Knowledge

Wijsman convergence

Source 📝

527: 189: 298: 413: 673: 734: 57: 729: 119: 750: 237: 569: 394: 724: 548: 390: 32: 20: 668:. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii+340. 400:
If the pointwise convergence of Wijsman convergence is replaced by uniform convergence (uniformly in
48: 66: 36: 52: 627: 564: 650:
Z. Frolík, Concerning topological convergence of sets, Czechoskovak Math. J. 10 (1960), 168–180
328:. Even if two metrics are uniformly equivalent, they may generate different Wijsman topologies. 669: 574: 195: 698: 617: 28: 710: 683: 639: 707: 680: 636: 366: 347: 579: 382: 343: 744: 24: 355: 522:{\displaystyle d_{\mathrm {H} }(A,B)=\sup _{x\in X}{\big |}d(x,A)-d(x,B){\big |}.} 404:), then one obtains Hausdorff convergence, where the Hausdorff metric is given by 304: 702: 631: 622: 605: 606:"Convergence of sequences of convex sets, cones and functions. II" 358:, i.e. it is separable and metrizable with a complete metric. 27:. Intuitively, Wijsman convergence is to convergence in the 324:
The Wijsman topology depends very strongly on the metric
689:
Beer, Gerald (1994). "Wijsman convergence: a survey".
416: 240: 122: 521: 292: 183: 448: 145: 511: 465: 8: 184:{\displaystyle d(x,A)=\inf _{a\in A}d(x,a).} 666:Topologies on closed and closed convex sets 616:(1). American Mathematical Society: 32–45. 535:The Hausdorff and Wijsman topologies on Cl( 51:. The same definition was used earlier by 621: 510: 509: 464: 463: 451: 422: 421: 415: 257: 239: 148: 121: 365:) with the Wijsman topology is always a 596: 69:it is the same as Wijsman convergence. 293:{\displaystyle d(x,A_{i})\to d(x,A).} 55:. Yet earlier, Hausdorff in his book 7: 423: 14: 354:) with the Wijsman topology is a 89:) denote the collection of all 85:) be a metric space and let Cl( 47:The convergence was defined by 506: 494: 485: 473: 441: 429: 303:Wijsman convergence induces a 284: 272: 266: 263: 244: 175: 163: 138: 126: 1: 730:Encyclopedia of Mathematics 604:Wijsman, Robert A. (1966). 539:) coincide if and only if ( 767: 58:Grundzüge der Mengenlehre 389:) is either metrizable, 369:. Moreover, one has the 723:Som Naimpally (2001) , 23:suitable for work with 610:Trans. Amer. Math. Soc 570:Kuratowski convergence 523: 350:metric space, then Cl( 294: 185: 725:"Wijsman convergence" 664:Beer, Gerald (1993). 549:totally bounded space 524: 371:Levi-Lechicki theorem 295: 186: 33:pointwise convergence 21:Hausdorff convergence 414: 238: 120: 67:proper metric spaces 93:-closed subsets of 37:uniform convergence 17:Wijsman convergence 703:10.1007/BF01027094 565:Hausdorff distance 519: 462: 290: 213:Wijsman convergent 181: 159: 61:defined so called 19:is a variation of 575:Vietoris topology 447: 144: 758: 737: 706: 679: 651: 648: 642: 635: 625: 601: 528: 526: 525: 520: 515: 514: 469: 468: 461: 428: 427: 426: 395:second-countable 313:Wijsman topology 311:), known as the 299: 297: 296: 291: 262: 261: 219: ∈ Cl( 211:) is said to be 207: ∈ Cl( 190: 188: 187: 182: 158: 109: ∈ Cl( 29:Hausdorff metric 766: 765: 761: 760: 759: 757: 756: 755: 751:Metric geometry 741: 740: 722: 719: 691:Set-Valued Anal 688: 676: 663: 655: 654: 649: 645: 623:10.2307/1994611 603: 602: 598: 588: 561: 555: 417: 412: 411: 391:first-countable 381:) is separable 367:Tychonoff space 321: 253: 236: 235: 223:) if, for each 206: 194:A sequence (or 118: 117: 75: 45: 12: 11: 5: 764: 762: 754: 753: 743: 742: 739: 738: 718: 717:External links 715: 714: 713: 697:(1–2): 77–94. 