Knowledge (XXG)

Zariski's main theorem

Source đź“ť

42:
Zariski's main theorem can be stated in several ways which at first sight seem to be quite different, but are in fact deeply related. Some of the variations that have been called Zariski's main theorem are as follows:
145: 366: 294: 246: 757: 202: 35:), is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of 721: 1041:ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique (rĂ©digĂ©s avec la collaboration de Jean DieudonnĂ©) : IV. Étude locale des schĂ©mas et des morphismes de schĂ©mas, Troisième partie 591:
has 2 irreducible components meeting at a point. As predicted by Hartshorne's form of the main theorem, the total transform is connected and of dimension at least 1.
176: 1027:
ElĂ©ments de gĂ©omĂ©trie algĂ©brique (rĂ©digĂ©s avec la collaboration de Jean DieudonnĂ©) : III. Étude cohomologique des faisceaux cohĂ©rents, Première partie
1089:, Lecture Notes in Mathematics, vol. 1358 (expanded, Includes Michigan Lectures (1974) on Curves and their Jacobians ed.), Berlin, New York: 975: 1304: 980: 933:
The property of being normal is stronger than the property of being unibranch: for example, a cusp of a plane curve is unibranch but not normal.
575:
was irreducible. It is easy to find examples where the total transform is reducible by blowing up other points on the transform. For example, if
1164: 1106: 1065: 50:
The total transform of a normal fundamental point of a birational map has positive dimension. This is essentially Zariski's original version.
36: 675:
are quasi-finite. Grothendieck proved that under the hypothesis of separatedness all quasi-finite morphisms are compositions of such
663:
In EGA IV, Grothendieck observed that the last statement could be deduced from a more general theorem about the structure of
1014: 667:, and the latter is often referred to as the "Zariski's main theorem in the form of Grothendieck". It is well known that 490:
is a birational projective morphism between noetherian integral schemes, then the inverse image of every normal point of
970: 631:
In EGA III, Grothendieck calls the following statement which does not involve connectedness a "Main theorem" of Zariski
651:
is a quasi-projective morphism of Noetherian schemes then the set of points that are isolated in their fiber is open in
1009: 990: 763:
The relation between this theorem about quasi-finite morphisms and Théorème 4.4.3 of EGA III quoted above is that if
775:
is a projective morphism of varieties, then the set of points that are isolated in their fiber is quasifinite over
118: 1219:
Zariski, Oscar (1949), "A simple analytical proof of a fundamental property of birational transformations.",
655:. Moreover the induced scheme of this set is isomorphic to an open subset of a scheme that is finite over 323: 251: 1035: 1021: 898:
are equal. This is essentially Zariski's formulation of his main theorem in terms of commutative rings.
664: 57: 68:
Several results in commutative algebra imply the geometric forms of Zariski's main theorem, including:
1228: 1039: 1025: 1004: 61: 985: 950: 207: 80: 1246: 1200: 730: 724: 47:
A birational morphism with finite fibers to a normal variety is an isomorphism to an open subset.
20: 790:
reformulated his main theorem in terms of commutative algebra as a statement about local rings.
181: 1272: 1160: 1102: 1061: 694: 1262: 1236: 1190: 1152: 1094: 1049: 474:, Corollary III.11.4) calls the following connectedness statement "Zariski's Main theorem": 1258: 1212: 1174: 1116: 1075: 779:. Then structure theorem for quasi-finite morphisms applies and yields the desired result. 154: 1254: 1208: 1170: 1148: 1112: 1090: 1071: 1057: 672: 76:, which is a variation of the statement that the transform of a normal point is connected. 1181:
Zariski, Oscar (1943), "Foundations of a general theory of birational correspondences.",
1232: 1267: 1140: 668: 53:
The total transform of a normal point under a proper birational morphism is connected.
1298: 1082: 688: 28: 622:
consists of two points, which is not connected and does not have positive dimension.
938: 727:, quasi-finite, finitely presented morphism then there is a factorization into 470:
Here are some variants of this theorem stated using more recent terminology.
