Knowledge (XXG)

Eukaryotic translation

Source 📝

340:. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell. To delve deeper into this intricate process, scientists typically use a technique known as ribosome profiling. This method enables researchers to take a snapshot of the translatome, showing which parts of the mRNA are being translated into proteins by ribosomes at a given time. Ribosome profiling provides valuable insights into translation dynamics, revealing the complex interplay between gene sequence, mRNA structure, and translation regulation. Expanding on this concept, a more recent development is single-cell ribosome profiling, a technique that allows us to study the translation process at the resolution of individual cells. Single-cell ribosome profiling has the potential to shed light on the heterogeneous nature of cells, leading to a more nuanced understanding of how translation regulation can impact cell behavior, metabolic state, and responsiveness to various stimuli or conditions. 268:, and the A site is ready to receive an aminoacyl-tRNA. During chain elongation, each additional amino acid is added to the nascent polypeptide chain in a three-step microcycle. The steps in this microcycle are (1) positioning the correct aminoacyl-tRNA in the A site of the ribosome, which is brought into that site by eEF1, (2) forming the peptide bond, and (3) shifting the mRNA by one codon relative to the ribosome with the help of eEF2. Unlike bacteria, in which translation initiation occurs as soon as the 5' end of an mRNA is synthesized, in eukaryotes, such tight coupling between transcription and translation is not possible because transcription and translation are carried out in separate compartments of the cell (the 58: 312:, eRF1, that recognizes all three stop codons. Upon termination, the ribosome is disassembled and the completed polypeptide is released. eRF3 is a ribosome-dependent GTPase that helps eRF1 release the completed polypeptide. The human genome encodes a few genes whose mRNA stop codon are surprisingly leaky: In these genes, termination of translation is inefficient due to special RNA bases in the vicinity of the stop codon. Leaky termination in these genes leads to 75: 240:(IRES). Unlike cap-dependent translation, cap-independent translation does not require a 5' cap to initiate scanning from the 5' end of the mRNA until the start codon. The ribosome can localize to the start site by direct binding, initiation factors, and/or ITAFs (IRES trans-acting factors) bypassing the need to scan the entire 65:
Translation initiation is the process by which the ribosome and its associated factors bind to an mRNA and are assembled at the start codon. This process is defined as either cap-dependent, in which the ribosome binds initially at the 5' cap and then travels to the stop codon, or as cap-independent,
128:
is the cap-binding protein. Binding of the cap by eIF4E is often considered the rate-limiting step of cap-dependent initiation, and the concentration of eIF4E is a regulatory nexus of translational control. Certain viruses cleave a portion of eIF4G that binds eIF4E, thus preventing cap-dependent
215:
While protein synthesis is globally regulated by modulating the expression of key initiation factors as well as the number of ribosomes, individual mRNAs can have different translation rates due to the presence of regulatory sequence elements. This has been shown to be important in a variety of
292:, which can trigger endonucleolytic attack of the tRNA, a process termed mRNA no-go decay. Ribosomal pausing also aids co-translational folding of the nascent polypeptide on the ribosome, and delays protein translation while it is encoding tRNA. This can trigger ribosomal frameshifting. 199:
ternary complex (eIF2-TC). When large numbers of eIF2 are phosphorylated, protein synthesis is inhibited. This occurs under amino acid starvation or after viral infection. However, a small fraction of this initiation factor is naturally phosphorylated. Another regulator is
253: 244:. This method of translation is important in conditions that require the translation of specific mRNAs during cellular stress, when overall translation is reduced. Examples include factors responding to apoptosis and stress-induced responses. 216:
settings including yeast meiosis and ethylene response in plants. In addition, recent work in yeast and humans suggest that evolutionary divergence in cis-regulatory sequences can impact translation regulation. Additionally, RNA
928:
Pataskar, Abhijeet; Champagne, Julien; Nagel, Remco; Kenski, Juliana; Laos, Maarja; Michaux, Justine; Pak, Hui Song; Bleijerveld, Onno B.; Mordente, Kelly; Navarro, Jasmine Montenegro; Blommaert, Naomi (2022-03-24).
264:. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the elongation stage of protein synthesis. The initiator tRNA occupies the P site in the 2346: 256:
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue
212:, thus preventing cap-dependent initiation. To oppose the effects of 4EBP, growth factors phosphorylate 4EBP, reducing its affinity for eIF4E and permitting protein synthesis. 180:. It hydrolyzes GTP, and signals for the dissociation of several factors from the small ribosomal subunit, eventually leading to the association of the large subunit (or the 1997: 1821: 914: 332:
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in
104:
is associated with the 40S ribosomal subunit and plays a role in keeping the large (60S) ribosomal subunit from prematurely binding. eIF3 also interacts with the
1408: 2376: 1021: 2386: 2123: 989: 2423: 2419: 1189: 577:
Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, Alsallakh B, Tilgner H, Araya CL, Tang H, Ricci E, Snyder MP (November 2015).