686: 674: 660: 659: 653: 652: 643: 595: 594: 593: 592: 587: 584: 583: 582: 580:Hemicontinuity 577: 572: 567: 560: 557: 553: 552: 532: 531: 530: 529: 518: 513: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 475: 472: 467: 460: 457: 454: 450: 446: 443: 440: 437: 434: 431: 425: 420: 406: 405: 398: 383:if and only if 359: 332:Beer's theorem 329: 320: 317: 301: 300: 289: 286: 283: 280: 277: 274: 271: 268: 265: 260: 256: 252: 249: 246: 243: 202: 192: 191: 180: 177: 174: 171: 168: 165: 162: 157: 154: 151: 147: 143: 140: 137: 134: 131: 128: 125: 97:. For a point 74: 71: 49:Robert Wijsman 44: 41: 25:unbounded sets 13: 10: 9: 6: 4: 3: 2: 763: 752: 749: 748: 746: 736: 732: 731: 726: 721: 720: 716: 712: 709: 704: 700: 696: 692: 687: 685: 682: 677: 675:0-7923-2531-1 671: 667: 662: 661: 657: 656: 647: 644: 641: 638: 633: 629: 624: 619: 615: 611: 607: 600: 597: 590: 589: 585: 581: 578: 576: 573: 571: 568: 566: 563: 562: 558: 556: 550: 546: 542: 538: 534: 533: 516: 503: 500: 497: 491: 488: 482: 479: 476: 470: 458: 455: 452: 444: 438: 435: 432: 418: 410: 409: 408: 407: 403: 399: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 357: 353: 349: 345: 341: 337: 333: 330: 327: 323: 322: 318: 316: 314: 310: 306: 287: 281: 278: 275: 269: 258: 254: 250: 247: 241: 234: 233: 232: 230: 227: ∈  226: 222: 218: 214: 210: 205: 201: 197: 178: 172: 169: 166: 160: 155: 152: 149: 141: 135: 132: 129: 123: 116: 115: 114: 112: 108: 104: 101: ∈  100: 96: 92: 88: 84: 80: 72: 70: 68: 64: 63:closed limits 60: 59: 54: 53:Zdeněk Frolík 50: 42: 40: 38: 34: 30: 26: 22: 18: 728: 694: 690: 665: 658:Bibliography 646: 613: 609: 599: 554: 544: 540: 536: 401: 386: 378: 374: 370: 362: 356:Polish space 351: 339: 335: 331: 325: 312: 308: 302: 228: 224: 220: 216: 212: 208: 203: 199: 193: 110: 106: 102: 98: 94: 90: 86: 82: 78: 76: 62: 56: 46: 16: 15: 586:References 319:Properties 198:) of sets 105:and a set 73:Definition 735:EMS Press 489:− 456:∈ 348:separable 267:→ 153:∈ 745:Category 559:See also 344:complete 305:topology 711:1285822 684:1269778 640:0196599 632:1994611 547:) is a 543:,  377:,  342:) is a 338:,  113:), set 81:,  43:History 672:  630:  334:: if ( 307:on Cl( 65:; for 35:is to 628:JSTOR 591:Notes 77:Let ( 670:ISBN 699:doi 618:doi 614:123 449:sup 393:or 385:Cl( 373:: ( 361:Cl( 215:to 196:net 146:inf 31:as 747:: 733:, 727:, 708:MR 693:. 681:MR 637:MR 626:. 612:. 608:. 346:, 315:. 231:, 39:. 705:. 701:: 695:2 678:. 634:. 620:: 551:. 545:d 541:X 537:X 517:. 512:| 507:) 504:B 501:, 498:x 495:( 492:d 486:) 483:A 480:, 477:x 474:( 471:d 466:| 459:X 453:x 445:= 442:) 439:B 436:, 433:A 430:( 424:H 419:d 402:x 397:. 387:X 379:d 375:X 363:X 352:X 340:d 336:X 326:d 309:X 288:. 285:) 282:A 279:, 276:x 273:( 270:d 264:) 259:i 255:A 251:, 248:x 245:( 242:d 229:X 225:x 221:X 217:A 209:X 204:i 200:A 179:. 176:) 173:a 170:, 167:x 164:( 161:d 156:A 150:a 142:= 139:) 136:A 133:, 130:x 127:( 124:d 111:X 107:A 103:X 99:x 95:X 91:d 87:X 83:d 79:X

Index

Hausdorff convergence
unbounded sets
Hausdorff metric
pointwise convergence
uniform convergence
Robert Wijsman
Zdeněk Frolík
Grundzüge der Mengenlehre
proper metric spaces
net
topology
complete
separable
Polish space
Tychonoff space
if and only if
first-countable
second-countable
totally bounded space
Hausdorff distance
Kuratowski convergence
Vietoris topology
Hemicontinuity
"Convergence of sequences of convex sets, cones and functions. II"
doi
10.2307/1994611
JSTOR
1994611
MR
0196599

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.