Knowledge (XXG)

3D microfabrication

Source 📝

220:
and shrinkage can result more complex behavior like bending, twisting and folding and they can happen with different magnitudes in different directions. Utilization of these phenomena for the design of structured materials can be highly attractive because they allow simple, template-free fabrication of very complex repetitive 2D and 3D patterns. However, they cannot be prepared by using sophisticated fabrication methods like two-photon and interference photolithography as mentioned before. There is an advantage of the self-folding approach, is the possibility of quick, reversible, and reproducible fabrication of 3D hollow objects with controlled chemical properties and morphology of both the exterior and the interior.
164:
effect on the material around the voxel/focal point. By moving the focal point around in three-dimensional space and solidifying the medium at different points, the desired 3D geometry can be additively manufactured with feature size down to 100-160 nm as of 2023. The limits of 2PP fabrication depend on the utilized equipment (servo, mirrors, and laser resolution) and selected lens (laser focusing), as well as the material (UV absorption profile and reactivity). Recently, a list of 2PP printed materials has been actively expanding and includes hard and flexible polymers, glass, soft elastomers, enabling microfabrication of various MEMS and soft microbotics.
199:
for 30 minutes. It is contacted with a photomask using the contact stage. This stage, is leaned against the tilting stage and the resist is exposed to the UV. The dose of 365 nm UV is 500mJ/cm. After the exposure, the resist is post-exposure baked on a 65 °C hot plate for 3 minutes and on a 95 °C plate for 10 minutes. In the end, the resist is developed in the SU-8 for about 10 to 15 minutes at the room temperature with mild agitation and then, rinsed with isopropyl alcohol. Besides that, there can be a lot of other procedures. For example, inclined UV lithography, inclined and rotated UV lithography and lithography using reflected UV.
131:. Microscopic mechanical elements such as micromotors, micropumps, and other microfluidic devices can be produced using direct-write concepts. In addition to additive and subtractive processes, DLW allows for the modification of the properties of a material. Mechanisms that allow for these modifications include sintering, microstereolithography, and multiphoton processes. These use pulsed femtosecond lasers to deliver a precise dosage to induce absorption of energy, leading to an 144:
fixed onto one location and the translation stage moves to fabricate each layer vector by vector. A faster alternate involves using a projection principle in which the image is projected onto the surface of the resin so that the irradiation of a layer is done in one step only. The high-resolution results allow for the fabrication of complex shapes that would otherwise be difficult to produce at such small scales.
95:
components. Layers in processes such as electrochemical fabrication can be as thin as 5 to 10 μm. The creation of microscopic structures is similar to conventional additive manufacturing techniques in that a computer aided design model is sliced into an appropriate number of two-dimensional layers in order to create a toolpath. This toolpath is then followed by a mechanical system to produce the desired geometry.
119: 1284: 22: 203:
microstructures fabricated by the 3D micro fabrication technology can be allied to a lot of microsystems directly. Also, it can be used as the molds for electroplating. As a result, these technology can be applied to a variety of fields like filters, mixers, jets, micro channels, light guide panels of LCD monitor and more.
173:
transistor arrays for displays. Another additive process is laser-induced forward transfer (LIFT), which uses pulsed lasers aimed at a coated substrate to transfer material in the direction of the laser flow. LIFT has been used to produce transfer thermo-electric materials, polymers and has been used to print copper wires.