911: 587:
and then blowing up another point on this transform, the total transform of
73: 1276: 1241: 759:, where the first map is an open immersion and the second one is finite. 87:
The original result was labelled as the "MAIN THEOREM" in Zariski (
1204: 1156: 1250: 945:
A formal power series version of Zariski's main theorem says that if
1195: 1044:, Publications MathĂ©matiques de l'IHÉS, vol. 28, pp. 43–48 1030:, Publications MathĂ©matiques de l'IHÉS, vol. 11, pp. 5–167 1289: 1098: 1147:, Lecture Notes in Mathematics, vol. 169, Berlin, New York: 794:, ThĂ©orème 4.4.7) generalized Zariski's formulation as follows: 598:
is not normal and the conclusion of the main theorem fails, take
56:
A generalization due to Grothendieck describes the structure of
83:. This is a strong form of the statement that it is unibranch. 906:
A topological version of Zariski's main theorem says that if
451:
is not defined whose local ring is normal, and the transform
568:
as predicted by Zariski's original form of his main theorem.
518:
is a birational transformation of projective varieties with
914:; in other words there are arbitrarily small neighborhoods 522:
normal, then the total transform of a fundamental point of
802:
is an algebra of finite type over a local Noetherian ring
1290:
Is there an intuitive reason for Zariski's main theorem?
564:
is a projective space, which has dimension greater than
886:
are integral and have the same field of fractions, and
910:
is a (closed) point of a normal complex variety it is
626: 953:; in other words the completion of the local ring at 890:
is integrally closed, then this theorem implies that
733: 697: 326: 254: 210: 184: 157: 121: 94: 16:
Theorem of algebraic geometry and commutative algebra
540:
is a smooth variety of dimension greater than 1 and
1123:Peskine, Christian (1966), "Une gĂ©nĂ©ralisation du 782: 751: 715: 606:to be given by identifying two distinct points on 360: 288: 240: 196: 170: 139: 79:The local ring of a normal point of a variety is 627:Zariski's main theorem for quasifinite morphisms 447:is a subvariety of the set where the inverse of 936: 498:The following consequence of it (Theorem V.5.2, 151:) such that the projection on the first factor 103:be a birational mapping of algebraic varieties 95:Zariski's main theorem for birational morphisms 901: 419:— each irreducible component of the transform 8: 922:such that the set of non-singular points of 791: 783:Zariski's main theorem for commutative rings 676: 632: 375:The original statement of the theorem in ( 949:is a normal point of a variety then it is 614:to be the image of these two points. Then 471: 1266: 1240: 1194: 732: 696: 602:′ to be a smooth variety, and take 571:In the previous example the transform of 526:is connected and of dimension at least 1. 411:′ then — under the assumption that 387:is an irreducible fundamental variety on 349: 344: 331: 325: 277: 272: 259: 253: 220: 215: 209: 183: 162: 156: 120: 902:Zariski's main theorem: topological form 560:, and the component of the transform of 140:{\displaystyle \Gamma \subset V\times W} 958: 927: 787: 579:′ is given by blowing up a point 544:′ is given by blowing up a point 376: 178:induces an isomorphism between an open 88: 39:when the two varieties are birational. 