Knowledge (XXG)

Electrocatalyst

Source đź“ť

360: 546: 400: 506:-based materials can be used as electrocatalysts. The carbon surfaces of graphene and carbon nanotubes are well suited to the adsorption of many chemical species, which can promote certain electrocatalytic reactions. In addition, their conductivity means they are good electrode materials. Carbon nanotubes have a very high surface area, maximizing surface sites at which electrochemical transformations can occur. Graphene can also serve as a platform for constructing composites with other kinds of 387:. In principle, atoms with lower coordination number (kinks and defects) tend to be more reactive and therefore adsorb the reactants more easily: this may promote kinetics but could also depress it if the adsorbing species isn't the reactant, thus inactivating the catalyst. Advances in nanotechnology make it possible to surface engineer the catalyst so that just some desired crystal planes are exposed to reactants, maximizing the number of effective reaction sites for the desired reaction. 151: 296:, i.e. convert nitrogen gas into molecules such as ammonia. Immobilizing the protein onto an electrode surface and employing an electron mediator greatly improves the efficiency of this process. The effectiveness of bioelectrocatalysts generally depends on the ease of electron transport between the active site of the enzyme and the electrode surface. Other enzymes provide insight for the development of synthetic catalysts. For example, 116:, a drawback is that they can suffer from high activation barriers. The energy diverted to overcome these activation barriers is transformed into heat. In most exothermic combustion reactions this heat would simply propagate the reaction catalytically. In a redox reaction, this heat is a useless byproduct lost to the system. The extra energy required to overcome kinetic barriers is usually described in terms of low 565: 31: 338:. Water electrolysis is conventionally conducted at inert bulk metal electrodes such as platinum or iridium. The activity of an electrocatalyst can be tuned with a chemical modification, commonly obtained by alloying two or more metals. This is due to a change in the electronic structure, especially in the d band which is considered to be responsible for the catalytic properties of noble metals. 572:
Hydrogen and oxygen can be combined through by the use of a fuel cell. In this process, the reaction is broken into two half reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. Useful energy can be obtained from the thermal heat
308:
are another way that biological systems can be leveraged for electrocatalytic applications. Microbial-based systems leverage the metabolic pathways of an entire organism, rather than the activity of a specific enzyme, meaning that they can catalyze a broad range of chemical reactions. Microbial fuel
733:
Electrocatalysts are used to promote certain chemical reactions to obtain synthetic products. Graphene and graphene oxides have shown promise as electrocatalytic materials for synthesis. Electrocatalytic methods also have potential for polymer synthesis. Electrocatalytic synthesis reactions can be
704:
hydrogen gas, and water. Although this process is thermodynamically favored, the activation barrier is extremely high, so in practice this reaction is not typically observed. However, electrocatalysts can speed up this reaction greatly, making methanol a possible route to hydrogen storage for fuel
92:
Electrocatalysts can be evaluated according to activity, stability, and selectivity. The activity of electrocatalysts can be assessed quantitatively by the current density is generated, and therefore how fast a reaction is taking place, for a given applied potential. This relationship is described
687:
are those that have a higher energy content, meaning that they can be reused as fuels. Thus, catalyst development focuses on the production of products such as methane and methanol. Homogeneous catalysts, such as enzymes and synthetic coordination complexes have been employed for this purpose. A
403:
An example of a particle-size effect: the number of reaction sites of different kinds depends on the size of the particle. In this four FCC nanoparticles model, the kink site between (111) and (100) planes (coordination number 6, represented by golden spheres) is 24 for all of the four different
371:
Also, higher reaction rates can be achieved by precisely controlling the arrangement of surface atoms: indeed, in nanometric systems, the number of available reaction sites is a better parameter than the exposed surface area in order to estimate electrocatalytic activity. Sites are the positions
88:
required for an electrochemical reaction. Some electrocatalysts change the potential at which oxidation and reduction processes occur. In other cases, an electrocatalyst can impart selectivity by favoring specific chemical interaction at an electrode surface. Given that electrochemical reactions
321:
A heterogeneous electrocatalyst is one that is present in a different phase of matter from the reactants, for example, a solid surface catalyzing a reaction in solution. Different types of heterogeneous electrocatalyst materials are shown above in green. Since heterogeneous electrocatalytic
322:
reactions need an electron transfer between the solid catalyst (typically a metal) and the electrolyte, which can be a liquid solution but also a polymer or a ceramic capable of ionic conduction, the reaction kinetics depend on both the catalyst and the electrolyte as well as on the
390:
To date, a generalized surface dependence mechanism cannot be formulated since every surface effect is strongly reaction-specific. A few classifications of reactions based on their surface dependence have been proposed but there are still many exceptions that do not fall into them.
