Knowledge (XXG)

Chemoselectivity

Source 📝

84: 101: 146: 91:
If a molecule has several potential reactive sites, the reaction will occur in the most reactive one. When comparing carbon-halogen bonds, lighter halogens such as fluorine and chlorine have a better orbital overlap with carbon, which makes the bond stronger. Bromine and iodine, on the other hand,
53:
Most chemical reactions bring together atoms that have negative charge character and atoms that have positive charge character. When evaluating possible reaction outcomes, several factors should be considered. The most important being identifying where in the molecule has the most
116:
are the most reactive because the hydrogen next to the carbon is small and only has one electron, and therefore does not provide steric or electronic shielding. By switching the hydrogen for a carbon group, making a
45:
would mostly target the aldehyde, even if it has the option to react with the ester. Chemoselectivity is an area of interest in chemistry because scientists want to recreate complex biological compounds, such as
181:
Different hydride reagents have different reactivity towards functional groups so they can be selected according to the desired outcome. Examples include the greater relative chemoselectivity of
129:. Since the electrons are not participating in bonding, they are not as restricted and can readily donate to the carbon. Amides are less reactive than esters because oxygen is more 121:, the carbonyl becomes less reactive since the carbon is bigger and has more electrons. The most stable carbonyls are the ones with atoms with lone pairs next to them, such as 421:"Lanthanoids in organic synthesis. 6. Reduction of .alpha.-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects" 133:
than nitrogen and therefore it concentrates more of the electron density on itself. Chemists take advantage of the stability of amides by using them as
403: 378: 210: 153:
Some reagents have higher affinity with specific functional groups, which can be used to direct reactivity. A famous example is the
166: 350: 193:
of 4-nitro-2-chlorobenzonitrile to the corresponding aniline, 4-amino-2-chlorobenzonitrile. In another example, the compound
546:"pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions" 597: 58:
and where has the least. This analysis gives a good prediction of reactivity, but more factors such as connectivity,
165:. On the other hand, copper organometallics have high affinity with carbon-carbon multiple bonds and are used for 186: 112:
can be ranked by evaluating how much electron density the neighbouring atoms donate to the carbonyl carbon.
194: 100: 30:
is the preferential reaction of a chemical reagent with one of two or more different functional groups.
557: 182: 573: 526: 487: 479: 440: 399: 374: 346: 316: 298: 231: 130: 83: 565: 518: 471: 432: 306: 290: 259: 226: 134: 55: 206: 154: 63: 47: 460:"Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions" 561: 311: 278: 162: 109: 59: 591: 214: 420: 202: 78: 66:, and the addition of supporting reagents can affect the reaction outcome.   545: 458:
Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. (2008-08-01).
170: 161:
metal makes the carbonyl of a conjugated ketone more reactive and directs the
145: 17: 577: 530: 483: 459: 444: 302: 398:. A Wiley-Interscience publication (3. ed.). New York Weinheim: Wiley. 263: 158: 491: 320: 522: 506: 258:(3rd ed.). International Union of Pure and Applied Chemistry. 2006. 113: 38: 436: 251: 34: 569: 475: 294: 92:
are bigger and therefore can undergo chemical reactions more easily.
87:
The carbon-bromine bond is more reactive than the carbon-fluorine bond
507:"The functional group selectivity of complex hydride reducing agents" 198: 118: 277:
Shenvi, Ryan A.; O’Malley, Daniel P.; Baran, Phil S. (2009-04-21).
190: 126: 122: 99: 42: 279:"Chemoselectivity: The Mother of Invention in Total Synthesis" 149:
Selective and unselective reduction of a conjugated ketone
104:
Reactivity ranking of common carbonyl functional groups
419:
Gemal, Andre L.; Luche, Jean Louis (September 1981).
