Knowledge (XXG)

Five prime untranslated region

Source 📝

333: 344: 441: 250: 621: 654:, which is a cap-independent method of translational activation. Instead of building up a complex at the 5′ cap, the IRES allows for direct binding of the ribosomal complexes to the transcript to begin translation. The IRES enables the viral transcript to translate more efficiently due to the lack of needing a preinitation complex, allowing the virus to replicate quickly. 40: 457: 567:
The translation of the protein within the main ORF after a uORF sequence has been translated is known as reinitiation. The process of reinitiation is known to reduce the translation of the ORF protein. Control of protein regulation is determined by the distance between the uORF and the first codon in
1055:
Akulich, Kseniya A.; Andreev, Dmitry E.; Terenin, Ilya M.; Smirnova, Victoria V.; Anisimova, Aleksandra S.; Makeeva, Desislava S.; Arkhipova, Valentina I.; Stolboushkina, Elena A.; Garber, Maria B.; Prokofjeva, Maria M.; Spirin, Pavel V.; Prassolov, Vladimir S.; Shatsky, Ivan N.; Dmitriev, Sergey E.
912:
Rhind, Nicholas; Chen, Zehua; Yassour, Moran; Thompson, Dawn A.; Haas, Brian J.; Habib, Naomi; Wapinski, Ilan; Roy, Sushmita; Lin, Michael F.; Heiman, David I.; Young, Sarah K.; Furuya, Kanji; Guo, Yabin; Pidoux, Alison; Chen, Huei Mei; Robbertse, Barbara; Goldberg, Jonathan M.; Aoki, Keita; Bayne,
525:
from the binding of IRP1 and IRP2 to the IRE. When iron is high, then the two iron-regulatory proteins do not bind as strongly and allow proteins to be expressed that have a role in iron concentration control. This function has gained some interest after it was revealed that the translation of
568:
the main ORF. A uORF has been found to increase reinitiation with the longer distance between its uAUG and the start codon of the main ORF, which indicates that the ribosome needs to reacquire translation factors before it can carry out translation of the main protein. For example,
560:(uORF). These elements are fairly common, occurring in 35–49% of all human genes. A uORF is a coding sequence located in the 5′ UTR located upstream of the coding sequences initiation site. These uORFs contain their own initiation codon, known as an upstream AUG (uAUG). This 428:
gene. The protein SXL attaches to an intron segment located within the 5′ UTR segment of the primary transcript, which leads to the inclusion of the intron after processing. This sequence allows the recruitment of proteins that bind simultaneously to both the 5′ and
236:
of life accept and translate such mRNAs. Such sequences are naturally found in all three domains of life. Humans have many pressure-related genes under a 2–3 nucleotide leader. Mammals also have other types of ultra-short leaders like the
194:(usually AUG) of the coding region. In prokaryotes, the length of the 5′ UTR tends to be 3–10 nucleotides long, while in eukaryotes it tends to be anywhere from 100 to several thousand nucleotides long. For example, the 913:
Elizabeth H.; Berlin, Aaron M.; Desjardins, Christopher A.; Dobbs, Edward; Dukaj, Livio; Fan, Lin; Fitzgerald, Michael G.; French, Courtney; Gujja, Sharvari; Hansen, Klavs; Keifenheim, Dan; Levin, Joshua Z. (2011).
516:
Iron levels in cells are maintained by translation regulation of many proteins involved in iron storage and metabolism. The 5′ UTR has the ability to form a hairpin loop secondary structure (known as the
564:
can be scanned for by ribosomes and then translated to create a product, which can regulate the translation of the main protein coding sequence or other uORFs that may exist on the same transcript.
820:
Cenik, Can; Chua, Hon Nian; Zhang, Hui; Tarnawsky, Stefan P.; Akef, Abdalla; Derti, Adnan; Tasan, Murat; Moore, Melissa J.; Palazzo, Alexander F.; Roth, Frederick P. (2011). Snyder, Michael (ed.).
