927:λ 1907:σ 1904:κ 1698:→ 1686:→ 1683:κ 1660:→ 1597:σ 1586:κ 1557:→ 1508:≈ 1494:π 1411:− 1383:− 1375:× 1300:⟩ 1293:⟨ 1273:⟩ 1260:⟨ 1234:≈ 1229:π 1192:− 1164:− 1156:× 1109:π 1074:⟩ 1065:⟨ 1047:σ 1044:κ 1012:⟩ 1006:⟨ 998:ℓ 970:τ 948:σ 933:From the 888:π 865:π 835:⟩ 829:⟨ 802:ℓ 733:⟩ 727:⟨ 723:ℓ 700:κ 666:τ 658:− 638:− 542:− 472:− 447:ideal gas 421:isotropic 401:Ohm's law 352:in 1872. 322:empirical 275:− 266:⋅ 244:− 236:× 182:π 167:σ 163:κ 110:σ 107:κ 74:) to the 2604:31951422 2514:28126811 2436:21772267 2064:See also 1806:aluminum 1538: = 745:, where 2486:Bibcode 2478:Science 2427:3144592 2398:Bibcode 2396:: 396. 2321:G. Chen 2131:Bibcode 2056:is the 1626:, (ii) 1624:magnons 926:is the 814:is the 790:is the 586:phonons 582:defects 423:, i.e. 409:vectors 313:is the 305:is the 82:) of a 60:physics 2610:  2602:  2594:  2520:  2512:  2504:  2434:  2424:  2416:  2359:  2265:  2245:  2220:  2195:  2100:  1956:where 1865:et al. 1802:silver 1783:Kittel 425:scalar 417:matrix 413:tensor 346:σ 342:κ 338:σ 334:κ 298:where 80:σ 72:κ 62:, the 48:λ 46:times 44:ρ 40:λ 36:ρ 2608:S2CID 2574:arXiv 2518:S2CID 2474:(PDF) 688:From 320:This 84:metal 2600:PMID 2592:ISSN 2510:PMID 2502:ISSN 2432:PMID 2414:ISSN 2357:ISSN 2263:ISBN 2243:ISBN 2218:ISBN 2193:ISBN 2098:ISBN 1540:2.44 1511:3.29 1372:2.22 1237:1.27 1153:0.94 937:, 328:and 309:and 233:2.44 2584:doi 2494:doi 2482:355 2422:PMC 2406:doi 2365:doi 2341:doi 2325:doi 2301:doi 2170:doi 2166:223 2139:doi 2127:165 1842:0.9 1819:In 1804:or 1249:. 584:or 94:). 58:In 2627:: 2606:. 2598:. 2590:. 2582:. 2570:20 2568:. 2564:. 2539:. 2516:. 2508:. 2500:. 2492:. 2480:. 2476:. 2430:. 2420:. 2412:. 2404:. 2392:. 2388:. 2376:^ 2363:, 2160:. 2137:. 2121:. 1869:VO 1860:. 1850:17 1844:Mo 1840:Li 1379:10 1160:10 692:, 366:U. 317:. 240:10 2614:. 2586:: 2576:: 2549:. 2524:. 2496:: 2488:: 2458:. 2438:. 2408:: 2400:: 2394:2 2371:. 2367:: 2343:: 2327:: 2303:: 2251:. 2226:. 2201:. 2176:. 2172:: 2145:. 2141:: 2133:: 2106:. 2019:2 2014:) 2009:e 2003:B 1998:k 1992:( 1985:2 1982:1 1977:= 1972:M 1968:L 1936:B 1931:k 1920:M 1916:L 1912:= 1871:2 1848:O 1846:6 1825:L 1814:L 1810:L 1795:L 1791:L 1787:L 1779:L 1757:T 1755:( 1753:L 1745:0 1742:L 1738:T 1736:( 1734:L 1730:0 1727:L 1723:T 1721:( 1719:L 1715:q 1701:0 1695:L 1692:; 1689:0 1663:0 1657:T 1647:0 1644:L 1640:L 1636:a 1632:q 1620:0 1617:L 1603:) 1600:T 1594:( 1590:/ 1583:= 1580:L 1560:0 1554:T 1542:× 1536:0 1533:L 1503:3 1498:2 1456:B 1451:k 1445:2 1442:3 1419:, 1414:2 1406:K 1399:2 1394:V 1386:8 1369:= 1364:2 1359:) 1354:e 1348:B 1343:k 1337:( 1332:3 1329:= 1326:L 1304:2 1296:v 1268:2 1264:v 1226:4 1209:, 1195:2 1187:K 1180:2 1175:V 1167:8 1150:= 1143:2 1139:e 1134:T 1129:2 1123:B 1118:k 1106:4 1101:= 1093:2 1089:e 1085:3 1078:2 1069:v 1061:m 1058:c 1052:= 1027:. 1009:v 1003:m 993:2 989:e 985:n 979:= 974:m 965:2 961:e 957:n 951:= 922:, 907:s 904:m 901:r 896:v 885:3 881:8 875:= 868:m 860:T 854:B 849:k 845:8 838:= 832:v 775:B 770:k 764:2 761:3 756:= 753:c 730:v 719:n 716:c 711:3 708:1 703:= 672:v 663:1 653:m 648:E 644:e 635:= 629:t 626:d 620:v 616:d 596:d 593:V 565:t 562:d 557:m 552:E 548:e 539:= 535:v 531:d 506:t 503:d 497:v 493:d 486:m 483:= 479:E 475:e 469:= 465:F 393:j 376:. 374:j 370:E 344:/ 336:/ 311:e 303:B 300:k 283:, 278:2 270:K 260:2 256:V 247:8 230:= 225:2 220:) 215:e 209:B 204:k 198:( 191:3 186:2 176:= 170:T 158:= 155:L 138:L 121:T 118:L 115:= 92:T 90:( 78:( 70:( 20:)

Index

Wiedemann–Franz–Lorenz law

physics
thermal conductivity
electrical conductivity
metal
temperature
Boltzmann constant
elementary charge
empirical
Gustav Wiedemann
Rudolph Franz
Ludvig Lorenz

free electrons
current density
electric field
Ohm's law
electrical conductivity
vectors
tensor
matrix
isotropic
scalar
resistivity
Paul Drude
ideal gas
acceleration
defects
phonons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.