32: 1087:The red book of varieties and schemes 361:{\displaystyle p_{2}\circ p_{1}^{-1}} 289:{\displaystyle p_{2}\circ p_{1}^{-1}} 7: 981:Grothendieck's connectedness theorem 618:is not normal, and the transform of 976:Fulton–Hansen connectedness theorem 122: 115:is defined by a closed subvariety 14: 814:which is minimal among ideals of 842:′ (whose inverse image in 971:Deligne's connectedness theorem 435:is essentially a morphism from 407:has no fundamental elements on 391:of a birational correspondence 316:, and the image of a subset of 37:Zariski's connectedness theorem 1305:Theorems in algebraic geometry 743: 737: 707: 235: 229: 1: 1221:Proc. Natl. Acad. Sci. U.S.A. 957:is a normal integral domain ( 850:) such that the localization 838:′ with a maximal ideal 502:) also goes under this name: 241:{\displaystyle p_{1}^{-1}(U)} 423:is of higher dimension than 1010:Encyclopedia of Mathematics 991:Theorem on formal functions 752:{\displaystyle X\to Z\to Y} 455:means the inverse image of 1321: 197:{\displaystyle U\subset V} 1145:Anneaux locaux hensĂ©liens 830:, then there is a finite 937:Zariski's main theorem: 818:whose inverse image in 716:{\displaystyle f:X\to Y} 459:under the morphism from 1183:Trans. Amer. Math. Soc. 1036:Grothendieck, Alexandre 1022:Grothendieck, Alexandre 1003:Danilov, V.I. (2001) , 300:too. The complement of 72:A normal local ring is 810:is a maximal ideal of 753: 717: 665:quasi-finite morphisms 379:, p. 522) reads: 362: 290: 242: 198: 172: 141: 58:quasi-finite morphisms 25:Zariski's main theorem 859:is isomorphic to the 822:is the maximal ideal 754: 718: 691:separated scheme and 594:For an example where 415:is locally normal at 363: 296:is an isomorphism on 291: 243: 199: 173: 171:{\displaystyle p_{1}} 142: 1242:10.1073/pnas.35.1.62 1129:Bull. Sci. Math. (2) 1056:, Berlin, New York: 731: 695: 679:, ThĂ©orème 8.12.6): 443:that is birational, 324: 252: 208: 182: 155: 119: 1233:1949PNAS...35...62Z 986:Stein factorization 951:analytically normal 635:, ThĂ©orème 4.4.3): 357: 314:indeterminacy locus 310:fundamental variety 285: 228: 81:analytically normal 1157:10.1007/BFb0069571 1054:Algebraic Geometry 792:Grothendieck (1961 749: 713: 677:Grothendieck (1966 633:Grothendieck (1961 610:′, and take 358: 340: 286: 268: 238: 211: 194: 168: 137: 21:algebraic geometry 1166:978-3-540-05283-8 1108:978-3-540-63293-1 1067:978-0-387-90244-9 1050:Hartshorne, Robin 1005:"Zariski theorem" 383:MAIN THEOREM: If 29:Oscar Zariski 1312: 1279: 1270: 1244: 1215: 1198: 1177: 1136: 1119: 1078: 1045: 1031: 1017: 758: 756: 755: 750: 722: 720: 719: 714: 673:finite morphisms 472:Hartshorne (1977 367: 365: 364: 359: 356: 348: 336: 335: 295: 293: 292: 287: 284: 276: 264: 263: 248:, and such that 247: 245: 244: 239: 227: 219: 203: 201: 200: 195: 177: 175: 174: 169: 167: 166: 146: 144: 143: 138: 1320: 1319: 1315: 1314: 1313: 1311: 1310: 1309: 1295: 1294: 1286: 1218: 1196:10.2307/1990215 1180: 1167: 