574:
regulation is performed by two uORFs further upstream, named uORF1 and uORF2, which contain three amino acids and fifty-nine amino acids, respectively. The location of uORF2 overlaps with the
1465:
Rogers, Jack T.; Bush, Ashley I.; Cho, Hyan-Hee; Smith, Deborah H.; Thomson, Andrew M.; Friedlich, Avi L.; Lahiri, Debomoy K.; Leedman, Peter J.; Huang, Xudong; Cahill, Catherine M. (2008).
385:
In both domains, genes without Shine–Dalgarno sequences are also translated in a less understood manner. A requirement seems to be a lack of secondary structure near the initiation codon.
382:
is less understood. SD sequences are much rarer, and the initiation factors have more in common with eukaryotic ones. There is no homolog of bacterial IF3. Some mRNAs are leaderless.
217:
only has seven nucleotides in its 5′ UTR. The differing sizes are likely due to the complexity of the eukaryotic regulation which the 5′ UTR holds as well as the larger
1289: 590:
ribosome will bypass uORF2 because of a decrease in concentration of eIF2-TC, which means the ribosome does not acquire one in time to translate uORF2. Instead,
686:
sites are located close to a small intron that is spliced in males, but kept in females through splicing inhibition. This splicing inhibition is maintained by
1467:"Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer's disease" 433:, not allowing translation proteins to assemble. However, it has also been noted that SXL can also repress translation of RNAs that do not contain a 521:
or IRE) that is recognized by iron-regulatory proteins (IRP1 and IRP2). In low levels of iron, the ORF of the target mRNA is blocked as a result of
729: 254: 1414: 988: 896: 1430:
Kozak, Marilyn (2008). "Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function".
1354:
Araujo, Patricia R.; Yoon, Kihoon; Ko, Daijin; Smith, Andrew D.; Qiao, Mei; Suresh, Uthra; Burns, Suzanne C.; Penalva, Luiz O. F. (2012).
364: 414:
bind the 5′ UTR, which limits the rate at which translational initiation can occur. However, this is not the only regulatory step of
1265: 218: 320:
are one such secondary structure that can be located within the 5′ UTR. These secondary structures also impact the regulation of
313: 145: 1305:"Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine-Dalgarno sequence in prokaryotes" 719: 531: 113: 651: 642: 625: 613: 289: 822:"Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes" 270: 606:
The nucleotides of an uORF may code for a codon that leads to a highly structured mRNA, causing the ribosome to stall.
551: 292:(uORFs) and upstream AUGs (uAUGs) and termination codons, which have a great impact on the regulation of translation ( 586:
ORF, whose start codon is located within uORF2. This leads to its repression. However, during stress conditions, the
1213:
Benelli, D; Londei, P (January 2011). "Translation initiation in Archaea: conserved and domain-specific features".
1248:
Hernández, Greco; Jagus, Rosemary (2016-08-10). "Evolution of Translational Initiation: From Archaea to Eukarya".
527: 200: 556:
Another form of translational regulation in eukaryotes comes from unique elements on the 5′ UTR called upstream
1738: 278: 183: 59: 371:, bind to the Shine–Dalgarno (SD) sequence of the 5′ UTR. This then recruits many other proteins, such as the 160: 156: 773:"RNA Binding Protein Sex-Lethal (Sxl) and Control of Drosophila Sex Determination and Dosage Compensation" 539: 469: 415: 144:
of the mRNA. In many organisms, however, the 5′ UTR is completely untranslated, instead forming a complex
71: 734: 578:
ORF. During normal conditions, the uORF1 is translated, and then translation of uORF2 occurs only after
518: 511: 372: 368: 321: 266: 258: 121: 332: 375:, which allows for translation to begin. Each of these steps regulates the initiation of translation. 343: 265:
The elements of a eukaryotic and prokaryotic 5′ UTR differ greatly. The prokaryotic 5′ UTR contains a
1069: 926: 707: 424:
sometimes serve to prevent the pre-initiation complex from forming. An example is regulation of the
421: 238: 1283: 1146: 1006:"Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG" 557: 678: 398:
The regulation of translation in eukaryotes is more complex than in prokaryotes. Initially, the
1709: 1660: 1596: 1547: 1496: 1447: 1410: 1387: 1336: 1271: 1261: 1230: 1195: 1138: 1097: 1037: 984: 952: 892: 888: 881: 861: 843: 802: 440: 453:
Another important regulator of translation is the interaction between 3′ UTR and the 5′ UTR.