152:(43S PIC) accompanied by the protein factors moves along the mRNA chain toward its 3'-end, in a process known as 'scanning', to reach the 145:
of most eukaryotic mRNA molecules. This protein has been implicated in playing a role in circularization of the mRNA during translation.
2798: 2793: 2788: 2783: 2773: 2753: 2748: 2738: 2728: 2708: 2703: 2698: 2688: 2683: 2678: 2673: 2663: 2653: 2648: 2643: 2638: 2415: 133:
is an ATP-dependent RNA helicase that aids the ribosome by resolving certain secondary structures formed along the mRNA transcript. The
2608: 2603: 2593: 1476: 1073: 1053: 1401: 1161: 376:
instead of tryptophan. The resulting peptides are called W>F "substitutants". Such W>F substitutants are abundant in certain
2366: 2361: 2356: 1471: 1466: 1315: 1259: 105: 2181: 1254: 101: 3062: 1342: 1273: 1014: 413: 261: 2778: 2768: 2763: 2758: 2743: 2733: 2723: 2718: 2713: 2693: 2668: 2658: 2633: 2628: 2623: 2618: 2613: 2598: 1547: 1394: 1078: 408: 237: 3072: 1514: 1458: 1386: 361: 3057: 2544: 2484: 2331: 2321: 2311: 2271: 2251: 2226: 2201: 2176: 1293: 418: 301: 1537: 1532: 1527: 1522: 579:"Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans" 3012: 2559: 2554: 2549: 2539: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2479: 2474: 2469: 2464: 2459: 2454: 2409: 2351: 2341: 2336: 2326: 2316: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2266: 2261: 2256: 2246: 2241: 2236: 2231: 2221: 2216: 2211: 2206: 2196: 2191: 2186: 2171: 2156: 149: 3067: 3036: 2449: 2444: 2439: 2429: 2404: 2399: 2166: 2161: 2151: 2146: 2141: 2136: 2131: 1337: 1125: 1038: 1007: 677:"Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation" 380:
types and have been associated with increased IDO1 expression. Functionally, W>F substitutants can impair
3032: 1298: 1115: 1100: 134: 2578: 1303: 1120: 1425: 1421: 1218: 1203: 1083: 908: 305: 38: 228:
may participate in the process of translation initiation, especially for mRNAs with structured 5'UTRs.
994: 57: 2434: 2394: 1429: 1417: 1325: 1223: 1141: 821: 1959: 1151: 628:"Translation initiation on mammalian mRNAs with structured 5'UTRs requires DExH-box protein DHX29" 1286: 1169: 810:"Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling" 477: 17: 124:
is a scaffolding protein that directly associates with both eIF3 and the other two components.
2105: 1922: 1449: 1370: 968: 950: 896: 847: 790: 739: 698: 657: 608: 559: 518: 469: 83: 2979: 2969: 2964: 2954: 2944: 2924: 2909: 2904: 2899: 2884: 2879: 2874: 2859: 2007: 958: 942: 886: 878: 837: 829: 780: 770: 729: 688: 647: 639: 598: 590: 549: 508: 459: 451: 357: 2849: 2829: 2824: 2814: 1504: 1494: 129:
translation to hijack the host machinery in favor of the viral (cap-independent) messages.
1347: 1184: 1030: 289: 281: 236:
The best-studied example of cap-independent translation initiation in eukaryotes uses the
891: 866: 825: 464: 439: 82:
Initiation of translation usually involves the interaction of certain key proteins, the
2067: 1174: 1146: 963: 930: 842: 809: 785: 758: 718:"Halting a cellular production line: responses to ribosomal pausing during translation" 652: 627: 603: 578: 317: 309: 554: 537: 316:
of up to 10% of the stop codons of these genes. Some of these genes encode functional
3051: 3017: 1375: 1062: 373: 34: 693: 676: 481: 1619: 1486: 1249: 1179: 1048: 369: 277: 269: 252: 49:. It consists of four phases: initiation, elongation, termination, and recapping. 775: 3022: 1352: 1281: 352:
can be depleted and thus affect translation efficiency. For instance, activated
324:
can arise. This process has been termed 'functional translational readthrough'.
