Knowledge (XXG)

Magnetic semiconductor

Source 📝

292: 266:(DFT) studies were clouded by band gap errors and overly delocalized defect levels, and more advanced DFT studies refute most of the previous predictions of ferromagnetism. Likewise, it has been shown that for most of the oxide based materials studies for magnetic semiconductors do not exhibit an intrinsic 257:
ZnO and GaN doped by Co and Mn, respectively. These predictions were followed of a flurry of theoretical and experimental studies of various oxide and nitride semiconductors, which apparently seemed to confirm room temperature ferromagnetism in nearly any semiconductor or insulator material heavily
400:
is high enough to prepare the materials in bulk, while some other materials have so low solubility of dopants that to prepare them with high enough dopant concentration thermal nonequilibrium preparation mechanisms have to be employed, e.g. growth of
1340:
Philip, J.; Punnoose, A.; Kim, B. I.; Reddy, K. M.; Layne, S.; Holmes, J. O.; Satpati, B.; LeClair, P. R.; Santos, T. S. (April 2006). "Carrier-controlled ferromagnetism in transparent oxide semiconductors".
1498:
Lany, Stephan; Raebiger, Hannes; Zunger, Alex (2008-06-03). "Magnetic interactions of Cr − Cr and Co − Co impurity pairs in ZnO within a band-gap corrected density functional approach".
114:
0.14 eV), materials scientists generally predict that magnetic semiconductors will only find widespread use if they are similar to well-developed semiconductor materials. To that end,
1751:
Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L. (2016-09-06).
475:
Several examples of proposed ferromagnetic semiconductor materials are listed below. Notice that many of the observations and/or predictions below remain heavily debated.
1154: 1638: 67:
properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of
1002:
Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. (February 2000). "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors".
956:
Ohno, H.; Shen, A.; Matsukura, F.; Oiwa, A.; Endo, A.; Katsumoto, S.; Iye, Y. (1996-07-15). "(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs".
1659:
Lee, Y. F.; Wu, F.; Kumar, R.; Hunte, F.; Schwartz, J.; Narayan, J. (2013). "Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si (001)".
1815: 1814:
Cabot, Andreu; Puntes, Victor F.; Shevchenko, Elena; Yin, Yadong; Balcells, Lluís; Marcus, Matthew A.; Hughes, Steven M.; Alivisatos, A. Paul (2007).
1541:
Martínez-Boubeta, C.; Beltrán, J. I.; Balcells, Ll.; Konstantinović, Z.; Valencia, S.; Schmitz, D.; Arbiol, J.; Estrade, S.; Cornil, J. (2010-07-08).
278:
remains the only semiconductor material with robust coexistence of ferromagnetism persisting up to rather high Curie temperatures around 100–200 K.
1593:
Jambois, O.; Carreras, P.; Antony, A.; Bertomeu, J.; Martínez-Boubeta, C. (2011-12-01). "Resistance switching in transparent magnetic MgO films".
309: 1099:
J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, and K. Paul (2010). "Ferromagnetism in defect-ridden oxides and related materials".
230:
charge carriers. Ever since, ferromagnetic signals have been measured from various semiconductor hosts doped with different transition atoms.
1932: 1219: 408:
Permanent magnetization has been observed in a wide range of semiconductor based materials. Some of them exhibit a clear correlation between
46: 1262: 905:
Munekata, H.; Ohno, H.; von Molnar, S.; Segmüller, Armin; Chang, L. L.; Esaki, L. (1989-10-23). "Diluted magnetic III-V semiconductors".
412:
and magnetization, including the work of T. Story and co-workers where they demonstrated that the ferromagnetic Curie temperature of
356: 433: 375: 1400:
Raebiger, Hannes; Lany, Stephan; Zunger, Alex (2008-07-07). "Control of Ferromagnetism via Electron Doping in In 2 O 3 : Cr".