1699: 1691: 1650: 1640: 1586: 1578: 1537: 1527: 1486: 1478: 1439: 1377: 1367: 1326: 1316: 1253: 1222: 1185: 1177: 1128: 1087: 1077: 1027: 1017: 942: 934: 851: 833: 792: 784: 522: 233: 213: 117: 672: 582:-TC has been reacquired. Translation of the uORF2 requires that the ribosomes pass by the 141: 136:. While called untranslated, the 5′ UTR or a portion of it is sometimes translated into a 1073: 930: 249: 1704: 1679: 1655: 1628: 1591: 1566: 1491: 1466: 1382: 1355: 1331: 1304: 1190: 1165: 1092: 1057: 1032: 1005: 947: 914: 856: 821: 739: 495: 491: 478: 1542: 1515: 797: 772: 502:. However, it is important to note that this mechanism has been under great scrutiny. 17: 1727: 109: 1532: 1058:"Four translation initiation pathways employed by the leaderless mRNA in eukaryotes" 281:(ACCAUGG), which contains the initiation codon. The eukaryotic 5′ UTR also contains 277:
upstream from the initiation codon. In contrast, the eukaryotic 5′ UTR contains the
1733: 1150: 788: 434: 317: 1004:
Brock, JE; Pourshahian, S; Giliberti, J; Limbach, PA; Janssen, GR (October 2008).
602:
In addition to reinitiation, uORFs contribute to translation initiation based on:
1645: 838: 64: 1257: 620: 191: 151:
The 5′ UTR has been found to interact with proteins relating to metabolism, and
129: 1443: 465: 430: 403: 1695: 629: 609:
cis- and trans- regulation on translation of the main protein coding sequence.
348: 309: 300:
in eukaryotes. In humans, ~35% of all genes harbor introns within the 5′ UTR.
282: 274: 205: 187: 165: 133: 1275: 847: 498:
of the PolyA tail, which can recruit the translational machinery by means of
938: 698:
by increasing translation of a start codon located in a uORF in the 5′ UTR (
229: 1713: 1664: 1600: 1582: 1551: 1500: 1451: 1391: 1340: 1234: 1199: 1142: 1133: 1116: 1101: 1041: 956: 865: 806: 169:. Regulatory elements within 5′ UTRs have also been linked to mRNA export. 39: 1372: 476:
The closed-loop structure inhibits translation. This has been observed in
1514:
Mignone, Flavio; Gissi, Carmela; Liuni, Sabino; Pesole, Graziano (2002).
1321: 461: 360: 337: 1181: 1022: 1567:"Upstream open reading frames: Molecular switches in (patho)physiology" 1482: 1226: 647: 456: 444:
The various forms of mRNA and how each affects translational regulation
379: 297: 261:(iron response element), which are hairpin loops, regulate translation. 137: 1082: 77: 683: 499: 706:
outcompetes TIA-1 to a poly(U) region and prevents snRNP (a step in
482:, in which eIF4E bound to the 5′ cap interacts with Maskin bound to 140:
product. This product can then regulate the translation of the main
1252:. Hernández, Greco,, Jagus, Rosemary. Switzerland. pp. 61–79. 406:, which in turn recruits the ribosomal complex to the 5′ UTR. Both 744: 619: 561: 439: 411: 407: 399: 342: 331: 248: 125: 1629:"A perspective on mammalian upstream open reading frame function" 155:
within the 5′ UTR. In addition, this region has been involved in
724: 579: 570: 535: 487: 483: 45: 1250:
Evolution of the Protein Synthesis Machinery and Its Regulation
983:. New York, New York: Garland Science Publishing. p. 397. 1356:"Before It Gets Started: Regulating Translation at the 5′ UTR" 1166:"Control of mammalian translation by mRNA structure near caps" 587: 1164:
Babendure, J. R.; Babendure, JL; Ding, JH; Tsien, RY (2006).