153: 142: 946: 882: 643: 3027: 1310: 455: 365: 349: 337: 313: 169: 165: 46: 954: 867:"Single-cell quantification of ribosome occupancy in early mouse development" 2114: 833: 333: 285: 273: 157: 972: 931:"Tryptophan depletion results in tryptophan-to-phenylalanine substitutants" 900: 851: 794: 743: 702: 661: 612: 522: 473: 241: 191:
Regulation of protein synthesis is partly influenced by phosphorylation of
91: 87: 865:
Ozadam H, Tonn T, Han CM, Segura A, Hoskins I, Rao S; et al. (2023).
626:
Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (December 2008).
594: 563: 2029: 2024: 2019: 1330: 1320: 1244: 265: 217: 201: 95: 440:"Translation initiation: variations in the mechanism can be anticipated" 1750: 1066: 734: 717: 513: 496: 381: 321: 161: 42: 538:"Circularization of mRNA by eukaryotic translation initiation factors" 74: 2984: 2974: 2959: 2949: 2939: 2934: 2929: 2919: 2914: 2894: 2889: 2869: 2864: 2041: 2014: 2002: 1875: 1831: 1826: 1809: 1804: 1792: 1787: 1782: 1715: 1666: 1661: 1656: 1651: 1646: 1631: 1626: 1614: 1590: 1585: 759:"Functional Translational Readthrough: A Systems Biology Perspective" 377: 360:
which triggers intracellular tryptophan shortage by upregulating the
353: 2854: 2844: 2839: 2834: 2819: 2564: 2371: 2093: 2088: 2046: 2036: 1992: 1944: 1939: 1882: 1870: 1843: 1838: 1816: 1799: 1777: 1755: 1745: 1740: 1735: 1730: 1725: 1720: 1710: 1705: 1700: 1695: 1641: 1636: 1573: 1499: 1088: 999: 368:
depletion, in-frame protein synthesis continues across tryptophan
251: 225: 221: 209: 205: 138: 130: 125: 121: 117: 113: 109: 86:, with a special tag bound to the 5'-end of an mRNA molecule, the 73: 56: 808:
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (April 2009).
2078: 2053: 1974: 1969: 1964: 1954: 1949: 1904: 1894: 1865: 1855: 1767: 1685: 1673: 1604: 1578: 1568: 1558: 192: 177: 1390: 1003: 1058: 403: 398: 393: 185: 181: 195:(via the α subunit), which is a part of the eIF2-GTP-Met-tRNA 176:) is brought to the P-site of the small ribosomal subunit by 497:"Internal ribosome entry sites in eukaryotic mRNA molecules" 108:
complex, which consists of three other initiation factors:
308:, but unlike bacterial termination, there is a universal 284:, splicing) in ribosomes before they are exported to the 276:). Eukaryotic mRNA precursors must be processed in the 66:
where the ribosome does not initially bind the 5' cap.
61:
The process of initiation of translation in eukaryotes.
536:
Wells SE, Hillner PE, Vale RD, Sachs AB (July 1998).
288:
for translation. Translation can also be affected by
78:
some of the protein complexes involved in initiation
3005: 2807: 2586: 2577: 2385: 2122: 2113: 2104: 2066: 1983: 1930: 1921: 1891: 1852: 1764: 1682: 1601: 1555: 1546: 1513: 1485: 1457: 1448: 1441: 1363: 1272: 1237: 1211: 1202: 1160: 1134: 1108: 1099: 1037: 320:in their readthrough extension so that new protein 1402: 1015: 8: 913:: CS1 maint: multiple names: authors list ( 675:López-Lastra M, Rivas A, Barría MI (2005). 2583: 2119: 2110: 1927: 1552: 1454: 1445: 1409: 1395: 1387: 1208: 1170:Precursor mRNA (pre-mRNA / hnRNA) 1105: 1022: 1008: 1000: 716:Buchan JR, Stansfield I (September 2007). 328:Regulation and modification of translation 172:. The Met-charged initiator tRNA (Met-tRNA 962: 890: 841: 784: 774: 733: 692: 651: 602: 553: 512: 463: 188:) then commences translation elongation. 