231:
One factor that limit broad applicability of self-folding polymer films is the manufacturing cost. Actually, polymer can be deposited by spinning and dipping coating at ambient conditions, the fabrication of polymer self-folding films is substantially cheaper than fabrication of inorganic ones, which
219:
Stimuli-responsive hydrogels mimic swelling/shrinking behavior of plant cells and produce macroscopic actuation in response to a small variation of environmental conditions. Mostly, homogenous expansion or contraction in all directions can result a change of conditions. Also, inhomogeneous expansion
198:
is a negative thick photoresist, which used in novel 3D micro fabrication method with inclined/rotated UV lithography. During the process, we coat SU-8 50 on a silicon wafer with a thickness of about 100ųm. Then, soft bake the resist on a 65 °C hot plate for 10 minutes and on a 95 °C plate
143:
Microstereolithography is a common technique based on stereolithography principles. 3D components are fabricated by repeatedly layering photopolymerizable resin and curing under an ultraviolet laser. Earlier systems that employ this technique use a scanning principle in which a focused light beam is
163:
the resin or glass at a specific point. To achieve high photon currents in the range of 10 photons s cm femtosecond lasers with pulse widths of 100 fs are used. In 2PP, two photons meet at the focal point, doubling the laser's excitation energy and curing a voxel of 2PP resin while having a minimum
190:
The basic setup of inclined UV exposure has conventional UV source, a contact stage, and a tilting stage. Plus, we place a photomask and a photoresist coated substrate between the upper and lower plates of the contact stage, and it is fixed by pushing up the lower plate with a screw. Then, we can
181:
Focus on the 3D microstructures now, it have been focused in a lot of microsystems like electronic, mechanical, micro-optical and analysis systems. And when this technology is developing, we found that the traditional and conventional micro machining technologies like surface micromachining, bulk
172:
Additive processes involve the layering of materials in a certain pattern. These include laser chemical vapor deposition (LCVD), which use organic precursors to write patterns on a structure or bulk material. This application can be found in the field of electronics, particularly in the repair of
126:
Laser-based techniques are the most common approach for producing microstructures. Typical techniques involve the use of lasers to add or subtract material from a bulk sample. Recent applications of lasers involve the use of ultrashort pulses of lasers focused to a small area in order to create a
235:
To solve these issues, the future research must be focused on deeper investigation of folding to allow design of complex 3D structures using just 2D shapes. On the other hand, searching a way, which is cheap and fast manufacturing of large quantity of self-folding films can be greatly helpful.
211:
Design of complicated 3D microstructure can be highly challenging task for development of novel materials for optics, biotechnology and micro/nano electronics. 3D materials can be fabricated using a lot of methods like two-photon photolithography, interference lithography and molding. But 3D
94:
Much like their macroscopic analog, microstructures can be produced using rapid prototyping methods. These techniques generally involve the layering of some resin, with each layer being much thinner than that used for conventional processes in order to produce higher resolution microscopic
202:
When the trace of the incident UV with a right angle is on a straight line, so the patterns of a photomask are transcribed to the resist. When talking about inclined UV exposure processes, the UV is refracted and reflected, this makes it possible to fabricate various of 3D structures. The
215:
Nature offers a large number of ideas for the design of novel materials with superior properties. Self-assembly and self-organization being the main principle of structure formation in nature attract significant interest as promising concepts for the design of intelligent materials.
77:
refers to manufacturing techniques that involve the layering of materials to produce a three-dimensional structure at a microscopic scale. These structures are usually on the scale of micrometers and are popular in
690: 102:(SLA), which involves the use of a UV light or laser beam on a surface to create a layer, which are then lowered into a tank so that a new layer can be formed on top. Another commonly used method is 135:
that can result in annealing and surface structuring of a material. The specific changes caused by irradiation depend on parameters such as pulse energy, pulse duration or pulse repetition rate.
232:
are produced by vacuum deposition. In another word, there is no method, which is cheap and large-scale production of self-folding polymer films that substantially limits their application.
106:(FDM), in which a moving head creates a layer by melting the model material (usually a polymer) and extrudes the melted material onto a surface. Other methods such as 873: 1475: 563: 494:
Grant-Jacob, James A.; Mills, Benjamin; Feinaeugle, Matthias; Sones, Collin L.; Oosterhuis, Gerrit; Hoppenbrouwers, Marc B.; Eason, Robert W. (2013-06-01).
1322: 1547: 223:
One experimental application of self-folding materials is pasta that ships flat but folds into the desired shape on contact with boiling water.
1138: 706: 659: 626: 322: 269: 32: 43: 1552: 1227: 866: 1480: 986: 763: 294: 455:"Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films" 61: 1098: 820: 212:
structuring using these techniques is very complicated, experimentally. This can limit their upscaling and broad applicability.
1633: 1537: 1378: 1342: 859: 742: 83: 127:
pattern that is layered to create a structure. The use of lasers in such a manner is known as direct laser writing (DLW) or
402:
Srinivasaraghavan Govindarajan, Rishikesh; Sikulskyi, Stanislav; Ren, Zefu; Stark, Taylor; Kim, Daewon (10 November 2023).
1542: 1315: 1288: 1254: 773: 496:"Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment" 404:"Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing" 1593: 1449: 1259: 1195: 680: 654: 182:
micromachining and GIGA process are not sufficient to fabricate or produce oblique and curved 3D microstructures.