1115:
Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ (Dec 2012).
1633:
The International Journal of Biochemistry & Cell Biology
676:
transcript is regulated by multiple binding sites for fly
224:
The 5′ UTR can also be completely missing, in the case of
887:. New York, New York: W.H. Freeman and Company. p.  915:"Comparative Functional Genomics of the Fission Yeasts" 494:, displacing the Maskin binding site, allowing for the 490:. This translational inhibition is lifted once CPEB is 1627:
Somers, Joanna; Pöyry, Tuija; Willis, Anne E. (2013).
1565:
Wethmar, Klaus; Smink, Jeske J.; Leutz, Achim (2010).
1303:
Nakagawa, S; Niimura, Y; Gojobori, T (20 April 2017).
468:
and 5′ UTR causing a circularization that regulates
1117:"Introns in UTRs: why we should stop ignoring them" 58: 53: 32: 1409:. Sunderland, MA: Sinauer Associates. p. 60. 880: 486:on the 3′ UTR, creating translationally inactive 120:. This region is important for the regulation of 974: 972: 970: 968: 966: 650:(as well as some eukaryotic) 5′ UTRs contain 538:, leading to a spontaneous increased risk of 8: 363:, the initiation of translation occurs when 48:in eukaryotic organism (specifically humans) 124:of a transcript by differing mechanisms in 1680:"Tricks an IRES uses to enslave ribosomes" 1288:: CS1 maint: location missing publisher ( 777:Microbiology and Molecular Biology Reviews 296:). Unlike prokaryotes, 5′ UTRs can harbor 38: 1703: 1654: 1644: 1590: 1541: 1531: 1490: 1381: 1371: 1330: 1320: 1189: 1132: 1091: 1081: 1031: 1021: 946: 855: 837: 796: 682:at the 5′ UTR. In particular, these poly- 637:Internal ribosome entry sites and viruses 44:The general structure of the 5′ UTR of a 455: 771:Penalva, L. O. F.; Sanchez, L. (2003). 756: 730:Iron-responsive element-binding protein 700:see above for more information on uORFs 204:has a 2273 nucleotide 5′ UTR while the 1281: 534:to the IRE found in the 5′ UTR of its 75: 29: 710:) recruitment to the 5′ splice site. 221:that must form to begin translation. 7: 1622: 1620: 1618: 1616: 1614: 1612: 1610: 1360:Comparative and Functional Genomics 766: 764: 762: 760: 658:Role in transcriptional regulation 25: 394:Pre-initiation complex regulation 273:(AGGAGGU), which is usually 3–10 257:(iron regulatory protein) to and 1471:Biochemical Society Transactions 1215:Biochemical Society Transactions 783:(3): 343–59, table of contents. 694:will repress the translation of 328:Role in translational regulation 1533:10.1186/gb-2002-3-3-reviews0004 1516:"Untranslated regions of mRNAs" 720:Three prime untranslated region 789:10.1128/MMBR.67.3.343-359.2003 532:single-nucleotide polymorphism 347:The process of translation in 336:The process of translation in 1: 652:internal ribosome entry sites 437:, or more generally, 3′ UTR. 1678:Thompson, Sunnie R. (2012). 