430: 372:. This is achieved by incorporation of 364:1 (IDO1) enzyme. Surprisingly, despite 204:, which binds to the initiation factor 906: 94:. These proteins bind the small (40S) 1190:Histone acetylation and deacetylation 300:Termination of elongation depends on 178:eukaryotic initiation factor 2 (eIF2) 7: 1255:Ribosome-nascent chain complex (RNC) 444:Cellular and Molecular Life Sciences 304:. The process is similar to that of 98:subunit and hold the mRNA in place. 757:Schueren F, Thoms S (August 2016). 438:Malys N, McCarthy JE (March 2011). 208:and inhibits its interactions with 33:is the biological process by which 25: 495:Hellen CU, Sarnow P (July 2001). 184:subunit). The complete ribosome ( 141:complex via eIF4G, and binds the 18:Translation preinitiation complex 137:(PABP) also associates with the 1260:Post-translational modification 694:10.4067/s0716-97602005000200003 168:encoded by the start codon is 1: 555:10.1016/S1097-2765(00)80122-7 414:Eukaryotic elongation factors 262:eukaryotic elongation factors 995:Animations at nobelprize.org 776:10.1371/JOURNAL.PGEN.1006196 409:Eukaryotic initiation factor 238:internal ribosome entry site 362:indoleamine 2,3-dioxygenase 3089: 947:10.1038/s41586-022-04499-2 883:10.1038/s41586-023-06228-9 644:10.1016/j.cell.2008.10.037 419:Eukaryotic release factors 302:eukaryotic release factors 232:Cap-independent initiation 3013:Aminoacyl tRNA synthetase 456:10.1007/s00018-010-0588-z 314:translational readthrough 150:43S preinitiation complex 3037:Kozak consensus sequence 1321:sequestration (P-bodies) 70:Cap-dependent initiation 3033:Shine-Dalgarno sequence 1299:Gene regulatory network 834:10.1126/science.1168978 501:Genes & Development 344:Amino acid substitution 135:poly(A)-binding protein 1304:cis-regulatory element 348:In some cells certain 260:Elongation depends on 257: 90:, as well as with the 79: 62: 31:Eukaryotic translation 595:10.1101/gr.193342.115 306:bacterial termination 255: 77: 60: 3063:Protein biosynthesis 1933:​Mitochondrial 1418:Protein biosynthesis 1326:alternative splicing 1316:Post-transcriptional 1142:Transcription factor 990:Animation at wku.edu 156:(typically AUG). In 1250:Transfer RNA (tRNA) 877:(7967): 1057–1064. 826:2009Sci...324..218I 722:Biology of the Cell 681:Biological Research 3073:Eukaryote genetics 2106:Ribosomal Proteins 1364:Influential people 1343:Post-translational 1162:Post-transcription 735:10.1042/BC20070037 514:10.1101/gad.891101 258: 84:initiation factors 80: 63: 3058:Molecular biology 3045: 3044: 3001: 3000: 2997: 2996: 2993: 2992: 2573: 2572: 2062: 2061: 1986:​Eukaryotic 1923:Elongation factor 1917: 1916: 1913: 1912: 1450:Initiation factor 1384: 1383: 1268: 1267: 1198: 1197: 1074:Special transfers 941:(7902): 721–727. 290:ribosomal pausing 16:(Redirected from 3080: 2584: 2120: 2111: 1985: 1932: 1928: 1898: 1859: 1771: 1689: 1608: 1562: 1553: 1455: 1446: 1411: 1404: 1397: 1388: 1209: 1106: 1024: 1017: 1010: 1001: 977: 976: 966: 925: 919: 918: 912: 904: 894: 862: 856: 855: 845: 820:(5924): 218–23. 805: 799: 798: 788: 778: 754: 748: 747: 737: 713: 707: 706: 696: 672: 666: 665: 655: 623: 617: 616: 606: 574: 568: 567: 557: 533: 527: 526: 516: 507:(13): 1593–612. 