Knowledge (XXG)

Sonication

Source 📝

263: 175: 271:
scale to prove feasibility and establish some of the required ultrasonic exposure parameters. After this phase is complete, the process is transferred to a pilot (bench) scale for flow-through pre-production optimization and then to an industrial scale for continuous production. During these scale-up steps, it is essential to make sure that all local exposure conditions (ultrasonic amplitude,
27: 275:
intensity, time spent in the active cavitation zone, etc.) stay the same. If this condition is met, the quality of the final product remains at the optimized level, while the productivity is increased by a predictable "scale-up factor". The productivity increase results from the fact that laboratory,
270:
Substantial intensity of ultrasound and high ultrasonic vibration amplitudes are required for many processing applications, such as nano-crystallization, nano-emulsification, deagglomeration, extraction, cell disruption, as well as many others. Commonly, a process is first tested on a laboratory
831:
A.S. Peshkovsky, S.L. Peshkovsky "Industrial-scale processing of liquids by high-intensity acoustic cavitation - the underlying theory and ultrasonic equipment design principles", In: Nowak F.M, ed., Sonochemistry: Theory, Reactions and Syntheses, and Applications, Hauppauge, NY: Nova Science
289:
result in direct scalability, since it may be (and frequently is) accompanied by a reduction in the ultrasonic amplitude and cavitation intensity. During direct scale-up, all processing conditions must be maintained, while the power rating of the equipment is increased in order to enable the
200:
Sonication is used in food industry as well. Main applications are for dispersion to save expensive emulgators (mayonnaise) or to speed up filtration processes (vegetable oil etc.). Experiments with sonication for artificial ageing of liquors and other alcoholic beverages were conducted.
130:, polymer and epoxy processing, adhesive thinning, and many other processes. It is applied in pharmaceutical, cosmetic, water, food, ink, paint, coating, wood treatment, metalworking, nanocomposite, pesticide, fuel, wood product and many other industries. 98:. The chemical effects of ultrasound do not come from a direct interaction with molecular species. Studies have shown that no direct coupling of the acoustic field with chemical species on a molecular level can account for sonochemistry or 851:
Parvareh, A., Mohammadifar, A., Keyhani, M. and Yazdanpanah, R. (2015). A statistical study on thermal side effects of ultrasonic mixing in a gas-liquid system. In: The 15 th Iranian National Congress of Chemical Engineering (IChEC 2015).
841:
A.S. Peshkovsky, S.L. Peshkovsky "Acoustic Cavitation Theory and Equipment Design Principles for Industrial Applications of High-Intensity Ultrasound", Book Series: Physics Research and Technology, Hauppauge, NY: Nova Science Publishers;
164:(SUVs) can be made by sonication of a dispersion of large multilamellar vesicles (LMVs). Sonication is also used to fragment molecules of DNA, in which the DNA subjected to brief periods of sonication is sheared into smaller fragments. 170:
Sonication can also be used to initiate crystallisation processes and even control polymorphic crystallisations. It is used to intervene in anti-solvent precipitations (crystallisation) to aid mixing and isolate small crystals.
284:
zones and, therefore, to process more material per unit of time. This is called "direct scalability". It is important to point out that increasing the power capacity of the ultrasonic processor alone does
290:
operation of a larger ultrasonic horn. Finding the optimum operation condition for this equipment is a challenge for process engineers and needs deep knowledge about side effects of ultrasonic processors.