1149:Springer-Verlag 1141:Raynaud, Michel 1139: 1122: 1109: 1091:Springer-Verlag 1081: 1068: 1058:Springer-Verlag 1048: 1034: 1020: 1002: 999: 967: 943: 904: 878:If in addition 873: 858: 785: 729: 728: 693: 692: 669:open immersions 629: 533: 403:′ and if 370:total transform 327: 322: 321: 255: 250: 249: 206: 205: 180: 179: 158: 153: 152: 117: 116: 97: 17: 12: 11: 5: 1318: 1316: 1308: 1307: 1297: 1296: 1293: 1292: 1285: 1284:External links 1282: 1281: 1280: 1216: 1189:(3): 490–542, 1178: 1165: 1137: 1120: 1107: 1099:10.1007/b62130 1083:Mumford, David 1079: 1066: 1046: 1032: 1018: 998: 995: 994: 993: 988: 983: 978: 973: 966: 963: 942: 935: 926:is connected ( 903: 900: 876: 875: 868: 854: 788:Zariski (1949) 784: 781: 761: 760: 748: 745: 742: 739: 736: 712: 709: 706: 703: 700: 661: 660: 628: 625: 624: 623: 592: 569: 532: 529: 528: 527: 496: 495: 429: 428: 355: 352: 347: 343: 339: 334: 330: 283: 280: 275: 271: 267: 262: 258: 237: 234: 231: 226: 223: 218: 214: 193: 190: 187: 165: 161: 147:(a "graph" of 136: 133: 130: 127: 124: 111:. Recall that 96: 93: 85: 84: 77: 66: 65: 54: 51: 48: 15: 13: 10: 9: 6: 4: 3: 2: 1317: 1306: 1303: 1302: 1300: 1291: 1288: 1287: 1283: 1278: 1274: 1269: 1264: 1260: 1256: 1252: 1248: 1243: 1238: 1234: 1230: 1226: 1222: 1217: 1214: 1210: 1206: 1202: 1197: 1192: 1188: 1184: 1179: 1176: 1172: 1168: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1127:de Zariski", 1126: 1121: 1118: 1114: 1110: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1077: 1073: 1069: 1063: 1059: 1055: 1051: 1047: 1043: 1042: 1037: 1033: 1029: 1028: 1023: 1019: 1016: 1012: 1011: 1006: 1001: 1000: 996: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 968: 964: 962: 960: 956: 952: 948: 940: 934: 931: 929: 925: 921: 917: 913: 909: 899: 897: 893: 889: 885: 881: 871: 866: 862: 857: 853: 849: 845: 841: 837: 833: 829: 825: 821: 817: 813: 809: 805: 801: 797: 796: 795: 793: 789: 780: 778: 774: 770: 766: 746: 740: 734: 726: 710: 704: 701: 698: 690: 689:quasi-compact 686: 682: 681: 680: 678: 674: 670: 666: 658: 654: 650: 646: 642: 638: 637: 636: 634: 621: 617: 613: 609: 605: 601: 597: 593: 590: 586: 582: 578: 574: 570: 567: 563: 559: 556:is normal at 555: 551: 547: 543: 539: 536:Suppose that 535: 534: 530: 525: 521: 517: 513: 509: 505: 504: 503: 501: 494:is connected. 493: 489: 485: 481: 477: 476: 475: 473: 468: 466: 462: 458: 454: 450: 446: 442: 438: 434: 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 386: 382: 381: 380: 378: 373: 371: 353: 350: 345: 341: 337: 332: 328: 319: 315: 311: 307: 303: 299: 281: 278: 273: 269: 265: 260: 256: 232: 224: 221: 216: 212: 191: 188: 185: 163: 159: 150: 134: 131: 128: 125: 114: 110: 106: 102: 92: 90: 82: 78: 75: 71: 70: 69: 63: 59: 55: 52: 49: 46: 45: 44: 40: 38: 34: 30: 26: 22: 1227:(1): 62–66, 1224: 1220: 1186: 1182: 1144: 1132: 1128: 1125:main theorem 1124: 1086: 1053: 1040: 1026: 1008: 959:Mumford 1999 954: 946: 944: 939:power series 932: 928:Mumford 1999 923: 919: 915: 907: 905: 895: 891: 887: 883: 879: 877: 869: 864: 860: 855: 851: 847: 843: 839: 835: 831: 827: 823: 819: 815: 811: 807: 803: 799: 786: 776: 772: 768: 