492: 486: 485: 467: 435: 280:(e.g., capping, 21: 3088: 3087: 3083: 3082: 3081: 3079: 3078: 3077: 3068:Gene expression 3048: 3047: 3046: 3041: 2989: 2803: 2569: 2381: 2100: 2058: 1979: 1909: 1892: 1887: 1853: 1848: 1765: 1760: 1683: 1678: 1602: 1597: 1556: 1542: 1509: 1481: 1437: 1415: 1385: 1380: 1359: 1294:Transcriptional 1264: 1233: 1194: 1185:Polyadenylation 1156: 1130: 1095: 1089:Protein→Protein 1040: 1033: 1031:Gene expression 1028: 986: 981: 980: 927: 926: 922: 905: 864: 863: 859: 807: 806: 802: 769:(8): e1006196. 756: 755: 751: 715: 714: 710: 687:(2–3): 121–46. 674: 673: 669: 625: 624: 620: 589:(11): 1610–21. 583:Genome Research 576: 575: 571: 535: 534: 530: 494: 493: 489: 450:(6): 991–1003. 437: 436: 432: 427: 390: 346: 330: 318:protein domains 298: 282:polyadenylation 250: 234: 198: 175: 72: 55: 28: 27:RNS translation 23: 22: 15: 12: 11: 5: 3086: 3084: 3076: 3075: 3070: 3065: 3060: 3050: 3049: 3043: 3042: 3040: 3039: 3030: 3025: 3020: 3015: 3009: 3007: 3006:Other concepts 3003: 3002: 2999: 2998: 2995: 2994: 2991: 2990: 2988: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2932: 2927: 2922: 2917: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2877: 2872: 2867: 2862: 2857: 2852: 2847: 2842: 2837: 2832: 2827: 2822: 2817: 2811: 2809: 2805: 2804: 2802: 2801: 2796: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2590: 2588: 2581: 2575: 2574: 2571: 2570: 2568: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2447: 2442: 2437: 2432: 2427: 2412: 2407: 2402: 2397: 2391: 2389: 2383: 2382: 2380: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2128: 2126: 2117: 2108: 2102: 2101: 2099: 2098: 2097: 2096: 2091: 2083: 2082: 2081: 2072: 2070: 2068:Release factor 2064: 2063: 2060: 2059: 2057: 2056: 2051: 2050: 2049: 2044: 2039: 2034: 2033: 2032: 2027: 2022: 2012: 2011: 2010: 2005: 1989: 1987: 1981: 1980: 1978: 1977: 1972: 1967: 1962: 1957: 1952: 1947: 1942: 1936: 1934: 1925: 1919: 1918: 1915: 1914: 1911: 1910: 1908: 1907: 1901: 1899: 1889: 1888: 1886: 1885: 1880: 1879: 1878: 1868: 1862: 1860: 1850: 1849: 1847: 1846: 1841: 1836: 1835: 1834: 1829: 1824: 1814: 1813: 1812: 1807: 1797: 1796: 1795: 1790: 1785: 1774: 1772: 1762: 1761: 1759: 1758: 1753: 1748: 1743: 1738: 1733: 1728: 1723: 1718: 1713: 1708: 1703: 1698: 1692: 1690: 1680: 1679: 1677: 1676: 1671: 1670: 1669: 1664: 1659: 1654: 1649: 1639: 1634: 1629: 1624: 1623: 1622: 1611: 1609: 1599: 1598: 1596: 1595: 1594: 1593: 1583: 1582: 1581: 1576: 1565: 1563: 1550: 1544: 1543: 1541: 1540: 1535: 1530: 1525: 1519: 1517: 1511: 1510: 1508: 1507: 1502: 1497: 1491: 1489: 1483: 1482: 1480: 1479: 1474: 1469: 1463: 1461: 1452: 1443: 1439: 1438: 1416: 1414: 1413: 1406: 1399: 1391: 1382: 1381: 1379: 1378: 1373: 1371:François Jacob 1367: 1365: 1361: 1360: 1358: 1357: 1356: 1355: 1350: 1340: 1335: 1334: 1333: 1328: 1323: 1313: 1308: 1307: 1306: 1301: 1291: 1290: 1289: 1278: 1276: 1270: 1269: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1241: 1239: 1235: 1234: 1232: 1231: 1226: 1221: 1215: 1213: 1206: 1200: 1199: 1196: 1195: 1193: 1192: 1187: 1182: 1177: 1172: 1166: 1164: 1158: 1157: 1155: 1154: 1149: 1147:RNA polymerase 1144: 1138: 1136: 1132: 1131: 1129: 1128: 1123: 1118: 1112: 1110: 1103: 1097: 1096: 1094: 1093: 1092: 1091: 1086: 1081: 1071: 1070: 1069: 1051: 1045: 1043: 1035: 1034: 1029: 1027: 1026: 1019: 1012: 1004: 998: 997: 992: 985: 984:External links 982: 979: 978: 920: 857: 800: 749: 708: 667: 638:(7): 1237–50. 