1242: 1202: 825: 726: 619: 107: 103: 1638: 1583: 1308: 1033: 1018: 996: 789: 747: 716: 377: 262:
Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications
1368: 1207: 1180: 815: 721: 152: 128: 535:
Han, M.; Lee, W.; Lee, S.K.; Lee, S.S. (2004). "3D microfabrication with inclined/rotated UV lithography".
1527: 1495: 1426: 1217: 1212: 1185: 768: 1431: 1143: 1006: 882: 810: 711: 36:
that states a Knowledge (XXG) editor's personal feelings or presents an original argument about a topic.
453:
Heath, Daniel J; Feinaeugle, Matthias; Grant-Jacob, James A; Mills, Ben; Eason, Robert W (2015-05-01).
1603: 1190: 1153: 1133: 612: 507: 466: 351: 1532: 1247: 1222: 1093: 1050: 928: 923: 664: 160: 1264: 966: 1065: 961: 943: 830: 649: 454: 435: 318: 290: 265: 99: 580:
Ionov, L. (2013). "3D microfabrication using stimuli-responsive self-folding polymer films".
495: 1598: 1470: 1232: 1148: 1108: 794: 589: 544: 515: 474: 425: 415: 359: 195: 79: 1347: 1331: 1083: 1028: 971: 956: 159:
structures with sub-micrometer resolution. The process uses the focal point of a laser to
511: 470: 430: 403: 355: 1485: 1454: 1403: 1352: 1237: 1103: 1045: 1023: 840: 835: 339: 1627: 1269: 1038: 991: 913: 132: 1557: 1173: 1088: 1001: 593: 1168: 1163: 1055: 933: 918: 908: 685: 635: 156: 118: 1500: 1421: 1373: 1128: 1013: 548: 338:
Hahn, Vincent; Mayer, Frederik; Thiel, Michael; Wegener, Martin (2019-10-01).
363: 1608: 1158: 976: 604: 439: 420: 1490: 1413: 1075: 1060: 981: 520: 479: 110:(SLS) are also used in the additive manufacturing of 3D microstructures. 851: 951: 287:
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
1441: 1395: 1578: 1300: 117: 1588: 1304: 855: 608: 15: 33:
personal reflection, personal essay, or argumentative essay
155:, e.g., two-photon polymerization (2PP), can be used to 39: 315:
3D Laser Microfabrication: Principles and Applications
1571: 1520: 1513: 1463: 1440: 1412: 1394: 1387: 1361: 1121: 1074: 942: 896: 889: 803: 782: 756: 735: 699: 673: 642: 564:"MIT researchers develop a shape-shifting pasta" 1476:Radio-frequency microelectromechanical systems 1316: 867: 620: 8: 191:expose the photoresist to the inclined UV. 1517: 1391: 1323: 1309: 1301: 1283: 893: 874: 860: 852: 627: 613: 605: 1491:Biological microelectromechanical systems 519: 478: 429: 419: 122:Setup of a typical laser microfabrication 62:Learn how and when to remove this message 245: 194:An example of the fabrication process: 75:Three-dimensional (3D) microfabrication 1139:Differential technological development 707:Powder bed and inkjet head 3D printing 660:Continuous liquid interface production 7: 308: 306: 289:(5th ed.). Wiley. p. 846. 255: 253: 251: 249: 177:With inclined/rotated UV lithography 1228:Future-oriented technology analysis 260:Baldacchini, Tommasso, ed. (2016). 1481:Microoptoelectromechanical systems 987:High-temperature superconductivity 764:Electron beam freeform fabrication 14: 537:Sensors and Actuators A: Physical 1282: 1099:Self-reconfiguring modular robot 821:Digital modeling and fabrication 20: 562:Nanos, Janelle (June 5, 2017), 1343:Microelectromechanical systems 992:High-temperature superfluidity 743:Laminated object manufacturing 84:microelectromechanical systems 1: 1255:Technology in science fiction 313:Misawa, Hiroaki, ed. (2006). 