139:, multiple electron transfers, and the evolution or consumption of gases in their overall chemical transformations, will often have considerable kinetic barriers. Furthermore, there is often more than one possible reaction at the surface of an electrode. For example, during the 163:
A homogeneous electrocatalyst is one that is present in the same phase of matter as the reactants, for example, a water-soluble coordination complex catalyzing an electrochemical conversion in solution. This technology is not practiced commercially, but is of research interest.
101:(TON). The selectivity of electrocatalysts refers to the product distribution. Selectivity can be quantitatively assessed through a selectivity coefficient, which compares the response of the material to the desired analyte or substrate with the response to other interferents. 89:
occur when electrons are passed from one chemical species to another, favorable interactions at an electrode surface increase the likelihood of electrochemical transformations occurring, thus reducing the potential required to achieve these transformations.
2745:
Ji, Yangyuan; Choi, Youn Jeong; Fang, Yuhang; Pham, Hoang Son; Nou, Alliyan Tan; Lee, Linda S.; Niu, Junfeng; Warsinger, David M. (2023-01-19). "Electric Field-Assisted Nanofiltration for PFOA Removal with Exceptional Flux, Selectivity, and Destruction".
529:. MOFs provide potential active sites at both metal centers and organic ligand sites. They can also be functionalized, or encapsulate other materials such as nanoparticles. MOFs can also be combined with carbon-based materials to form electrocatalysts. 536:
However, many MOFs are known unstable in chemical and electrochemical conditions, making it difficult to tell if MOFs are actually catalysts or precatalysts. The real active sites of MOFs during electrocatalysis need to be analyzed comprehensively.
1407:
Kleinhaus, Julian T.; Wolf, Jonas; Pellumbi, Kevinjeorjios; Wickert, Leon; Viswanathan, Sangita C.; Junge Puring, Kai; Siegmund, Daniel; Apfel, Ulf-Peter (2023). "Developing electrochemical hydrogenation towards industrial application".
355:
materials have been demonstrated to promote various electrochemical reactions, although none have been commercialized. These catalysts can be tuned with respect to their size and shape, as well as the surface
65:. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall 831: 746:, and are key in destroying byproducts from disinfection, pesticides, and other hazardous compound. There is an emerging effort to enable these processes to destroy more tenacious compounds, especially 2359:
Zheng, Weiran; Liu, Mengjie; Lee, Lawrence Yoon Suk (3 January 2020). "Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites".
188:
There is much interest in replacing traditional chemical catalysis with electrocatalysis. In such a scheme electrons supplied by an electrode are reagents. The topic is a theme within the area of
431:
is commonly considered to be the main parameter relating electrocatalyst size with its activity, to understand the particle-size effect, several more phenomena need to be taken into account:
1545:
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09).
533:, particularly those that contain metals, can also serve as electrocatalysts. COFs constructed from cobalt porphyrins demonstrated the ability to reduce carbon dioxide to carbon monoxide. 1467:
Guo, Wenhan; Zhang, Kexin; Liang, Zibin; Zou, Ruqiang; Xu, Qiang (2019). "Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design".
588:. In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. 2312:
Sharma, Rakesh Kumar; Yadav, Priya; Yadav, Manavi; Gupta, Radhika; Rana, Pooja; Srivastava, Anju; Zbořil, Radek; Varma, Rajender S.; Antonietti, Markus; Gawande, Manoj B. (2020).