618: 569: 542:Molecular Cell 528: 487: 429: 428: 426: 423: 422: 421: 416: 411: 406: 401: 396: 389: 386: 345: 342: 329: 326: 310:release factor 297: 294: 249: 246: 233: 230: 196: 173: 71: 68: 54: 51: 35:messenger RNA 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3085: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3055: 3053: 3038: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3018:Reading frame 3016: 3014: 3011: 3010: 3008: 3004: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2812: 2810: 2806: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2591: 2589: 2585: 2582: 2580: 2579:Mitochondrial 2576: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2425: 2421: 2417: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2392: 2390: 2388: 2384: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2129: 2127: 2125: 2121: 2118: 2116: 2112: 2109: 2107: 2103: 2095: 2092: 2090: 2087: 2086: 2084: 2080: 2077: 2076: 2074: 2073: 2071: 2069: 2065: 2055: 2052: 2048: 2045: 2043: 2040: 2038: 2035: 2031: 2028: 2026: 2023: 2021: 2018: 2017: 2016: 2013: 2009: 2006: 2004: 2001: 2000: 1999: 1996: 1995: 1994: 1991: 1990: 1988: 1982: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1937: 1935: 1929: 1926: 1924: 1920: 1906: 1903: 1902: 1900: 1897: 1896: 1890: 1884: 1881: 1877: 1874: 1873: 1872: 1869: 1867: 1864: 1863: 1861: 1858: 1857: 1851: 1845: 1842: 1840: 1837: 1833: 1830: 1828: 1825: 1823: 1820: 1819: 1818: 1815: 1811: 1808: 1806: 1803: 1802: 1801: 1798: 1794: 1791: 1789: 1786: 1784: 1781: 1780: 1779: 1776: 1775: 1773: 1770: 1769: 1763: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1693: 1691: 1688: 1687: 1681: 1675: 1672: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1644: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1621: 1618: 1617: 1616: 1613: 1612: 1610: 1607: 1606: 1600: 1592: 1589: 1588: 1587: 1584: 1580: 1577: 1575: 1572: 1571: 1570: 1567: 1566: 1564: 1561: 1560: 1554: 1551: 1549: 1545: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1520: 1518: 1516: 1512: 1506: 1503: 1501: 1498: 1496: 1493: 1492: 1490: 1488: 1487:Mitochondrial 1484: 1478: 1475: 1473: 1470: 1468: 1465: 1464: 1462: 1460: 1456: 1453: 1451: 1447: 1444: 1440: 1435: 1431: 1427: 1423: 1419: 1412: 1407: 1405: 1400: 1398: 1393: 1392: 1389: 1377: 1376:Jacques Monod 1374: 1372: 1369: 1368: 1366: 1362: 1354: 1351: 1349: 1346: 1345: 1344: 1341: 1339: 1338:Translational 1336: 1332: 1329: 1327: 1324: 1322: 1319: 1318: 1317: 1314: 1312: 1309: 1305: 1302: 1300: 1297: 1296: 1295: 1292: 1288: 1285: 1284: 1283: 1280: 1279: 1277: 1275: 1271: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1242: 1240: 1236: 1230: 1227: 1225: 1222: 1220: 1217: 1216: 1214: 1210: 1207: 1205: 1201: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1167: 1165: 1163: 1159: 1153: 1150: 1148: 1145: 1143: 1140: 1139: 1137: 1133: 1127: 1124: 1122: 1119: 1117: 1114: 1113: 1111: 1107: 1104: 1102: 1101:Transcription 1098: 1090: 1087: 1085: 1082: 1080: 1077: 1076: 1075: 1072: 1068: 1064: 1060: 1057: 1056: 1055: 1054:Central dogma 1052: 1050: 1047: 1046: 1044: 1042: 1036: 1032: 1025: 1020: 1018: 1013: 1011: 1006: 1005: 1002: 996: 993: 991: 988: 987: 983: 974: 970: 965: 960: 956: 952: 948: 944: 940: 936: 932: 924: 921: 916: 910: 902: 898: 893: 888: 884: 880: 876: 872: 868: 861: 858: 853: 849: 844: 839: 835: 831: 827: 823: 819: 815: 811: 804: 801: 796: 792: 787: 782: 777: 772: 768: 764: 763:PLOS Genetics 760: 753: 750: 745: 741: 736: 731: 728:(9): 475–87. 