774:Laser engineered net shaping 594:10.1080/15583724.2012.751923 378:"Photonic Professional GT2" 1655: 1450:Digital micromirror device 1260:Technology readiness level 1196:Technological unemployment 757:Directed energy deposition 691:EAM of metals and ceramics 681:Fused filament fabrication 655:Computed axial lithography 1338: 1278: 1243:Technological singularity 1203:Technological convergence 1019:Multi-function structures 826:Distributed manufacturing 727:Selective laser sintering 700:Powder bed binding/fusion 643:Resin photopolymerization 549:10.1016/j.sna.2003.10.006 500:Optical Materials Express 459:Optical Materials Express 344:Optics and Photonics News 114:3D laser microfabrication 108:selective laser sintering 104:fused deposition modeling 98:A popular application is 1584:Shallow trench isolation 1034:Molecular nanotechnology 997:Linear acetylenic carbon 790:Construction 3D printing 748:Ultrasonic consolidation 717:Selective heat sintering 636:3D printing technologies 364:10.1364/OPN.30.10.000028 340:"3-D Laser Nanoprinting" 285:Groover, Mikell (2012). 168:Other additive processes 1369:Interdigital transducer 1208:Technological evolution 1181:Exploratory engineering 816:3D printing marketplace 722:Selective laser melting 153:Multiphoton lithography 148:Multiphoton lithography 129:multiphoton lithography 1528:Surface micromachining 1427:Scratch drive actuator 1218:Technology forecasting 1213:Technological paradigm 1186:Proactionary principle 769:Laser metal deposition 207:Self-folding materials 139:Microstereolithography 123: 42:by rewriting it in an 1634:3D printing processes 1144:Disruptive innovation 1007:Metamaterial cloaking 883:Emerging technologies 811:3D printing processes 712:Electron beam melting 421:10.3390/polym15224377 121: 1604:Silicon on insulator 1191:Technological change 1134:Collingridge dilemma 521:10.1364/OME.3.000747 480:10.1364/OME.5.001129 1563:3D microfabrication 1533:Bulk micromachining 1248:Technology scouting 1223:Accelerating change 1094:Powered exoskeleton 1051:Programmable matter 929:Smart manufacturing 924:Molecular assembler 904:3D microfabrication 665:Solid ground curing 512:2013OMExp...3..747G 471:2015OMExp...5.1129H 356:2019OptPN..30...28H 1538:HAR micromachining 1265:Technology roadmap 967:Conductive polymer 674:Material extrusion 124: 44:encyclopedic style 31:is written like a 1621: 1620: 1617: 1616: 1509: 1508: 1298: 1297: 1117: 1116: 1066:Synthetic diamond 962:Artificial muscle 944:Materials science 849: 848: 831:Rapid prototyping 783:Building printing 650:Stereolithography 324:978-3-527-31055-5 271:978-0-323-35321-2 100:stereolithography 90:Rapid prototyping 72: 71: 64: 1646: 1599:Photolithography 1518: 1471:Millipede memory 1432:Thermal actuator 1392: 1362:Basic structures 1325: 1318: 1311: 1302: 1286: 1285: 1233:Horizon scanning 1149:Ephemeralization 1109:Uncrewed vehicle 1029:Carbon nanotubes 894: 876: 869: 862: 853: 795:Contour crafting 736:Sheet lamination 629: 622: 615: 606: 599: 597: 577: 571: 570: 568:The Boston Globe 559: 553: 552: 532: 526: 525: 523: 491: 485: 484: 482: 450: 444: 443: 433: 423: 399: 393: 392: 390: 388: 374: 368: 367: 335: 329: 328: 310: 301: 300: 282: 276: 275: 257: 80:microelectronics 67: 60: 56: 53: 47: 24: 23: 16: 1654: 1653: 1649: 1648: 1647: 1645: 1644: 1643: 1639:Microtechnology 1624: 1623: 1622: 1613: 1567: 1505: 1459: 1436: 1408: 1383: 1357: 1348:Microtechnology 1334: 1332:Microtechnology 1329: 1299: 1294: 1274: 1113: 1070: 972:Femtotechnology 957:Amorphous metal 938: 885: 880: 850: 845: 799: 778: 752: 731: 695: 669: 638: 633: 603: 602: 582:Polymer Reviews 579: 578: 574: 561: 560: 556: 534: 533: 529: 493: 492: 488: 452: 451: 447: 401: 400: 396: 386: 384: 