394:Greene, Theodora W.; Wuts, Peter G. M. (1999). 137:to shield sites that they don't want to react. 369:Ouellette, Robert J.; Rawn, J. David (1996). 8: 50:, and make specific modifications to them. 373:. Upper Saddle River, N.J: Prentice Hall. 345:(2nd ed.). Lexinton, MA, USA: HEATH. 310: 425:Journal of the American Chemical Society 256:IUPAC Compendium of Chemical Terminology 144: 82: 266:– via Online version 3.0.1, 2019. 243: 396:Protective groups in organic synthesis 7: 364: 362: 336: 334: 332: 330: 252:"Chemoselectivity (chemoselective)" 25: 544:Ballard, C. Eric (2010-01-12). 177:Reducing and oxidizing reagents 33:In a chemoselective system, a 1: 550:Journal of Chemical Education 283:Accounts of Chemical Research 341:Zumdahl, Steven S. (1995). 614: 173:into a conjugated ketone. 141:Metal-assisted selectivity 96:Carbonyl functional groups 505:Walker, E. R. H. (1976). 187:lithium aluminium hydride 511:Chemical Society Reviews 205:at high pH (forming the 264:10.1351/goldbook.C01051 150: 105: 88: 37:in the presence of an 195:4-methoxyacetophenone 148: 103: 86: 523:10.1039/cs9760500023 562:2010JChEd..87..190B 437:10.1021/ja00408a029 343:Chemical Principles 598:Chemical reactions 209:) and oxidized by 183:sodium borohydride 167:conjugate addition 151: 108:The reactivity of 106: 89: 570:10.1021/ed800054s 476:10.1021/cr0683515 431:(18): 5454–5459. 405:978-0-471-16019-9 380:978-0-02-390171-3 371:Organic chemistry 295:10.1021/ar800182r 232:Stereoselectivity 135:protecting groups 16:(Redirected from 605: 582: 581: 541: 535: 534: 502: 496: 495: 470:(8): 2796–2823. 464:Chemical Reviews 455: 449: 448: 416: 410: 409: 391: 385: 384: 366: 357: 356: 338: 325: 324: 314: 274: 268: 267: 248: 227:Regioselectivity 189:for the organic 70:Electrophilicity 56:electron density 48:natural products 28:Chemoselectivity 21: 613: 612: 608: 607: 606: 604: 603: 602: 588: 587: 586: 585: 543: 542: 538: 504: 503: 499: 457: 456: 452: 418: 417: 413: 406: 393: 392: 388: 381: 368: 367: 360: 353: 340: 339: 328: 276: 275: 271: 250: 249: 245: 240: 223: 207:carboxylic acid 197:is oxidized by 179: 155:Luche Reduction 143: 131:electronegative 98: 72: 64:solvent effects 23: 22: 15: 12: 11: 5: 611: 609: 601: 600: 590: 589: 584: 583: 556:(2): 190–193. 536: 497: 450: 411: 404: 386: 379: 358: 351: 326: 289:(4): 530–541. 269: 242: 241: 239: 236: 235: 234: 229: 222: 219: 178: 175: 163:reducing agent 142: 139: 97: 94: 71: 68: 60:atomic orbital 24: 18:Chemoselective 14: 13: 10: 9: 6: 4: 3: 2: 610: 599: 596: 595: 593: 579: 575: 571: 567: 563: 559: 555: 551: 547: 540: 537: 532: 528: 524: 520: 516: 512: 508: 501: 498: 493: 489: 485: 481: 477: 473: 469: 465: 461: 454: 451: 446: 442: 438: 434: 430: 426: 422: 415: 412: 407: 401: 397: 390: 387: 382: 376: 372: 365: 363: 359: 354: 348: 344: 337: 335: 333: 331: 327: 322: 318: 313: 308: 304: 300: 296: 292: 288: 284: 280: 273: 270: 265: 261: 257: 253: 247: 244: 237: 233: 230: 228: 225: 224: 220: 218: 217:) at low pH. 216: 215:aryl chloride 212: 208: 204: 200: 196: 192: 188: 184: 176: 174: 172: 168: 164: 160: 156: 147: 140: 138: 136: 132: 128: 124: 120: 115: 111: 102: 95: 93: 85: 81: 80: 76: 69: 67: 65: 61: 57: 51: 49: 44: 40: 36: 31: 29: 19: 553: 549: 539: 514: 510: 500: 467: 463: 453: 428: 424: 414: 395: 389: 370: 342: 286: 282: 272: 255: 246: 203:ketone group 180: 171:nucleophiles 152: 107: 90: 79:electrophile 74: 73: 52: 32: 27: 26: 157:, where an 352:0669393215 238:References 578:0021-9584 531:0306-0012 484:0009-2665 445:0002-7863 303:0001-4842 191:reduction 159:oxophilic 114:Aldehydes 110:carbonyls 75:Main page 62:overlap, 592:Category 492:18671436 321:19182997 221:See also 213:(to the 39:aldehyde 558:Bibcode 312:2765532 201:at the 185:versus 41:and an 35:reagent 576:  529:  517:: 23. 490:  482:  443:  402:  377:  349:  319:  309:  301:  199:bleach 127:esters 123:amides 119:ketone 43:ester 574:ISSN 527:ISSN 488:PMID 480:ISSN 441:ISSN 400:ISBN 375:ISBN 347:ISBN 317:PMID 299:ISSN 125:and 566:doi 519:doi 472:doi 468:108 433:doi 429:103 307:PMC 291:doi 260:doi 211:EAS 169:of 594:: 572:. 564:. 554:87 552:. 548:. 525:. 513:. 509:. 486:. 478:. 466:. 462:. 439:. 427:. 423:. 361:^ 329:^ 315:. 305:. 297:. 287:42 285:. 281:. 254:. 77:: 580:. 568:: 560:: 533:. 521:: 515:5 494:. 474:: 447:. 435:: 408:. 383:. 355:. 323:. 293:: 262:: 20:)

Index

Chemoselective
reagent
aldehyde
ester
natural products
electron density
atomic orbital
solvent effects
electrophile


carbonyls
Aldehydes
ketone
amides
esters
electronegative
protecting groups

Luche Reduction
oxophilic
reducing agent
conjugate addition
nucleophiles
sodium borohydride
lithium aluminium hydride
reduction
4-methoxyacetophenone
bleach
ketone group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.