727: 723: 719: 712: 709: 704: 700: 695: 690: 686: 682: 678: 671: 668: 663: 659: 654: 649: 645: 641: 637: 633: 629: 622: 619: 614: 610: 605: 600: 596: 592: 588: 584: 580: 573: 570: 565: 561: 556: 551: 548:(1): 135–40. 547: 543: 539: 532: 529: 524: 520: 515: 510: 506: 502: 498: 491: 488: 483: 479: 475: 471: 466: 461: 457: 453: 449: 445: 441: 434: 431: 424: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 391: 387: 385: 383: 379: 375: 374:phenylalanine 371: 367: 363: 359: 355: 351: 343: 341: 339: 335: 327: 325: 323: 319: 315: 311: 307: 303: 295: 293: 291: 287: 283: 279: 275: 271: 267: 263: 254: 247: 245: 243: 239: 231: 229: 227: 223: 219: 213: 211: 207: 203: 194: 189: 187: 183: 179: 171: 167: 163: 159: 155: 151: 146: 144: 140: 136: 132: 127: 123: 119: 115: 111: 107: 103: 99: 97: 93: 89: 85: 76: 69: 67: 59: 52: 50: 48: 44: 40: 36: 32: 19: 2085:Class 2/RF3 1893: 1854: 1766: 1684: 1603: 1557: 1433: 1353:irreversible 1238:Key elements 1228: 1135:Key elements 1049:Genetic code 1039:Introduction 938: 934: 923: 909:cite journal 874: 870: 860: 817: 813: 803: 766: 762: 752: 725: 721: 711: 684: 680: 670: 635: 631: 621: 586: 582: 572: 545: 541: 531: 504: 500: 490: 447: 443: 433: 358:interferon-γ 347: 331: 299: 259: 235: 214: 190: 147: 100: 81: 64: 30: 29: 3023:Start codon 2808:28S subunit 2587:39S subunit 2387:40S subunit 2124:60S subunit 2115:Cytoplasmic 1579:SUI1 family 1422:translation 1204:Translation 1041:to genetics 350:amino acids 338:prokaryotes 336:as well as 296:Termination 154:start codon 143:poly-A tail 3052:Categories 3028:Stop codon 2372:RRP15-like 2182:RPL10-like 1931:Bacterial/ 1548:Eukaryotic 1434:eukaryotic 1348:reversible 1311:lac operon 1287:imprinting 1282:Epigenetic 1274:Regulation 1229:Eukaryotic 1175:5' capping 1126:Eukaryotic 425:References 384:activity. 366:tryptophan 334:eukaryotes 248:Elongation 170:methionine 166:amino acid 158:eukaryotes 53:Initiation 47:eukaryotes 39:translated 1984:Archaeal/ 1459:Bacterial 1426:bacterial 1219:Bacterial 1116:Bacterial 955:0028-0836 286:cytoplasm 274:cytoplasm 226:Ded1/DDX3 218:helicases 96:ribosomal 2075:Class 1 1515:Archaeal 1442:Proteins 1430:archaeal 1331:microRNA 1245:Ribosome 1224:Archaeal 1180:Splicing 1152:Promoter 1121:Archaeal 1065: → 1061: → 973:35264796 901:37344592 892:10307641 852:19213877 795:27490485 744:17696878 703:16238092 662:19109895 613:26297486 523:11445534 482:31720000 474:21076851 465:11115079 388:See also 356:secrete 322:isoforms 266:ribosome 220:such as 43:proteins 2377:RSL24D1 2054:a/eEF-2 1993:a/eEF-1 1084:RNA→DNA 1079:RNA→RNA 1067:Protein 964:8942854 843:2746483 822:Bibcode 814:Science 786:4973966 653:2948571 604:4617958 564:9702200 382:protein 354:T cells 278:nucleus 270:nucleus 162:archaea 2545:RPS27A 2485:RPS15A 2424:RPS4Y2 2420:RPS4Y1 2414:RPS4 ( 2332:RPL37A 2322:RPL36A 2312:RPL35A 2272:RPL27A 2252:RPL23A 2227:RPL18A 2202:RPL13A 2177:RPL10A 1632:γ 1627:β 1620:kinase 1615:α 971:  961:  953:  935:Nature 899:  889:  871:Nature 850:  840:  793:  783:  742:  701:  660:  650:  611:  601:  562:  521:  480:  472:  462:  378:cancer 370:codons 242:5' UTR 164:, the 116:, and 92:5' UTR 88:5' cap 2815:MRPS1 2594:MRPL1 2565:RACK1 2560:RPS30 2555:RPS29 2550:RPS28 2540:RPS27 2535:RPS26 2530:RPS25 2525:RPS24 2520:RPS23 2515:RPS21 2510:RPS20 2505:RPS19 2500:RPS18 2495:RPS17 2490:RPS16 2480:RPS15 2475:RPS14 2470:RPS13 2465:RPS12 2460:RPS11 2455:RPS10 