1646:10.1016/j.biocel.2013.04.020 839:10.1371/journal.pgen.1001366 643:Internal ribosome entry site 402:complex is recruited to the 290:upstream open reading frames 153:proteins translate sequences 1258:10.1007/978-3-319-39468-8_4 552:Upstream open reading frame 288:regulatory elements called 1755: 1444:10.1016/j.gene.2008.07.013 699: 640: 549: 530:may be disrupted due to a 509: 418:that involves the 5′ UTR. 293: 1696:10.1016/j.tim.2012.08.002 528:amyloid precursor protein 269:(RBS), also known as the 201:Schizosaccharomyces pombe 182:The 5′ UTR begins at the 148:to regulate translation. 70: 37: 27:Region of a messenger RNA 279:Kozak consensus sequence 184:transcription start site 159:regulation, such as the 112:(mRNA) that is directly 1405:Gilbert, Scott (2010). 939:10.1126/science.1203357 879:Lodish, Havery (2004). 316:often occur within it. 308:As the 5′ UTR has high 271:Shine–Dalgarno sequence 1684:Trends in Microbiology 1583:10.1002/bies.201000037 1309:Nucleic Acids Research 1134:10.1002/bies.201200073 883:Molecular Cell Biology 633: 546:uORFs and reinitiation 473: 449:Closed-loop regulation 445: 351: 340: 262: 219:pre-initiation complex 90:5′ untranslated region 72:Anatomical terminology 33:5′ untranslated region 18:5′ untranslated region 1407:Developmental Biology 735:Iron response element 670:Transcription of the 628:in the 5′ UTR of the 623: 519:iron response element 512:Iron response element 460:Interactions between 459: 443: 373:50S ribosomal subunit 369:30S ribosomal subunit 346: 335: 267:ribosome binding site 252: 108:) is the region of a 1526:(3): reviews0004.1. 1056:(28 November 2016). 708:alternative splicing 422:RNA-binding proteins 314:secondary structures 1373:10.1155/2012/475731 1182:10.1261/rna.2309906 1074:2016NatSR...637905A 1023:10.1261/rna.1089208 979:Brown, T.A (2007). 931:2011Sci...332..930R 558:open reading frames 540:Alzheimer's disease 506:Ferritin regulation 304:Secondary structure 192:initiation sequence 146:secondary structure 1483:10.1042/BST0361282 1322:10.1093/nar/gkx124 1227:10.1042/BST0390089 1062:Scientific Reports 634: 612:Interactions with 474: 446: 352: 341: 263: 253:The binding of an 1416:978-0-87893-384-6 1083:10.1038/srep37905 990:978-0-8153-4138-3 898:978-0-7167-4366-8 367:, along with the 173:General structure 102:transcript leader 86: 85: 81: 16:(Redirected from 1746: 1718: 1717: 1707: 1675: 1669: 1668: 1658: 1648: 1624: 1605: 1604: 1594: 1562: 1556: 1555: 1545: 1535: 1511: 1505: 1504: 1494: 1462: 1456: 1455: 1427: 1421: 1420: 1402: 1396: 1395: 1385: 1375: 1351: 1345: 1344: 1334: 1324: 1315:(7): 3922–3931. 