328: 1942: 464:
would be higher, between 100 and 200 K. However, many of the semiconductor materials studied exhibit a permanent magnetization
122:) have recently been a major focus of magnetic semiconductor research. These are based on traditional semiconductors, but are 335: 242:
showed that a modified Zener model for magnetism well describes the carrier dependence, as well as anisotropic properties of
515:, ferromagnetic at room temperature. The ferromagnetism appears to be mediated by carrier-electrons, in a similar way as the 313: 31: 671:, with a Curie temperature of 69K. The curie temperature can be more than doubled by doping (e.g. oxygen deficiency, Gd). 342: 324: 135: 302: 263: 1174: 254: 199: 196: 130:
instead of, or in addition to, electronically active elements. They are of interest because of their unique
123: 1854: 1639:"New room-temperature magnetic semiconductor material holds promise for 'spintronics' data-storage devices" 1101: 56: 158:
have generated huge interest among the scientific community as a strong candidate for the fabrication of
17: 1451:
Kittilstved, Kevin; Schwartz, Dana; Tuan, Allan; Heald, Steve; Chambers, Scott; Gamelin, Daniel (2006).
1148: 43:
Can we build materials that show properties of both ferromagnets and semiconductors at room temperature?
1217:
L. M. C. Pereira (2017). "Experimentally evaluating the origin of dilute magnetism in nanomaterials".
1937: 1885: 1774: 1707: 1668: 1602: 1557: 1507: 1464: 1409: 1350: 1306: 1228: 1183: 1120: 1068: 1011: 965: 914: 871: 803: 760: 725: 550: 533: 251: 227: 166: 154:
applications. In particular, ZnO-based DMS with properties such as transparency in visual region and
76: 72: 1753:"Local atomic and magnetic structure of dilute magnetic semiconductor ( Ba , K ) ( Zn , Mn ) 2 As 2" 349: 848:
Assadi, M.H.N; Hanaor, D.A.H (2013). "Theoretical study on copper's energetics and magnetism in TiO
1911: 1846: 1764: 1733: 1542: 1382: 1322: 1296: 1244: 1136: 1110: 1035: 887: 861: 827: 698:: Ferromagnetic semiconductor with tetragonal average structure and orthorhombic local structure. 668: 417: 553:
transparent MgO films with cation vacancies, combining ferromagnetism and multilevel switching (
1266: 1903: 1838: 1792: 1725: 1523: 1480: 1433: 1425: 1374: 1366: 1199: 1027: 981: 938: 930: 819: 776: 683: 498: 461: 453: 441: 219: 188: 163: 84: 1893: 1830: 1782: 1715: 1676: 1618: 1610: 1573: 1565: 1515: 1472: 1417: 1358: 1314: 1236: 1191: 1128: 1076: 1019: 973: 922: 879: 811: 768: 733: 572: 562: 487: 259: 223: 207: 155: 127: 91:
and other metals, which provide only ~50% polarization), which is an important property for
1452: 544: 483: 429: 409: 203: 159: 96: 452:. If there is an insufficient hole concentration in the magnetic semiconductor, then the 181:
phase of this material has further been predicted to exhibit favorable dilute magnetism.
1889: 1778: 1711: 1672: 1606: 1561: 1511: 1468: 1413: 1354: 1310: 1232: 1187: 1132: 1124: 1072: 1015: 969: 918: 875: 807: 794:
Ogale, S.B (2010). "Dilute doping, defects, and ferromagnetism in metal oxide systems".