764: 762: 684: 662: 656: 652: 648: 644: 640: 630: 619: 615: 611: 607: 603: 599: 595: 588: 584: 580: 576: 572: 565: 561: 557: 553: 549: 545: 541: 537: 523: 519: 515: 511: 507: 499: 497: 491: 487: 483: 479: 469: 464: 460: 456: 452: 448: 444: 440: 436: 432: 430: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 377:Zariski 1943 374: 369: 368:is called a 317: 313: 309: 308:is called a 305: 301: 297: 148: 112: 108: 104: 100: 98: 86: 67: 41: 27:, proved by 24: 18: 463:′ to 439:′ to 997:References 961:, III.9). 930:, III.9). 1135:: 119–127 1085:(1999) , 1015:EMS Press 912:unibranch 863:-algebra 834:-algebra 744:→ 738:→ 725:separated 708:→ 351:− 338:∘ 279:− 266:∘ 222:− 189:⊂ 132:× 126:⊂ 123:Γ 74:unibranch 1299:Category 1277:16588856 1143:(1970), 1052:(1977), 1038:(1966), 1024:(1961), 965:See also 531:Examples 500:loc.cit. 395:between 1268:1062959 1259:0028056 1229:Bibcode 1213:0008468 1205:1990215 1175:0277519 1117:1748380 1076:0463157 872:′ 867:′ 647:→ 552:. Then 514:→ 486:→ 372:of it. 62:schemes 31: ( 1275:  1265:  1257:  1249:  1211:  1203:  1173:  1163:  1115:  1105:  1074:  1064:  806:, and 320:under 1251:88284 1247:JSTOR 1201:JSTOR 723:is a 687:is a 431:Here 1273:PMID 1161:ISBN 1103:ISBN 1062:ISBN 941:form 894:and 882:and 671:and 399:and 204:and 107:and 99:Let 89:1943 33:1943 1263:PMC 1237:doi 1191:doi 1153:doi 1095:doi 918:of 846:is 826:of 798:If 683:if 639:If 583:on 548:on 506:If 478:If 312:or 304:in 91:). 60:of 19:In 1301:: 1271:, 1261:, 1255:MR 1253:, 1245:, 1235:, 1225:35 1223:, 1209:MR 1207:, 1199:, 1187:53 1185:, 1171:MR 1169:, 1159:, 1151:, 1133:90 1131:, 1113:MR 1111:, 1101:, 1093:, 1072:MR 1070:, 1060:, 1013:, 1007:, 467:. 23:, 1239:: 1231:: 1193:: 1155:: 1097:: 955:x 947:x 924:U 920:x 916:U 908:x 896:B 892:A 888:A 884:B 880:A 874:. 870:m 865:A 861:A 856:n 852:B 848:m 844:A 840:m 836:A 832:A 828:A 824:m 820:A 816:B 812:B 808:n 804:A 800:B 777:Y 773:Y 771:→ 769:X 767:: 765:f 747:Y 741:Z 735:X 711:Y 705:X 702:: 699:f 685:Y 659:. 657:Y 653:X 649:Y 645:X 643:: 641:f 620:W 616:W 612:W 608:V 604:V 600:V 596:W 589:W 585:V 581:W 577:V 573:W 566:W 562:W 558:W 554:V 550:V 546:W 542:V 538:V 524:f 520:Y 516:Y 512:X 510:: 508:f 492:Y 488:Y 484:X 482:: 480:f 465:V 461:V 457:W 453:T 449:T 445:W 441:V 437:V 433:T 427:. 425:W 421:T 417:W 413:V 409:V 405:T 401:V 397:V 393:T 389:V 385:W 354:1 346:1 342:p 333:2 329:p 318:V 306:V 302:U 298:U 282:1 274:1 270:p 261:2 257:p 236:) 233:U 230:( 225:1 217:1 213:p 192:V 186:U 164:1 160:p 149:f 135:W 129:V 113:f 109:W 105:V 101:f 64:.

Index

algebraic geometry
Oscar Zariski
1943
Zariski's connectedness theorem
quasi-finite morphisms
schemes
unibranch
analytically normal
1943
Zariski 1943
Hartshorne (1977
Grothendieck (1961
quasi-finite morphisms
open immersions
finite morphisms
Grothendieck (1966
quasi-compact
separated
Zariski (1949)
Grothendieck (1961
unibranch
Mumford 1999
power series
analytically normal
Mumford 1999
Deligne's connectedness theorem
Fulton–Hansen connectedness theorem
Grothendieck's connectedness theorem
Stein factorization
Theorem on formal functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