759:
Valenti, G.; Boni, A.; Melchionna, M.; Cargnello, M.; Nasi, L.; Bertoli, G.; Gorte, R. J.; Marcaccio, M.; Rapino, S.; Bonchio, M.; Fornasiero, P.; Prato, M.; Paolucci, F. (2016).
2446: 334:
Electrocatalysis can occur at the surface of some bulk materials, such as platinum metal. Bulk metal surfaces of gold have been employed for the decomposition methanol for
510:
such as single atom catalysts. Because of their conductivity, carbon-based materials can potentially replace metal electrodes to perform metal-free electrocatalysis.
1364:
Wiedner, Eric S.; Appel, Aaron M.; Raugei, Simone; Shaw, Wendy J.; Bullock, R. Morris (2022). "Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines".
372:
where the reaction could take place; the likelihood of a reaction to occur in a certain site depends on the electronic structure of the catalyst, which determines the
1090: 683:. Electrocatalysts can promote the reduction of carbon dioxide into methanol and other useful fuel and stock chemicals. The most valuable reduction products of CO 2572: 705:
cells. Electrocatalysts such as gold, platinum, and various carbon-based materials have been shown to effectively catalyze this process. An electrocatalyst of
996:
Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang (2015). "Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions".
466:: the crystal lattice of a small nanoparticle is perfect; thus, reactions enhanced by defects as reaction sites get slowed down as the particle size decreases 666: 273: 408:
The interest in reducing as much as possible the costs of the catalyst for electrochemical processes led to the use of fine catalyst powders since the
734:
performed under a constant current, constant potential, or constant cell-voltage conditions, depending on the scale and purpose of the reaction.
1227: 383:, the catalyst surface atoms can be classified as terrace, step or kink atoms according to their position, each characterized by a different 761:"Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution" 269:
The ammonia represents an energy source since it is combustable. In this way electrification can be seen as a means for energy storage.
1154:
Brown, Micah D.; Schoenfisch, Mark H. (2019-11-27). "Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization".
2475:
Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L. (2018-02-13).
873: 490:: nanoparticles are often fixed onto a support in order to stay in place, therefore part of their surface is unavailable for reactants 413: 136: 50: 1066: 472:: small nanoparticles have the tendency to lose mass due to the diffusion of their atoms towards bigger particles, according to the 482:: in order to stabilize nanoparticles it is necessary a capping layer, therefore part of their surface is unavailable for reactants 326:
between them. The nature of the electrocatalyst surface determines some properties of the reaction including rate and selectivity.
2450: 300:, a nickel-containing enzyme, has inspired the development of synthetic complexes with similar molecular structures for use in CO 1443: 2696:
Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W.; Remita, Hynd; Cornu, David; Kokoh, K. Boniface (2017-10-06).
446:: a given size for a nanoparticle corresponds to a certain number of surface atoms and only some of them host a reaction site 176:
catalyze electrochemical reactions, although few have achieved commercial success. Well investigated processes include the
147:
or a four electron process to oxygen. The presence of an electrocatalyst could facilitate either of the reaction pathways.
1976: 2314:"Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications" 428: 518: 592: 177: 2576: 309:
cells can derive current from the oxidation of substrates such as glucose, and be leveraged for processes such as CO
743: 742:
Water treatment systems often require the degradation of hazardous compounds. These treatment processes are dubbed
574: 530: 2247:"Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction" 2799: 364: 1307:"Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective" 545: 440:: for any given size of a nanoparticle there is an equilibrium shape which exactly determines its crystal planes 1773: 568:
A schematic of a hydrogen fuel cell. To supply hydrogen, electrocatalytic water splitting is commonly employed.
420:
design is based on a polymeric membrane charged in platinum nanoparticles as an electrocatalyst (the so-called
1948:
Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. (2013). "A comprehensive review on PEM water electrolysis".