1300: 1294: 1293: 1287: 1279: 1245: 1239: 1238: 1210: 1204: 1203: 1193: 1161: 1155: 1154: 1136: 1112: 1106: 1105: 1095: 1085: 1052: 1046: 1045: 1035: 1025: 1001: 995: 994: 976: 961: 960: 950: 909: 903: 902: 886: 876: 870: 869: 859: 841: 817: 811: 810: 800: 768: 690:. When present, 598:Other mechanisms 523:steric hindrance 226:leaderless mRNAs 214:Escherichia coli 190:(nt) before the 154: 118:initiation codon 78:edit on Wikidata 42: 30: 21: 1754: 1753: 1749: 1748: 1747: 1745: 1744: 1743: 1739:Gene expression 1724: 1723: 1722: 1721: 1677: 1676: 1672: 1639:(8): 1690–700. 1626: 1625: 1608: 1564: 1563: 1559: 1513: 1512: 1508: 1464: 1463: 1459: 1429: 1428: 1424: 1417: 1404: 1403: 1399: 1353: 1352: 1348: 1302: 1301: 1297: 1280: 1268: 1247: 1246: 1242: 1212: 1211: 1207: 1163: 1162: 1158: 1127:(12): 1025–34. 1114: 1113: 1109: 1054: 1053: 1049: 1016:(10): 2159–69. 1003: 1002: 998: 991: 978: 977: 964: 925:(6032): 930–6. 911: 910: 906: 899: 878: 877: 873: 832:(4): e1001366. 819: 818: 814: 770: 769: 758: 753: 716: 668: 660: 645: 639: 600: 594:is translated. 554: 548: 514: 508: 451: 396: 391: 357: 330: 306: 247: 180: 175: 152: 142:coding sequence 98:leader sequence 92:(also known as 82: 49: 28: 23: 22: 15: 12: 11: 5: 1752: 1750: 1742: 1741: 1736: 1726: 1725: 1720: 1719: 1690:(11): 558–66. 1670: 1606: 1577:(10): 885–93. 1557: 1520:Genome Biology 1506: 1457: 1422: 1415: 1397: 1346: 1295: 1266: 1240: 1205: 1156: 1107: 1047: 996: 989: 962: 904: 897: 871: 812: 755: 754: 752: 749: 748: 747: 742: 740:Trans-splicing 737: 732: 727: 722: 715: 712: 667: 661: 659: 656: 641:Main article: 638: 635: 618: 617: 610: 607: 599: 596: 550:Main article: 547: 544: 510:Main article: 507: 504: 496:polymerization 492:phosphorylated 479:Xenopus laevis 450: 447: 395: 392: 390: 387: 378:Initiation in 356: 353: 329: 326: 305: 302: 246: 243: 198:transcript in 179: 176: 174: 171: 84: 83: 74: 68: 67: 62: 56: 55: 51: 50: 43: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1751: 1740: 1737: 1735: 1732: 1731: 1729: 1715: 1711: 1706: 1701: 1697: 1693: 1689: 1685: 1681: 1674: 1671: 1666: 1662: 1657: 1652: 1647: 1642: 1638: 1634: 1630: 1623: 1621: 1619: 1617: 1615: 1613: 1611: 1607: 1602: 1598: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1561: 1558: 1553: 1549: 1544: 1539: 1534: 1529: 1525: 1521: 1517: 1510: 1507: 1502: 1498: 1493: 1488: 1484: 1480: 1477:(6): 1282–7. 1476: 1472: 1468: 1461: 1458: 1453: 1449: 1445: 1441: 1438:(2): 108–15. 1437: 1433: 1426: 1423: 1418: 1412: 1408: 1401: 1398: 1393: 1389: 1384: 1379: 1374: 1369: 1365: 1361: 1357: 1350: 1347: 1342: 1338: 1333: 1328: 1323: 1318: 1314: 1310: 1306: 1299: 1296: 1291: 1285: 1277: 1273: 1269: 1267:9783319394688 1263: 1259: 1255: 1251: 1244: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1206: 1201: 1197: 1192: 1187: 1183: 1179: 1176:(5): 851–61. 