2416:RPS4X 2410:RPS3A 2367:RPLP2 2362:RPLP1 2357:RPLP0 2352:RPL41 2347:RPL40 2342:RPL39 2337:RPL38 2327:RPL37 2317:RPL36 2307:RPL35 2302:RPL34 2297:RPL32 2292:RPL31 2287:RPL30 2282:RPL29 2277:RPL28 2267:RPL27 2262:RPL26 2257:RPL24 2247:RPL23 2242:RPL22 2237:RPL21 2232:RPL19 2222:RPL18 2217:RPL17 2212:RPL15 2207:RPL14 2197:RPL13 2192:RPL12 2187:RPL11 2172:RPL10 2157:RPL7A 2094:GSPT2 2089:GSPT1 1945:EF-Ts 1940:EF-Tu 1871:EIF5A 1674:eIF2D 1642:eIF2B 1637:eIF2A 1586:eIF1A 1505:MTIF3 1500:MTIF2 1495:MTIF1 1212:Types 1109:Types 478:S2CID 222:DHX29 210:eIF4G 206:eIF4E 148:This 139:eIF4F 131:eIF4A 126:eIF4E 122:eIF4G 118:eIF4G 114:eIF4E 110:eIF4A 106:eIF4F 41:into 2450:RPS9 2445:RPS8 2440:RPS7 2435:RPS6 2430:RPS5 2405:RPS3 2400:RPS2 2395:RPSA 2167:RPL9 2162:RPL8 2152:RPL7 2147:RPL6 2142:RPL5 2137:RPL4 2132:RPL3 2079:eRF1 1975:GFM2 1970:GFM1 1965:TSFM 1960:EF-P 1955:EF-4 1950:EF-G 1905:EIF6 1895:eIF6 1866:EIF5 1856:eIF5 1768:eIF4 1686:eIF3 1605:eIF2 1569:eIF1 1559:eIF1 1538:aIF6 1533:aIF5 1528:aIF2 1523:aIF1 969:PMID 951:ISSN 915:link 897:PMID 848:PMID 791:PMID 740:PMID 699:PMID 658:PMID 632:Cell 609:PMID 560:PMID 519:PMID 470:PMID 272:and 224:and 202:4EBP 193:eIF2 160:and 102:eIF3 1477:IF3 1472:IF2 1467:IF1 1063:RNA 1059:DNA 959:PMC 943:doi 939:603 887:PMC 879:doi 875:618 838:PMC 830:doi 818:324 781:PMC 771:doi 730:doi 689:doi 648:PMC 640:doi 636:135 599:PMC 591:doi 550:doi 509:doi 460:PMC 452:doi 404:80S 399:60S 394:40S 186:80S 182:60S 45:in 37:is 3054:: 2985:35 2980:34 2975:33 2970:32 2965:31 2960:30 2955:29 2950:28 2945:27 2940:26 2935:25 2930:24 2925:23 2920:22 2915:21 2910:20 2905:19 2900:18 2895:17 2890:16 2885:15 2880:14 2875:13 2870:12 2865:11 2860:10 2799:42 2794:41 2789:40 2784:39 2779:38 2774:37 2769:36 2764:35 2759:34 2754:33 2749:32 2744:31 2739:30 2734:29 2729:28 2724:27 2719:26 2714:25 2709:24 2704:23 2699:22 2694:21 2689:20 2684:19 2679:18 2674:17 2669:16 2664:15 2659:14 2654:13 2649:12 2644:11 2639:10 2422:, 2418:, 2030:P3 2025:P2 2020:P1 1998:A1 1883:5B 1800:E1 1432:, 1428:, 1420:: 967:. 957:. 949:. 937:. 933:. 911:}} 907:{{ 895:. 885:. 873:. 869:. 846:. 836:. 828:. 816:. 812:. 789:. 779:. 767:12 765:. 761:. 738:. 726:99 724:. 720:. 697:. 685:38 683:. 679:. 656:. 646:. 634:. 630:. 607:. 597:. 587:25 585:. 581:. 558:. 544:. 540:. 517:. 505:15 503:. 499:. 476:. 468:. 458:. 448:68 446:. 442:. 120:. 112:, 3035:/ 2855:9 2850:8 2845:7 2840:6 2835:5 2830:4 2825:3 2820:2 2634:9 2629:8 2624:7 2619:6 2614:5 2609:4 2604:3 2599:2 2426:) 2047:G 2042:E 2037:D 2015:B 2008:3 2003:2 1876:2 1844:H 1839:B 1832:3 1827:2 1822:1 1817:G 1810:3 1805:2 1793:3 1788:2 1783:1 1778:A 1756:M 1751:L 1746:K 1741:J 1736:I 1731:H 1726:G 1721:F 1716:E 1711:D 1706:C 1701:B 1696:A 1667:5 1662:4 1657:3 1652:2 1647:1 1591:Y 1574:B 1436:) 1424:( 1410:e 1403:t 1396:v 1023:e 1016:t 1009:v 975:. 945:: 917:) 903:. 881:: 854:. 832:: 824:: 797:. 773:: 746:. 732:: 705:. 691:: 664:. 642:: 615:. 593:: 566:. 552:: 546:2 525:. 511:: 484:. 454:: 197:i 174:i 20:)

Index

Translation preinitiation complex
messenger RNA
translated
proteins
eukaryotes


initiation factors
5' cap
5' UTR
ribosomal
eIF3
eIF4F
eIF4A
eIF4E
eIF4G
eIF4G
eIF4E
eIF4A
poly(A)-binding protein
eIF4F
poly-A tail
43S preinitiation complex
start codon
eukaryotes
archaea
amino acid
methionine
eukaryotic initiation factor 2 (eIF2)
60S

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.