262: 334:
Garcia-Vaquero, M.; Rajauria, G.; O'Doherty, J.V.; Sweeney, T. (2017-09-01). "Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification".
102:. Instead, in sonochemistry the sound waves migrate through a medium, inducing pressure variations and cavitations that grow and collapse, transforming the sound waves into mechanical energy. 702: 122:
and wax emulsions, as well as for wastewater purification, degassing, extraction of seaweed polysaccharides and plant oil, extraction of anthocyanins and antioxidants, production of
167:
Sonication is commonly used in nanotechnology for evenly dispersing nanoparticles in liquids. Additionally, it is used to break up aggregates of micron-sized colloidal particles.
732: 204:
Soil samples are often subjected to ultrasound in order to break up soil aggregates; this allows the study of the different constituents of soil aggregates (especially
94:
Sonication has numerous effects, both chemical and physical. The scientific field concerned with understanding the effect of sonic waves on chemical systems is called
701:
Catherin Vaska, Susan; Muralakar, Pavankumar; H.S, Arunkumar; D, Manoj; Nadiger, Seemantini; D, Jeevitha; Chimmalagi, Umesh; T V, Vinay; M, Nagaraju (2023-07-04).
133:
Sonication can be used to speed dissolution, by breaking intermolecular interactions. It is especially useful when it is not possible to stir the sample, as with
189:—loosening particles adhering to surfaces. In addition to laboratory science applications, sonicating baths have applications including cleaning objects such as 546:
Golmohamadi, Amir (September 2013). "Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree".
519:
Peshkovsky, A. S.; Peshkovsky, S. L.; Bystryak, S. (2013). "Scalable high-power ultrasonic technology for the production of translucent nanoemulsions".
137:. It may also be used to provide the energy for certain chemical reactions to proceed. Sonication can be used to remove dissolved gases from liquids ( 41:
is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants,
152:
In biological applications, sonication may be sufficient to disrupt or deactivate a biological material. For example, sonication is often used to
890: 797:
Peshkovsky, S. L.; Peshkovsky, A. S. (2007). "Matching a transducer to water at cavitation: Acoustic horn design principles".
880: 473:
Suslick, K. S.; Flannigan, D. J. (2008). "Inside a Collapsing Bubble, Sonoluminescence and Conditions during Cavitation".
179: 79: 31: 174: 703:"CURRENT TRENDS IN PRODUCTION AND PROCESSING OF FISH OILS & ITS CHEMICAL ANALYTICAL TECHNIQUES: AN OVERVIEW" 582: 658:
Gensel, P.G.; Johnson, N.G.; Strother, P.K. (1990). "Early Land Plant Debris (Hooker's" Waifs and Strays"?)".
396: 885: 222:
or an ultrasonic probe system is used for extraction. For instance, this technique was suggested to remove
726: 667: 482: 431: 146: 875: 304: 205: 186: 75: 683: 602: 455: 377: 309: 49:
frequencies (> 20 kHz) are usually used, leading to the process also being known as
814: 779: 622:"How does sonication affect the mineral and organic constituents of soil aggregates?-A review" 563: 498: 494: 447: 369: 361: 212: 853: 806: 769: 759: 714: 675: 633: 594: 581:
Deora, N. S.; Misra, N. N.; Deswal, A.; Mishra, H. N.; Cullen, P. J.; Tiwari, B. K. (2013).
555: 528: 490: 439: 351: 343: 99: 66: 20: 748:"Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.)" 277: 219: 153: 127: 83: 276:
bench and industrial-scale ultrasonic processor systems incorporate progressively larger
671: 486: 435: 774: 747: 19:
This article is about the laboratory procedure. For the bee pollination procedure, see
746:
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid (2013-03-12).