1175: 1171: 1167: 1160: 1157: 1152: 1148: 1144: 1140: 1135: 1130: 1126: 1122: 1118: 1111: 1108: 1103: 1099: 1094: 1089: 1084: 1079: 1075: 1071: 1067: 1063: 1059: 1051: 1048: 1043: 1039: 1034: 1029: 1024: 1019: 1015: 1011: 1007: 1000: 997: 992: 986: 982: 975: 973: 971: 969: 967: 963: 958: 954: 949: 944: 940: 936: 932: 928: 924: 920: 916: 908: 905: 900: 894: 890: 885: 884: 875: 872: 867: 863: 858: 853: 849: 845: 840: 835: 831: 827: 826:PLOS Genetics 823: 816: 813: 808: 804: 799: 794: 790: 786: 782: 778: 774: 767: 765: 763: 761: 757: 750: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 717: 713: 711: 709: 705: 701: 697: 693: 689: 685: 681: 680: 675: 674: 665: 662: 657: 655: 653: 649: 644: 636: 631: 627: 622: 615: 611: 608: 605: 604: 603: 597: 595: 593: 589: 585: 581: 577: 573: 572: 565: 563: 559: 553: 545: 543: 541: 537: 533: 529: 524: 520: 513: 505: 503: 501: 497: 493: 489: 485: 481: 480: 471: 467: 464:bound to the 463: 458: 454: 448: 442: 438: 436: 432: 427: 423: 419: 417: 413: 409: 405: 401: 393: 388: 386: 383: 381: 376: 374: 370: 366: 362: 354: 350: 345: 339: 334: 327: 325: 323: 319: 318:Hairpin loops 315: 311: 303: 301: 299: 295: 291: 287: 285: 280: 276: 272: 268: 260: 256: 251: 244: 242: 240: 239:TISU sequence 235: 232:of all three 231: 227: 222: 220: 216: 215: 210: 208: 203: 202: 197: 193: 189: 186:and ends one 185: 177: 172: 170: 168: 167: 162: 158: 157:transcription 149: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 110:messenger RNA 107: 103: 99: 95: 91: 79: 73: 69: 66: 63: 61: 57: 52: 47: 41: 36: 31: 19: 1687: 1683: 1673: 1636: 1632: 1574: 1570: 1560: 1523: 1519: 1509: 1474: 1470: 1460: 1435: 1431: 1425: 1406: 1400: 1363: 1359: 1349: 1312: 1308: 1298: 1249: 1243: 1221:(1): 89–93. 1218: 1214: 1208: 1173: 1169: 1159: 1124: 1120: 1110: 1068:(1): 37905. 1065: 1061: 1050: 1013: 1009: 999: 980: 922: 918: 907: 882: 874: 829: 825: 815: 780: 776: 703: 695: 691: 687: 677: 671: 669: 663: 646: 601: 591: 583: 575: 569: 566: 555: 515: 477: 475: 452: 435:poly(A) tail 425: 420: 397: 384: 377: 358: 307: 283: 264: 225: 223: 212: 206: 199: 195: 181: 164: 150: 105: 101: 97: 93: 89: 87: 624:An example 488:transcripts 470:translation 416:translation 355:Prokaryotes 322:translation 130:prokaryotes 122:translation 54:Identifiers 1728:Categories 751:References 666:transcript 630:Poliovirus 389:Eukaryotes 349:eukaryotes 310:GC content 275:base pairs 188:nucleotide 166:Drosophila 161:sex-lethal 134:eukaryotes 106:leader RNA 46:transcript 1571:BioEssays 1284:cite book 1276:956539514 1121:BioEssays 981:Genomes 3 848:1553-7404 702:). Also, 294:see below 230:Ribosomes 116:from the 1714:22944245 1665:23624144 1601:20726009 1552:11897027 1501:19021541 1452:18692553 1392:22693426 1341:28334743 1235:21265752 1200:16540693 1143:23108796 1102:27892500 1042:18755843 957:21511999 866:21533221 807:12966139 714:See also 462:proteins 361:bacteria 338:bacteria 245:Elements 163:gene in 114:upstream 1705:3479354 1656:7172355 1592:3045505 1492:2746665 1383:3368165 1366:: 1–8. 