764: 729: 1055:"The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory" 247: 192: 143: 80: 68: 60: 468:
to the semiconductor host material. A lot of the elusive extrinsic ferromagnetism (or
150:) are among the best candidates for industrial DMS due to their multifunctionality in 1926: 1318: 1248: 501:, which becomes ferromagnetic even at room temperature and even with less than 1% Mn. 457: 437: 151: 64: 1850: 1386: 1326: 1140: 1039: 891: 831: 1915: 1874:"Epitaxial Growth and Properties of Doped Transition Metal and Complex Oxide Films" 1737: 1696:"Epitaxial Growth and Properties of Doped Transition Metal and Complex Oxide Films" 1421: 512: 1476: 1023: 1169: 772: 926: 641: 634: 628: 291: 131: 92: 1787: 1752: 1569: 1519: 1240: 1195: 1614: 537: 528: 522: 397: 389: 184: 139: 1796: 1527: 1429: 1370: 1287:
Fukumura, T; Toyosaki, H; Yamada, Y (2005). "Magnetic oxide semiconductors".
985: 934: 660: 554: 479: 413: 402: 211: 107: 103: 1907: 1898: 1873: 1842: 1729: 1720: 1695: 1484: 1437: 1378: 1203: 1031: 942: 823: 815: 780: 1301: 1081: 1054: 589: 388:
The manufacturability of the materials depend on the thermal equilibrium
79:), practical magnetic semiconductors would also allow control of quantum 1453:"Direct Kinetic Correlation of Carriers and Ferromagnetism in Co2+: ZnO" 1059: 676: 621: 612: 605:-doped rutile and iron-doped anatase, ferromagnetic at room temperature 580: 178: 111: 1834: 1680: 1623: 1578: 883: 1362: 977: 737: 617: 608: 597: 593: 584: 576: 568: 516: 494:), with Curie temperature around 50–100 K and 100–200 K, respectively 491: 445: 393: 275: 243: 215: 170: 751:
Ohno, H. (1998). "Making Nonmagnetic Semiconductors Ferromagnetic".
460:. However, if the hole concentration is high (>~10 cm), then the 1769: 35: 1115: 866: 602: 508: 449: 88: 285: 1816:"Vacancy Coalescence during Oxidation of Iron Nanoparticles" 134:
properties with possible technological applications. Doped
83:(up or down). This would theoretically provide near-total 1170:"Carrier-concentration–induced ferromagnetism in PbSnMnTe" 472:) is observed in thin films or nanostructured materials. 396:
in the base material. E.g., solubility of many dopants in
716:
Furdyna, J.K. (1988). "Diluted magnetic semiconductors".
659:) – Dilute magnetic semiconductor. Can be synthesized an 1168:
Story, T.; Gała̧zka, R.; Frankel, R.; Wolff, P. (1986).
246:. The same theory also predicted that room-temperature 1053:
Alex Zunger, Stephan Lany and Hannes Raebiger (2010).
448:
in the prototypical magnetic semiconductor, Mn-doped