869: 621: 459: 239: 141:) by sonicating the liquid while it is under a vacuum. This is an alternative to the 95: 718: 606: 381: 810: 559: 157: 111: 443: 347: 299: 598: 532: 281: 272: 251: 223: 190: 46: 42: 365: 247: 142: 138: 857: 818: 783: 637: 567: 502: 451: 373: 764: 161: 134: 119: 115: 687: 243: 231: 227: 194: 123: 356: 26: 679: 266:
Schematic of bench and industrial-scale ultrasonic liquid processors
261: 254:
is the basis for the operation of ultrasound-assisted extraction.
173: 25: 235: 583:"Ultrasound for Improved Crystallisation in Food Processing" 521:
Chemical Engineering and Processing: Process Intensification
280:, able to generate progressively larger high-intensity 242:
powder. The outcomes differ for every raw material and
208:) without subjecting them to harsh chemical treatment. 620:
Kaiser, Michael; Asefaw Berhe, Asmeret (August 2014).
156:
and release cellular contents. This process is called
514: 512: 60:In the laboratory, it is usually applied using an 731:: CS1 maint: DOI inactive as of September 2024 ( 246:utilized and the other extraction techniques. 110:Sonication can be used for the production of 8: 752:International Journal of Molecular Sciences 626:Journal of Plant Nutrition and Soil Science 178:Sonication machines for record cleaning at 773: 763: 495:10.1146/annurev.physchem.59.032607.093739 355: 86:more uniformly and strengthen the paper. 422:Suslick, K. S. (1990). "Sonochemistry". 321: 724: 7: 329: 327: 325: 185:Sonication is the mechanism used in 211:Sonication is also used to extract 14: 811:10.1016/j.ultsonch.2006.07.003 560:10.1016/j.ultsonch.2013.01.020 126:, crude oil desulphurization, 1: 719:10.48047/ecb/2023.12.si5a.049 444:10.1126/science.247.4949.1439 348:10.1016/j.foodres.2016.11.016 180:Swiss National Sound Archives 32:Weizmann Institute of Science 403:. Royal Society of Chemistry 336:Food Research International 16:Application of sound energy 907: 707:European Chemical Bulletin 162:Small unilamellar vesicles 70:, colloquially known as a 18: 799:Ultrasonics Sonochemistry 599:10.1007/s12393-012-9061-0 548:Ultrasonics Sonochemistry 533:10.1016/j.cep.2013.02.010 401:Chemical Methods Ontology 587:Food Engineering Reviews 891:Medical ultrasonography 858:10.13140/2.1.4913.9524 721:(inactive 2024-09-12). 638:10.1002/jpln.201300339 267: 182: 154:disrupt cell membranes 35: 881:Laboratory techniques 475:Annu. Rev. Phys. Chem 265: 177: 29: 765:10.3390/ijms14035750 672:1990Palai...5..520G 487:2008ARPC...59..659S 436:1990Sci...247.1439S 430:(4949): 1439–1445. 342:(Pt 3): 1011–1020. 305:Ultrasonic cleaning 206:soil organic matter 187:ultrasonic cleaning 30:A sonicator at the 310:Kenneth S. Suslick 268: 232:phenolic compounds 183: 36: 832:Publishers; 2010. 397:"Ultrasonication" 395:Colin Batchelor. 34:during sonication 898: 860: 849: 843: 839: 833: 829: 823: 822: 794: 788: 787: 777: 767: 758:(3): 5750–5764. 743: 737: 736: 730: 722: 713:(5): 1705-1725. 698: 692: 691: 655: 649: 648: 646: 644: 617: 611: 610: 578: 572: 571: 543: 537: 536: 516: 507: 506: 470: 464: 463: 419: 413: 412: 410: 408: 392: 386: 385: 359: 331: 278:ultrasonic horns 143:freeze-pump-thaw 118:, nanocrystals, 100:sonoluminescence 84:cellulose fibres 67:ultrasonic probe 55:ultra-sonication 51:ultrasonication 21:buzz pollination 906: 905: 901: 900: 899: 897: 896: 895: 866: 865: 864: 863: 850: 846: 840: 836: 830: 826: 796: 795: 791: 745: 744: 740: 723: 700: 699: 695: 680:10.2307/3514860 657: 656: 652: 642: 640: 619: 618: 614: 580: 579: 575: 545: 544: 540: 518: 517: 510: 472: 471: 467: 421: 420: 416: 406: 404: 394: 393: 389: 333: 332: 323: 318: 296: 260: 220:ultrasonic bath 128:cell disruption 108: 92: 82:can distribute 80:ultrasonic foil 62:ultrasonic bath 24: 17: 12: 11: 5: 904: 902: 894: 893: 888: 886:Fluid dynamics 883: 878: 868: 867: 862: 861: 844: 834: 824: 805:(3): 314–322. 789: 738: 693: 666:(6): 520–547. 