Knowledge (XXG)

Wirtinger presentation

Source 📝

327:. Such a projection can be pictured as a finite number of (oriented) arcs in the plane, separated by the crossings of the projection. The fundamental group is generated by loops winding around each arc. Each crossing gives rise to a certain relation among the generators corresponding to the arcs meeting at the crossing. 508: 380:
Conditions (3) and (4) are essentially the Wirtinger presentation condition, restated. Kervaire proved in dimensions 5 and larger that the above conditions are necessary and sufficient. Characterizing knot groups in dimension four is an open problem.
177: 306: 399: 89: 254: 347:
proved that an abstract group is the fundamental group of a knot exterior (in a perhaps high-dimensional sphere) if and only if all the following conditions are satisfied:
109: 571: 544: 223:, which does not make a difference for the purposes of the Wirtinger presentation.) The open subspace which is the complement of the knot, 597: 114: 262: 503:{\displaystyle \pi _{1}(\mathbb {R} ^{3}\backslash {\text{trefoil}})=\langle x,y\mid (xy)^{-1}yxy=x\rangle .} 366: 187: 32: 38: 226: 624: 352: 336: 204: 593: 567: 540: 373: 257: 191: 179: 585: 559: 359: 309: 344: 183: 94: 618: 324: 532: 390: 24: 20: 563: 519: 313: 316:. It is therefore interesting to understand this group in an accessible way. 219:. (Alternatively, the ambient space can also be taken to be the three-sphere 539:, Mathematics Lecture Series, vol. 7, Houston, TX: Publish or Perish, 589: 340: 584:, Series on Knots and Everything, vol. 52, World Scientific, 428: 402: 265: 229: 117: 97: 41: 502: 300: 248: 171: 103: 83: 331:Wirtinger presentations of high-dimensional knots 393:, a Wirtinger presentation can be shown to be 308:is an invariant of the knot in the sense that 172:{\displaystyle \{g_{1},g_{2},\ldots ,g_{k}\}.} 8: 494: 442: 163: 118: 343:are known to have Wirtinger presentations. 323:is derived from a regular projection of an 301:{\displaystyle \pi _{1}(S^{3}\setminus K)} 610:, The Mathematical Association of America 470: 431: 422: 418: 417: 407: 401: 283: 270: 264: 234: 228: 157: 138: 125: 116: 96: 75: 59: 49: 40: 16:Group presentations useful in knot theory 289: 240: 7: 35:where the relations are of the form 211:is an embedding of the one-sphere 84:{\displaystyle wg_{i}w^{-1}=g_{j}} 14: 335:More generally, co-dimension two 194:with presentations of this form. 249:{\displaystyle S^{3}\setminus K} 467: 457: 436: 413: 295: 276: 1: 582:Algebraic invariants of links 355:of the group is the integers. 111:is a word in the generators, 606:Livingston, Charles (1993), 256:is the knot complement. Its 198:Preliminaries and definition 215:in three-dimensional space 641: 580:Hillman, Jonathan (2012), 564:10.1007/978-3-0348-9227-8 362:of the group is trivial. 556:A survey of knot theory 554:Kawauchi, Akio (1996), 504: 376:of a single generator. 