316:. Unsourced material may be challenged and removed. 102:While many traditional magnetic materials, such as 1543:"Ferromagnetism in transparent thin films of MgO" 218:). These materials exhibited reasonably high 8: 1153:: CS1 maint: multiple names: authors list ( 519:ferromagnetism is mediated by carrier-holes. 106:, are also semiconductors (magnetite is a 1897: 1786: 1768: 1719: 1622: 1577: 1300: 1114: 1080: 865: 432:. The theory proposed by Dietl required 376:Learn how and when to remove this message 18:ZnO-based diluted magnetic semiconductors 1823:Journal of the American Chemical Society 456:would be very low or would exhibit only 226:) that scales with the concentration of 997: 995: 708: 214:(the latter is commonly referred to as 27:Type of functional semiconducting oxide 1146: 1094: 1092: 270:ferromagnetism as postulated by Dietl 1220:Journal of Physics D: Applied Physics 843: 841: 7: 1289:Semiconductor Science and Technology 314:adding citations to reliable sources 63:(or a similar response) and useful 47:(more unsolved problems in physics) 1263:"Muons in Magnetic Semiconductors" 25: 644:, with Curie temperature at 340 K 637:, with Curie temperature at 340 K 290: 301:needs additional citations for 1422:10.1103/PhysRevLett.101.027203 116:dilute magnetic semiconductors 32:Bipolar magnetic semiconductor 1: 1477:10.1103/PhysRevLett.97.037203 1265:. Triumf.info. Archived from 1133:10.1088/1367-2630/12/5/053025 1024:10.1126/science.287.5455.1019 647:Strontium-doped tin dioxide ( 238:The pioneering work of Dietl 1933:Semiconductor material types 773:10.1126/science.281.5379.951 663:thin film on a silicon chip. 1872:Chambers, Scott A. (2010). 1694:Chambers, Scott A. (2010). 927:10.1103/PhysRevLett.63.1849 583:), ferromagnetic above 400 262:impurities. However, early 38:Unsolved problem in physics 1959: 1788:10.1103/PhysRevB.94.094102 1595:Solid State Communications 1570:10.1103/PhysRevB.82.024405 1520:10.1103/PhysRevB.77.241201 1319:10.1088/0268-1242/20/4/012 1196:10.1103/PhysRevLett.56.777 854:Journal of Applied Physics 596:, ferromagnetic above 400 191:were the first to measure 29: 1615:10.1016/j.ssc.2011.10.009 428:can be controlled by the 264:Density functional theory 1241:10.1088/1361-6463/aa801f 325:"Magnetic semiconductor" 250:should exist in heavily 1943:Ferromagnetic materials 1661:Applied Physics Letters 1457:Physical Review Letters 1402:Physical Review Letters 1175:Physical Review Letters 958:Applied Physics Letters 907:Physical Review Letters 860:(23): 233913–233913–5. 200:compound semiconductors 57:semiconductor materials 53:Magnetic semiconductors 1899:10.1002/adma.200901867 1721:10.1002/adma.200901867 1102:New Journal of Physics 816:10.1002/adma.200903891 470:phantom ferromagnetism 504:Oxide semiconductors 430:carrier concentration 187:and his group at the 167:light-emitting diodes 138:metal oxides such as 1082:10.1103/Physics.3.53 310:improve this article 195:in transition metal 1890:2010AdM....22..219C 1829:(34): 10358–10360. 1779:2016PhRvB..94i4102F 1712:2010AdM....22..219C 1673:2013ApPhL.103k2101L 1607:2011SSCom.151.1856J 1562:2010PhRvB..82b4405M 1512:2008PhRvB..77x1201L 1469:2006PhRvL..97c7203K 1414:2008PhRvL.101b7203R 1355:2006NatMa...5..298P 1311:2005SeScT..20S.103F 1233:2017JPhD...50M3002P 1188:1986PhRvL..56..777S 1125:2010NJPh...12e3025C 1073:2010PhyOJ...3...53Z 1016:2000Sci...287.1019D 970:1996ApPhL..69..363O 919:1989PhRvL..63.1849M 876:2013JAP...113w3913A 808:2010AdM....22.3125O 765:1998Sci...281..951O 730:1988JAP....64...29F 110:semiconductor with 95:applications, e.g. 1878:Advanced Materials 1700:Advanced Materials 796:Advanced Materials 669:Europium(II) oxide 220:Curie temperatures 59:that exhibit both 1835:10.1021/ja072574a 1757:Physical Review B 1681:10.1063/1.4820770 1601:(24): 1856–1859. 