376: 375: 371: 337: 336: 332: 325: 312: 311: 304: 297: 284: 283: 279: 272: 259: 258: 247: 242: 229: 209: 188: 179: 170: 161:photopolymerize 150: 141: 116: 92: 68: 57: 51: 48: 40:help improve it 37: 25: 21: 12: 11: 5: 1652: 1650: 1642: 1641: 1636: 1626: 1625: 1619: 1618: 1615: 1614: 1612: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1575: 1573: 1569: 1568: 1566: 1565: 1560: 1555: 1550: 1545: 1540: 1535: 1530: 1524: 1522: 1515: 1511: 1510: 1507: 1506: 1504: 1503: 1498: 1493: 1488: 1486:Microphotonics 1483: 1478: 1473: 1467: 1465: 1461: 1460: 1458: 1457: 1455:Optical switch 1452: 1446: 1444: 1438: 1437: 1435: 1434: 1429: 1424: 1418: 1416: 1410: 1409: 1407: 1406: 1404:Microbolometer 1400: 1398: 1389: 1385: 1384: 1382: 1381: 1376: 1371: 1365: 1363: 1359: 1358: 1356: 1355: 1353:Micromachinery 1350: 1345: 1339: 1336: 1335: 1330: 1328: 1327: 1320: 1313: 1305: 1296: 1295: 1293: 1292: 1279: 1276: 1275: 1273: 1272: 1267: 1262: 1257: 1252: 1251: 1250: 1245: 1240: 1235: 1230: 1225: 1215: 1210: 1205: 1200: 1199: 1198: 1188: 1183: 1178: 1177: 1176: 1171: 1166: 1161: 1151: 1146: 1141: 1136: 1131: 1125: 1123: 1119: 1118: 1115: 1114: 1112: 1111: 1106: 1104:Swarm robotics 1101: 1096: 1091: 1086: 1080: 1078: 1072: 1071: 1069: 1068: 1063: 1058: 1053: 1048: 1046:Picotechnology 1043: 1042: 1041: 1036: 1031: 1024:Nanotechnology 1021: 1016: 1011: 1010: 1009: 999: 994: 989: 984: 979: 974: 969: 964: 959: 954: 948: 946: 940: 939: 937: 936: 931: 926: 921: 916: 911: 906: 900: 898: 891: 887: 886: 881: 879: 878: 871: 864: 856: 847: 846: 844: 843: 841:3D bioprinting 838: 836:RepRap project 833: 828: 823: 818: 813: 807: 805: 804:Related topics 801: 800: 798: 797: 792: 786: 784: 780: 779: 777: 776: 771: 766: 760: 758: 754: 753: 751: 750: 745: 739: 737: 733: 732: 730: 729: 724: 719: 714: 709: 703: 701: 697: 696: 694: 693: 688: 683: 677: 675: 671: 670: 668: 667: 662: 657: 652: 646: 644: 640: 639: 634: 632: 631: 624: 617: 609: 601: 600: 572: 554: 527: 506:(6): 747–754. 486: 445: 394: 369: 330: 323: 302: 296:978-1118231463 295: 277: 270: 244: 243: 241: 238: 228: 225: 208: 205: 187: 184: 178: 175: 169: 166: 149: 146: 140: 137: 115: 112: 91: 88: 70: 69: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1651: 1640: 1637: 1635: 1632: 1631: 1629: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1576: 1574: 1570: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1525: 1523: 1519: 1516: 1512: 1502: 1499: 1497: 1496:Microfluidics 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1468: 1466: 1462: 1456: 1453: 1451: 1448: 1447: 1445: 1443: 1439: 1433: 1430: 1428: 1425: 1423: 1420: 1419: 1417: 1415: 1411: 1405: 1402: 1401: 1399: 1397: 1393: 1390: 1386: 1380: 1377: 1375: 1372: 1370: 1367: 1366: 1364: 1360: 1354: 1351: 1349: 1346: 1344: 1341: 1340: 1337: 1333: 1326: 1321: 1319: 1314: 1312: 1307: 1306: 1303: 1291: 1290: 1281: 1280: 1277: 1271: 1270:Transhumanism 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1220: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1197: 1194: 1193: 1192: 1189: 1187: 1184: 1182: 1179: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1156: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1126: 1124: 1120: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1081: 1079: 1077: 1073: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1040: 1039:Nanomaterials 1037: 1035: 1032: 1030: 1027: 1026: 1025: 1022: 1020: 1017: 1015: 1012: 1008: 1005: 1004: 1003: 1002:Metamaterials 1000: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 