650: 632:(4): 479–495. 612: 573: 554:(5): 1316–23. 538: 508: 465: 414: 387: 320: 319: 317: 314: 313: 312: 307: 302: 295: 292: 259: 256: 250:or ultrasonic 107: 104: 91: 88: 45:and seaweeds. 15: 13: 10: 9: 6: 4: 3: 2: 903: 892: 889: 887: 884: 882: 879: 877: 874: 873: 871: 859: 855: 848: 845: 838: 835: 828: 825: 820: 816: 812: 808: 804: 800: 793: 790: 785: 781: 776: 771: 766: 761: 757: 753: 749: 742: 739: 734: 728: 720: 716: 712: 708: 704: 697: 694: 689: 685: 681: 677: 673: 669: 665: 661: 654: 651: 639: 635: 631: 627: 623: 616: 613: 608: 604: 600: 596: 592: 588: 584: 577: 574: 569: 565: 561: 557: 553: 549: 542: 539: 534: 530: 526: 522: 515: 513: 509: 504: 500: 496: 492: 488: 484: 480: 476: 469: 466: 461: 457: 453: 449: 445: 441: 437: 433: 429: 425: 418: 415: 402: 398: 391: 388: 383: 379: 375: 371: 367: 363: 358: 353: 349: 345: 341: 337: 330: 328: 326: 322: 315: 311: 308: 306: 303: 301: 298: 297: 293: 291: 288: 283: 279: 274: 264: 257: 255: 253: 249: 245: 241: 240:coconut shell 237: 233: 229: 225: 221: 216: 214: 209: 207: 202: 198: 196: 192: 188: 181: 176: 172: 168: 165: 163: 159: 155: 150: 148: 144: 140: 136: 131: 129: 125: 121: 117: 116:nanoemulsions 113: 112:nanoparticles 105: 103: 101: 97: 96:sonochemistry 89: 87: 85: 81: 77: 76:paper machine 73: 69: 68: 63: 58: 56: 52: 48: 44: 40: 33: 28: 22: 847: 837: 827: 802: 798: 792: 755: 751: 741: 727:cite journal 710: 706: 696: 663: 659: 653: 641:. Retrieved 629: 625: 615: 593:(1): 36–44. 590: 586: 576: 551: 547: 541: 524: 520: 478: 474: 468: 427: 423: 417: 405:. Retrieved 400: 390: 339: 335: 286: 269: 217: 213:microfossils 210: 203: 199: 184: 169: 166: 158:sonoporation 151: 132: 109: 106:Applications 93: 71: 65: 61: 59: 54: 50: 38: 37: 643:18 February 481:: 659–683. 300:Ultrasonics 224:isoflavones 215:from rock. 876:Ultrasound 870:Categories 357:10197/8191 316:References 282:cavitation 273:cavitation 252:cavitation 236:wheat bran 191:spectacles 114:, such as 47:Ultrasonic 43:microalgae 39:Sonication 527:: 77–82. 460:220099341 366:0963-9969 258:Equipment 149:methods. 139:degassing 135:NMR tubes 120:liposomes 72:sonicator 819:16905351 784:23481637 607:55520937 568:23507361 503:18393682 452:17791211 407:17 April 382:10531419 374:28865611 294:See also 248:Acoustic 228:soybeans 147:sparging 124:biofuels 775:3634473 688:3514860 668:Bibcode 660:PALAIOS 483:Bibcode 432:Bibcode 424:Science 244:solvent 195:jewelry 90:Effects 74:. In a 817:  782:  772:  686:  605:  566:  501:  458:  450:  380:  372:  364:  64:or an 842:2010. 684:JSTOR 603:S2CID 456:S2CID 378:S2CID 234:from 226:from 78:, an 815:PMID 780:PMID 733:link 645:2016 564:PMID 499:PMID 448:PMID 409:2023 370:PMID 362:ISSN 238:and 230:and 193:and 145:and 854:doi 807:doi 770:PMC 760:doi 715:doi 676:doi 634:doi 630:177 595:doi 556:doi 529:doi 491:doi 440:doi 428:247 352:hdl 344:doi 287:not 218:An 53:or 872:: 813:. 803:14 801:. 778:. 768:. 756:14 754:. 750:. 729:}} 725:{{ 711:12 709:. 705:. 682:. 674:. 662:. 628:. 624:. 601:. 589:. 585:. 562:. 552:20 550:. 525:69 523:. 511:^ 497:. 489:. 479:59 477:. 454:. 446:. 438:. 426:. 399:. 376:. 368:. 360:. 350:. 340:99 338:. 324:^ 197:. 160:. 57:. 856:: 821:. 809:: 786:. 762:: 735:) 717:: 690:. 678:: 670:: 664:5 647:. 636:: 609:. 597:: 591:5 570:. 558:: 535:. 531:: 505:. 493:: 485:: 462:. 442:: 434:: 411:. 384:. 354:: 346:: 23:.

Index

buzz pollination

Weizmann Institute of Science
microalgae
Ultrasonic
ultrasonic probe
paper machine
ultrasonic foil
cellulose fibres
sonochemistry
sonoluminescence
nanoparticles
nanoemulsions
liposomes
biofuels
cell disruption
NMR tubes
degassing
freeze-pump-thaw
sparging
disrupt cell membranes
sonoporation
Small unilamellar vesicles

Swiss National Sound Archives
ultrasonic cleaning
spectacles
jewelry
soil organic matter
microfossils

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.