1550:Physical Review B 1500:Physical Review B 1010:(5455): 1019–22. 913:(17): 1849–1852. 884:10.1063/1.4811539 802:(29): 3125–3155. 684:aluminium nitride 499:indium antimonide 462:Curie temperature 454:Curie temperature 442:magnetic coupling 386: 385: 378: 360: 189:Tohoku University 128:transition metals 85:spin polarization 16:(Redirected from 1950: 1919: 1901: 1868: 1866: 1865: 1859: 1853:. Archived from 1820: 1801: 1800: 1790: 1772: 1748: 1742: 1741: 1723: 1691: 1685: 1684: 1656: 1650: 1649: 1647: 1646: 1635: 1629: 1628: 1626: 1590: 1584: 1583: 1581: 1547: 1538: 1532: 1531: 1495: 1489: 1488: 1448: 1442: 1441: 1397: 1391: 1390: 1363:10.1038/nmat1613 1343:Nature Materials 1337: 1331: 1330: 1304: 1302:cond-mat/0504168 1295:(4): S103–S111. 1284: 1278: 1277: 1275: 1274: 1259: 1253: 1252: 1214: 1208: 1207: 1165: 1159: 1158: 1152: 1144: 1118: 1096: 1087: 1086: 1084: 1050: 1044: 1043: 999: 990: 989: 978:10.1063/1.118061 953: 947: 946: 902: 896: 895: 869: 845: 836: 835: 791: 785: 784: 748: 742: 741: 738:10.1063/1.341700 713: 658: 657: 656: 633:Manganese-doped 573:titanium dioxide 563:Titanium dioxide 527:Manganese-doped 497:Manganese-doped 488:gallium arsenide 381: 374: 370: 367: 361: 359: 318: 294: 286: 268:carrier-mediated 260:transition metal 224:room temperature 208:gallium arsenide 160:spin transistors 156:piezoelectricity 97:spin transistors 39: 21: 1958: 1957: 1953: 1952: 1951: 1949: 1948: 1947: 1923: 1922: 1871: 1863: 1861: 1857: 1818: 1813: 1810: 1805: 1804: 1750: 1749: 1745: 1693: 1692: 1688: 1658: 1657: 1653: 1644: 1642: 1637: 1636: 1632: 1592: 1591: 1587: 1545: 1540: 1539: 1535: 1497: 1496: 1492: 1450: 1449: 1445: 1399: 1398: 1394: 1339: 1338: 1334: 1286: 1285: 1281: 1272: 1270: 1261: 1260: 1256: 1216: 1215: 1211: 1167: 1166: 1162: 1145: 1098: 1097: 1090: 1052: 1051: 1047: 1001: 1000: 993: 955: 954: 950: 904: 903: 899: 851: 847: 846: 839: 793: 792: 788: 759:(5379): 951–5. 750: 749: 745: 715: 714: 710: 705: 697: 693: 682:Chromium doped 679:semiconductors 655: 652: 651: 650: 648: 545:Magnesium oxide 507:Manganese- and 484:indium arsenide 440:to mediate the 436:in the case of 434:charge carriers 425: 421: 410:carrier density 382: 371: 365: 362: 319: 317: 307: 295: 284: 236: 204:indium arsenide 176: 149: 87:(as opposed to 69:charge carriers 50: 49: 44: 41: 37: 34: 28: 23: 22: 15: 12: 11: 5: 1956: 1954: 1946: 1945: 1940: 1935: 1925: 1924: 1921: 1920: 1884:(2): 219–248. 1869: 1809: 1808:External links 1806: 1803: 1802: 1743: 1706:(2): 219–248. 1686: 1667:(11): 112101. 1651: 1630: 1585: 1533: 1506:(24): 241201. 