949: 947: 945: 941: 935: 932: 930: 927: 925: 922: 920: 917: 915: 914:3D publishing 912: 910: 907: 905: 902: 901: 899: 897:Manufacturing 895: 892: 888: 884: 877: 872: 870: 865: 863: 858: 857: 854: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 808: 806: 802: 796: 793: 791: 788: 787: 785: 781: 775: 772: 770: 767: 765: 762: 761: 759: 755: 749: 746: 744: 741: 740: 738: 734: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 704: 702: 698: 692: 689: 687: 684: 682: 679: 678: 676: 672: 666: 663: 661: 658: 656: 653: 651: 648: 647: 645: 641: 637: 630: 625: 623: 618: 616: 611: 610: 607: 595: 591: 588:(1): 92–107. 587: 583: 576: 573: 569: 565: 558: 555: 550: 546: 542: 538: 531: 528: 522: 517: 513: 509: 505: 501: 497: 490: 487: 481: 476: 472: 468: 464: 460: 456: 449: 446: 441: 437: 432: 427: 422: 417: 413: 409: 405: 398: 395: 383: 379: 373: 370: 365: 361: 357: 353: 349: 345: 341: 334: 331: 326: 320: 316: 309: 307: 303: 298: 292: 288: 281: 278: 273: 267: 263: 256: 254: 252: 250: 246: 239: 237: 233: 226: 224: 221: 217: 213: 206: 204: 200: 197: 192: 185: 183: 176: 174: 167: 165: 162: 158: 154: 147: 145: 138: 136: 134: 133:excited state 130: 120: 113: 111: 109: 105: 101: 96: 89: 87: 85: 81: 76: 66: 63: 55: 45: 41: 35: 34: 29:This article 27: 18: 17: 1562: 1558:Wire bonding 1388:Applications 1379:Microchannel 1287: 1174:Robot ethics 1089:Nanorobotics 1056:Quantum dots 903: 585: 581: 575: 567: 557: 543:(1): 14–20. 540: 536: 530: 503: 499: 489: 462: 458: 448: 414:(22): 4377. 411: 407: 397: 385:. Retrieved 381: 372: 347: 343: 333: 314: 286: 280: 264:. Elsevier. 261: 234: 230: 222: 218: 214: 210: 201: 193: 189: 180: 171: 151: 142: 125: 97: 93: 74: 73: 58: 49: 30: 1548:Lithography 1238:Moore's law 1169:Neuroethics 1164:Cyberethics 934:Utility fog 919:Claytronics 909:3D printing 686:Robocasting 465:(5): 1129. 387:25 November 186:Fabrication 1628:Categories 1543:Deposition 1501:Micropower 1422:Comb drive 1374:Cantilever 1129:Automation 1014:Metal foam 382:Nanoscribe 350:(10): 28. 240:References 52:March 2020 1609:Smart cut 1514:Processes 1414:Actuators 1159:Bioethics 977:Fullerene 317:. Wiley. 1594:Lift-off 1572:Specific 1442:Switches 1084:Domotics 1076:Robotics 1061:Silicene 982:Graphene 440:38006101 431:10675433 408:Polymers 157:3D print 1553:Etching 1521:General 1396:Sensors 952:Aerogel 508:Bibcode 467:Bibcode 352:Bibcode 227:Outlook 38:Please 1154:Ethics 1122:Topics 890:Fields 438:  428:  321:  293:  268:  1579:LOCOS 1464:Other 1589:LIGA 1289:List 436:PMID 389:2023 319:ISBN 291:ISBN 266:ISBN 196:SU-8 82:and 590:doi 545:doi 541:111 516:doi 475:doi 426:PMC 416:doi 360:doi 1630:: 586:53 584:. 566:, 539:. 514:. 502:. 498:. 473:. 461:. 457:. 434:. 424:. 412:15 410:. 406:. 380:. 358:. 348:30 346:. 342:. 305:^ 248:^ 86:. 1324:e 1317:t 1310:v 875:e 868:t 861:v 628:e 621:t 614:v 598:} 596:. 592:: 551:. 547:: 524:. 518:: 510:: 504:3 483:. 477:: 469:: 463:5 442:. 418:: 391:. 366:. 362:: 354:: 327:. 299:. 274:. 65:) 59:( 54:) 50:( 46:.

Index

personal reflection, personal essay, or argumentative essay
help improve it
encyclopedic style
Learn how and when to remove this message
microelectronics
microelectromechanical systems
stereolithography
fused deposition modeling
selective laser sintering

multiphoton lithography
excited state
Multiphoton lithography
3D print
photopolymerize
SU-8




ISBN
978-0-323-35321-2
ISBN
978-1118231463


ISBN
978-3-527-31055-5
"3-D Laser Nanoprinting"
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.