1332:5397173 1191:1440912 1151:5808466 1093:5124965 1070:Bibcode 1033:2553737 948:3131103 927:Bibcode 919:Science 857:3077370 380:Archaea 298:introns 286:-acting 234:domains 138:protein 126:viruses 65:D020121 1712:  1702:  1663:  1653:  1599:  1589:  1550:  1543:139023 1540:  1499:  1489:  1450:  1413:  1390:  1380:  1339:  1329:  1274:  1264:  1233:  1198:  1188:  1149:  1141:  1100:  1090:  1040:  1030:  987:  955:  945:  895:  864:  854:  846:  805:  798:193869 795:  684:uracil 632:genome 616:sites. 466:3′ UTR 431:3′ UTR 404:5′ cap 209:operon 178:Length 94:5′ UTR 1147:S2CID 745:UTRdb 673:msl-2 664:msl-2 648:Viral 562:codon 412:eIF4G 408:eIF4E 400:eIF4F 196:ste11 104:, or 76:[ 1710:PMID 1661:PMID 1597:PMID 1548:PMID 1497:PMID 1448:PMID 1432:Gene 1411:ISBN 1388:PMID 1364:2012 1337:PMID 1290:link 1272:OCLC 1262:ISBN 1231:PMID 1196:PMID 1139:PMID 1098:PMID 1038:PMID 985:ISBN 953:PMID 893:ISBN 862:PMID 844:ISSN 803:PMID 725:UORF 696:msl2 626:IRES 614:IRES 592:ATF4 584:ATF4 580:eIF2 576:ATF4 571:ATF4 536:mRNA 500:PABP 484:CPEB 426:msl2 410:and 365:IF-3 132:and 88:The 60:MeSH 1734:RNA 1700:PMC 1692:doi 1651:PMC 1641:doi 1587:PMC 1579:doi 1538:PMC 1528:doi 1487:PMC 1479:doi 1440:doi 1436:423 1378:PMC 1368:doi 1327:PMC 1317:doi 1254:doi 1223:doi 1186:PMC 1178:doi 1170:RNA 1129:doi 1088:PMC 1078:doi 1028:PMC 1018:doi 1010:RNA 943:PMC 935:doi 923:332 889:113 852:PMC 834:doi 793:PMC 785:doi 704:Sxl 692:Sxl 688:Sxl 679:Sxl 588:40S 359:In 284:cis 259:IRE 255:IRP 211:in 207:lac 1730:: 1708:. 1698:. 1688:20 1686:. 1682:. 1659:. 1649:. 1637:45 1635:. 1631:. 1609:^ 1595:. 1585:. 1575:32 1573:. 1569:. 1546:. 1536:. 1522:. 1518:. 1495:. 1485:. 1475:36 1473:. 1469:. 1446:. 1434:. 1386:. 1376:. 1362:. 1358:. 1335:. 1325:. 1313:45 1311:. 1307:. 1286:}} 1282:{{ 1270:. 1260:. 1229:. 1219:39 1217:. 1194:. 1184:. 1174:12 1172:. 1168:. 1145:. 1137:. 1125:34 1123:. 1119:. 1096:. 1086:. 1076:. 1064:. 1060:. 1036:. 1026:. 1014:14 1012:. 1008:. 965:^ 951:. 941:. 933:. 921:. 917:. 891:. 860:. 850:. 842:. 828:. 824:. 801:. 791:. 781:67 779:. 775:. 759:^ 542:. 324:. 312:, 241:. 228:. 128:, 100:, 96:, 1716:. 1694:: 1667:. 1643:: 1603:. 1581:: 1554:. 1530:: 1524:3 1503:. 1481:: 1454:. 1442:: 1419:. 1394:. 1370:: 1343:. 1319:: 1292:) 1278:. 1256:: 1237:. 1225:: 1202:. 1180:: 1153:. 1131:: 1104:. 1080:: 1072:: 1066:6 1044:. 1020:: 993:. 959:. 937:: 929:: 901:. 868:. 836:: 830:7 809:. 787:: 472:. 80:] 20:)

Index

5′ untranslated region

transcript
MeSH
D020121
Anatomical terminology
edit on Wikidata
messenger RNA
upstream
initiation codon
translation
viruses
prokaryotes
eukaryotes
protein
coding sequence
secondary structure
transcription
sex-lethal
Drosophila
transcription start site
nucleotide
initiation sequence
Schizosaccharomyces pombe
lac operon
Escherichia coli
pre-initiation complex
Ribosomes
domains
TISU sequence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.