1490: 1443: 1392: 1349:(4): 298–304. 1332: 1279: 1254: 1227:(39): 393002. 1209: 1182:(7): 777–779. 1160: 1088: 1045: 991: 964:(3): 363–365. 948: 897: 849: 837: 786: 743: 707: 706: 704: 701: 700: 699: 695: 691: 688: 687: 686: 674: 673: 672: 666: 665: 664: 653: 645: 638: 626: 625: 624: 615: 606: 600: 587: 560: 559: 558: 542: 541: 540: 531: 520: 502: 495: 423: 419: 384: 383: 298: 296: 289: 283: 280: 248:ferromagnetism 235: 232: 193:ferromagnetism 174: 164:spin-polarized 152:opticomagnetic 147: 144:titanium oxide 61:ferromagnetism 45: 42: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1955: 1944: 1941: 1939: 1936: 1934: 1931: 1930: 1928: 1917: 1913: 1909: 1905: 1900: 1895: 1891: 1887: 1883: 1879: 1875: 1870: 1860:on 2012-03-01 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1817: 1812: 1811: 1807: 1798: 1794: 1789: 1784: 1780: 1776: 1771: 1766: 1763:(9): 094102. 1762: 1758: 1754: 1747: 1744: 1739: 1735: 1731: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1697: 1690: 1687: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1652: 1640: 1634: 1631: 1625: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1589: 1586: 1580: 1575: 1571: 1567: 1563: 1559: 1556:(2): 024405. 1555: 1551: 1544: 1537: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1491: 1486: 1482: 1478: 1474: 1470: 1466: 1463:(3): 037203. 1462: 1458: 1454: 1447: 1444: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1408:(2): 027203. 1407: 1403: 1396: 1393: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1336: 1333: 1328: 1324: 1320: 1316: 1312: 1308: 1303: 1298: 1294: 1290: 1283: 1280: 1269:on 2008-11-21 1268: 1264: 1258: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1221: 1213: 1210: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1176: 1171: 1164: 1161: 1156: 1150: 1142: 1138: 1134: 1130: 1126: 1122: 1117: 1112: 1109:(5): 053025. 1108: 1104: 1103: 1095: 1093: 1089: 1083: 1078: 1074: 1070: 1066: 1062: 1061: 1056: 1049: 1046: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 998: 996: 992: 987: 983: 979: 975: 971: 967: 963: 959: 952: 949: 944: 940: 936: 932: 928: 924: 920: 916: 912: 908: 901: 898: 893: 889: 885: 881: 877: 873: 868: 863: 859: 855: 852:polymorphs". 844: 842: 838: 833: 829: 825: 821: 817: 813: 809: 805: 801: 797: 790: 787: 782: 778: 774: 770: 766: 762: 758: 754: 747: 744: 739: 735: 731: 727: 723: 719: 718:J. Appl. Phys 712: 709: 702: 690:(Ba,K)(Zn,Mn) 689: 685: 681: 680: 678: 675: 670: 667: 662: 646: 643: 639: 636: 632: 631: 630: 627: 623: 619: 616: 614: 610: 607: 604: 601: 599: 595: 591: 588: 586: 582: 578: 574: 570: 567: 566: 564: 561: 556: 552: 549: 548: 546: 543: 539: 536:cobalt-doped 535: 532: 530: 526: 525: 524: 521: 518: 514: 510: 506: 505: 503: 500: 496: 493: 489: 485: 481: 478: 477: 476: 473: 471: 467: 463: 459: 458:paramagnetism 455: 451: 447: 444:of manganese 443: 439: 435: 431: 427: 415: 411: 406: 404: 399: 395: 391: 380: 377: 369: 358: 355: 351: 348: 344: 341: 337: 334: 330: 327: –  326: 322: 