365:The group is finitely 321:Wirtinger presentation 302: 250: 173: 105: 85: 29:Wirtinger presentation 590:10.1142/9789814407397 505: 303: 251: 174: 106: 86: 400: 263: 227: 184:complements of knots 115: 95: 39: 500: 298: 246: 192:fundamental groups 182:observed that the 169: 101: 81: 573:978-3-0348-9953-6 546:978-0-914098-16-4 434: 372:The group is the 258:fundamental group 180:Wilhelm Wirtinger 104:{\displaystyle w} 632: 611: 602: 576: 549: 509: 507: 506: 501: 478: 477: 435: 432: 427: 426: 421: 412: 411: 312:have isomorphic 310:equivalent knots 307: 305: 304: 299: 288: 287: 275: 274: 255: 253: 252: 247: 239: 238: 178: 176: 175: 170: 162: 161: 143: 142: 130: 129: 110: 108: 107: 102: 90: 88: 87: 82: 80: 79: 67: 66: 54: 53: 23:, especially in 640: 639: 635: 634: 633: 631: 630: 629: 615: 614: 605: 600: 579: 574: 553: 547: 537:Knots and links 531: 528: 526:Further reading 516: 466: 416: 403: 398: 397: 387: 345:Michel Kervaire 333: 279: 266: 261: 260: 230: 225: 224: 200: 153: 134: 121: 113: 112: 93: 92: 71: 55: 45: 37: 36: 17: 12: 11: 5: 638: 636: 628: 627: 617: 616: 613: 612: 603: 598: 577: 572: 558:, Birkhäuser, 551: 545: 527: 524: 523: 522: 515: 512: 511: 510: 499: 496: 493: 490: 487: 484: 481: 476: 473: 469: 465: 462: 459: 456: 453: 450: 447: 444: 441: 438: 430: 425: 420: 415: 410: 406: 386: 383: 378: 377: 374:normal closure 370: 363: 356: 353:abelianization 332: 329: 297: 294: 291: 286: 282: 278: 273: 269: 245: 242: 237: 233: 199: 196: 168: 165: 160: 156: 152: 149: 146: 141: 137: 133: 128: 124: 120: 100: 78: 74: 70: 65: 62: 58: 52: 48: 44: 15: 13: 10: 9: 6: 4: 3: 2: 637: 626: 623: 622: 620: 609: 604: 601: 599:9789814407397 595: 591: 587: 583: 578: 575: 569: 565: 561: 557: 552: 548: 542: 538: 534: 533:Rolfsen, Dale 530: 529: 525: 521: 518: 517: 513: 497: 491: 488: 485: 482: 479: 474: 471: 463: 460: 454: 451: 448: 445: 439: 423: 408: 404: 396: 395: 394: 392: 384: 382: 375: 371: 368: 364: 361: 357: 354: 350: 349: 348: 346: 342: 338: 330: 328: 326: 325:oriented knot 322: 317: 315: 311: 292: 284: 280: 271: 267: 259: 243: 235: 231: 222: 218: 214: 210: 207: 206: 197: 195: 193: 189: 185: 181: 166: 158: 154: 150: 147: 144: 139: 135: 131: 126: 122: 98: 76: 72: 68: 63: 60: 56: 50: 46: 42: 34: 30: 26: 22: 607: 581: 555: 550:, section 3D 536: 391:trefoil knot 388: 379: 334: 320: 318: 220: 216: 212: 208: 203: 201: 33:presentation 31:is a finite 28: 25:group theory 18: 625:Knot theory 608:Knot Theory 314:knot groups 21:mathematics 520:Knot group 495:⟩ 472:− 455:∣ 443:⟨ 429:∖ 405:π 367:presented 290:∖ 268:π 241:∖ 148:… 61:− 619:Category 535:(1990), 514:See also 389:For the 385:Examples 360:homology 358:The 2nd 433:trefoil 341:spheres 188:3-space 596:  570:  543:  91:where 337:knots 190:have 594:ISBN 568:ISBN 541:ISBN 351:The 205:knot 27:, a 586:doi 560:doi 339:in 186:in 19:In 621:: 592:, 566:, 319:A 202:A 588:: 562:: 498:. 492:x 489:= 486:y 483:x 480:y 475:1 468:) 464:y 461:x 458:( 452:y 449:, 446:x 440:= 437:) 424:3 419:R 414:( 409:1 369:. 296:) 293:K 285:3 281:S 277:( 272:1 244:K 236:3 232:S 221:S 217:R 213:S 209:K 167:. 164:} 159:k 155:g 151:, 145:, 140:2 136:g 132:, 127:1 123:g 119:{ 99:w 77:j 73:g 69:= 64:1 57:w 51:i 47:g 43:w

Index

mathematics
group theory
presentation
Wilhelm Wirtinger
complements of knots
3-space
fundamental groups
knot
fundamental group
equivalent knots
knot groups
oriented knot
knots
spheres
Michel Kervaire
abelianization
homology
presented
normal closure
trefoil knot
Knot group
Rolfsen, Dale
ISBN
978-0-914098-16-4
doi
10.1007/978-3-0348-9227-8
ISBN
978-3-0348-9953-6
doi
10.1142/9789814407397

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.