321:Find sources: 315: 311: 305: 304: 299:This article 297: 293: 288: 287: 281: 279: 277: 273: 269: 265: 261: 256: 253: 249: 245: 241: 233: 231: 229: 225: 221: 217: 213: 209: 205: 201: 198: 194: 190: 186: 182: 180: 172: 168: 165: 161: 157: 153: 145: 141: 137: 136:wide band-gap 133: 129: 125: 121: 117: 113: 109: 105: 100: 98: 94: 90: 86: 82: 78: 74: 70: 66: 65:semiconductor 62: 58: 54: 48: 33: 19: 1881: 1877: 1862:. Retrieved 1855:the original 1826: 1822: 1760: 1756: 1746: 1703: 1699: 1689: 1664: 1660: 1654: 1643:. Retrieved 1641:. KurzweilAI 1633: 1598: 1594: 1588: 1553: 1549: 1536: 1503: 1499: 1493: 1460: 1456: 1446: 1405: 1401: 1395: 1346: 1342: 1335: 1292: 1288: 1282: 1271:. Retrieved 1267:the original 1257: 1224: 1218: 1212: 1179: 1173: 1163: 1149:cite journal 1106: 1100: 1064: 1058: 1048: 1007: 1003: 961: 957: 951: 910: 906: 900: 857: 853: 799: 795: 789: 756: 752: 746: 721: 717: 711: 513:indium oxide 474: 469: 465: 407: 387: 372: 363: 353: 346: 339: 332: 320: 308:Please help 303:verification 300: 271: 267: 239: 237: 183: 119: 115: 101: 52: 51: 1938:Spintronics 642:tin dioxide 640:Iron-doped 635:tin dioxide 629:Tin dioxide 222:(yet below 210:doped with 132:spintronics 93:spintronics 1927:Categories 1864:2009-11-20 1770:1608.02684 1645:2013-09-17 1624:2445/50485 1579:2445/33086 1273:2010-09-19 724:(4): R29. 703:References 538:zinc oxide 529:zinc oxide 523:Zinc oxide 403:thin films 398:zinc oxide 390:solubility 336:newspapers 185:Hideo Ohno 142:(ZnO) and 140:zinc oxide 81:spin state 30:See also: 1797:2469-9950 1528:1098-0121 1430:0031-9007 1371:1476-1122 1249:126213268 1116:1003.5558 986:0003-6951 935:0031-9007 867:1304.1854 661:epitaxial 555:memristor 480:Manganese 466:extrinsic 366:July 2007 282:Materials 274:To date, 258:doped by 212:manganese 173:doped TiO 108:semimetal 104:magnetite 1908:20217685 1851:13430331 1843:17676738 1730:20217685 1485:16907540 1438:18764222 1387:30009354 1379:16547517 1327:96727752 1204:10033282 1141:55748696 1040:19672003 1032:10669409 943:10040689 892:94599250 832:25307693 824:20535732 590:Chromium 202:such as 169:, while 1916:5415994 1886:Bibcode 1775:Bibcode 1738:5415994 1708:Bibcode 1669:Bibcode 1603:Bibcode 1558:Bibcode 1508:Bibcode 1465:Bibcode 1410:Bibcode 1351:Bibcode 1307:Bibcode 1229:Bibcode 1184:Bibcode 1121:Bibcode 1069:Bibcode 1060:Physics 1012:Bibcode 1004:Science 966:Bibcode 915:Bibcode 872:Bibcode 804:Bibcode 781:9703503 761:Bibcode 753:Science 726:Bibcode 677:Nitride 622:anatase 620:-doped 613:anatase 611:-doped 592:-doped 581:anatase 571:-doped 511:-doped 482:-doped 446:dopants 416:-doped 392:of the 350:scholar 179:anatase 177:in the 112:bandgap 1914:  1906:  1849:  1841:  1795:  1736:  1728:  1526:  1483:  1436:  1428:  1385:  1377:  1369:  1325:  1247:  1202:  1139:  1067:: 53. 1038:  1030:  984:  941:  933:  890:  830:  822:  779:  618:Nickel 609:Copper 594:rutile 577:rutile 575:(both 569:Cobalt 551:p-type 534:n-type 517:GaMnAs 492:GaMnAs 394:dopant 352:  345:  338:  331:  323:  276:GaMnAs 272:et al. 252:p-type 244:GaMnAs 240:et al. 234:Theory 228:p-type 216:GaMnAs 171:copper 77:p-type 1912:S2CID 1858:(PDF) 1847:S2CID 1819:(PDF) 1765:arXiv 1734:S2CID 1546:(PDF) 1383:S2CID 1323:S2CID 1297:arXiv 1245:S2CID 1137:S2CID 1111:arXiv 1036:S2CID 888:S2CID 862:arXiv 828:S2CID 649:SrSnO 438:holes 357:JSTOR 343:books 255:doped 197:doped 126:with 124:doped 1904:PMID 1839:PMID 1793:ISSN 1726:PMID 1524:ISSN 1481:PMID 1434:PMID 1426:ISSN 1375:PMID 1367:ISSN 1200:PMID 1155:link 1028:PMID 982:ISSN 939:PMID 931:ISSN 820:PMID 777:PMID 603:Iron 579:and 509:iron 486:and 450:GaAs 329:news 206:and 162:and 146:(TiO 89:iron 55:are 1894:doi 1831:doi 1827:129 1783:doi 1716:doi 1677:doi 1665:103 1619:hdl 1611:doi 1599:151 1574:hdl 1566:doi 1516:doi 1473:doi 1418:doi 1406:101 1359:doi 1315:doi 1237:doi 1192:doi 1129:doi 1077:doi 1020:doi 1008:287 974:doi 923:doi 880:doi 858:113 812:doi 769:doi 757:281 734:doi 420:1−x 312:by 120:DMS 75:or 1929:: 1910:. 1902:. 1892:. 1882:22 1880:. 1876:. 1845:. 1837:. 1825:. 1821:. 1791:. 1781:. 1773:. 1761:94 1759:. 1755:. 1732:. 1724:. 1714:. 1704:22 1702:. 1698:. 1675:. 1663:. 1617:. 1609:. 1597:. 1572:. 1564:. 1554:82 1552:. 1548:. 1522:. 1514:. 1504:77 1502:. 1479:. 1471:. 1461:97 1459:. 1455:. 1432:. 1424:. 1416:. 1404:. 1381:. 1373:. 1365:. 1357:. 1345:. 1321:. 1313:. 1305:. 1293:20 1291:. 1243:. 1235:. 1225:50 1223:. 1198:. 1190:. 1180:56 1178:. 1172:. 1151:}} 1147:{{ 1135:. 1127:. 1119:. 1107:12 1105:. 1091:^ 1075:. 1063:. 1057:. 1034:. 1026:. 1018:. 1006:. 994:^ 980:. 972:. 962:69 960:. 937:. 929:. 921:. 911:63 909:. 886:. 878:. 870:. 856:. 840:^ 826:. 818:. 810:. 800:22 798:. 775:. 767:. 755:. 732:. 722:64 720:. 694:As 565:: 547:: 426:Te 422:Sn 418:Pb 414:Mn 405:. 99:. 73:n- 1918:. 1896:: 1888:: 1867:. 1833:: 1799:. 1785:: 1777:: 1767:: 1740:. 1718:: 1710:: 1683:. 1679:: 1671:: 1648:. 1627:. 1621:: 1613:: 1605:: 1582:. 1576:: 1568:: 1560:: 1530:. 1518:: 1510:: 1487:. 1475:: 1467:: 1440:. 1420:: 1412:: 1389:. 1361:: 1353:: 1347:5 1329:. 1317:: 1309:: 1299:: 1276:. 1251:. 1239:: 1231:: 1206:. 1194:: 1186:: 1157:) 1143:. 1131:: 1123:: 1113:: 1085:. 1079:: 1071:: 1065:3 1042:. 1022:: 1014:: 988:. 976:: 968:: 945:. 925:: 917:: 894:. 882:: 874:: 864:: 850:2 834:. 814:: 806:: 783:. 771:: 763:: 740:. 736:: 728:: 696:2 692:2 654:2 598:K 585:K 557:) 490:( 424:x 379:) 373:( 368:) 364:( 354:· 347:· 340:· 333:· 306:. 175:2 148:2 118:( 71:( 40:: 20:)

Index

ZnO-based diluted magnetic semiconductors
Bipolar magnetic semiconductor
(more unsolved problems in physics)
semiconductor materials
ferromagnetism
semiconductor
charge carriers
n-
p-type
spin state
spin polarization
iron
spintronics
spin transistors
magnetite
semimetal
bandgap
doped
transition metals
spintronics
wide band-gap
zinc oxide
titanium oxide
opticomagnetic
piezoelectricity
spin transistors
spin-polarized
light-emitting diodes
copper
anatase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.