462: 399: 359: 2406:"Electrochemical Versus Heat-Engine Energy Technology: A Tribute to Wilhelm Ostwald's Visionary Statements" 1209: 577:
with an upper efficiency of 60% (for compression ratio of 10 and specific heat ratio of 1.4) based on the
1111:
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry".
826: 559: 409: 297: 140: 584:. It is also possible to combine the hydrogen and oxygen through redox mechanism as in the case of a 2488: 2258: 2112: 2052:
Wildgoose, Gregory G.; Banks, Craig E.; Leventis, Henry C.; Compton, Richard G. (November 30, 2005).
1914: 1866: 1785: 1219: 954: 772: 450: 173: 1039: 898:"Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial" 581: 384: 335: 305: 208: 35: 1504:"Renewable electron-driven bioinorganic nitrogen fixation: A superior route toward green ammonia?" 2804: 2775: 2553: 2386: 2341: 2227: 2144: 2081: 1742: 1631: 1503: 1187: 1084: 978: 927: 897: 714: 591:
The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the
436: 323: 193: 117: 1776:; Cuenya, B.R. (2016). "Nanostructured electrocatalysts with tunable activity and selectivity". 725:
can be oxidized into the necessary hydrogen ions and electrons required to create electricity.
564: 2767: 2759: 2727: 2719: 2678: 2660: 2621: 2545: 2506: 2427: 2333: 2294: 2276: 2219: 2136: 2128: 2100: 2073: 2034: 2026: 1930: 1882: 1835: 1723: 1681: 1673: 1623: 1615: 1576: 1568: 1484: 1425: 1389: 1381: 1346: 1328: 1278: 1223: 1179: 1171: 1136: 1128: 1072: 1062: 1013: 970: 869: 798: 380: 293: 204: 144: 113: 85: 1814:
Kleijn, Steven E. F.; Lai, Stanley C. S.; Koper, Marc T. M.; Unwin, Patrick R. (2014-04-01).
1704:"Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry" 945:
Debe, Mark K. (2012). "Electrocatalyst approaches and challenges for automotive fuel cells".
154:
Types of electrocatalyst materials, including homogeneous and heterogeneous electrocatalysts.
2751: 2709: 2668: 2652: 2641:"Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery" 2611: 2537: 2496: 2417: 2376: 2368: 2325: 2284: 2266: 2211: 2175: 2120: 2065: 2018: 1957: 1922: 1874: 1827: 1793: 1754: 1715: 1665: 1607: 1595: 1558: 1518: 1476: 1417: 1373: 1336: 1318: 1270: 1163: 1120: 1005: 962: 917: 909: 861: 816: 788: 780: 675:
reduction is not practiced commercially but remains a topic of research. The reduction of CO
521:, especially conductive frameworks, can be used as electrocatalysts for processes such as CO 486: 473: 417: 549:
Some transition metal complexes that exhibit some activity as homogeneous electrocatalysts.
150: 57:
surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be
526: 499: 197: 98: 1905:
Koper, M.T.M. (2011). "Structure sensitivity and nanoscale effects in electrocatalysis".
363:
Electronic density difference of a Cl atom adsorbed on a Cu(111) surface obtained with a
2492: 2262: 2116: 1918: 1870: 1789: 958: 776: 2698:"Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules" 2673: 2640: 2289: 2246: 1341: 1306: 836: 793: 760: 718: 680: 421: 94: 62: 2526:"Designing CO 2 reduction electrode materials by morphology and interface engineering" 2793: 2779: 2600:"Recent advances in the catalytic applications of GO/rGO for green organic synthesis" 2557: 2390: 2345: 2231: 2148: 2053: 1635: 1215: 1205: 1191: 931: 865: 507: 455: 216: 121: 105: 66: 58: 2085: 376:
energy of the reactants together with many other variables not yet fully clarified.
1961: 1758: 1741:
Carmo, Marcelo; Fritz, David L.; Mergel, JĂĽrgen; Stolten, Detlef (March 14, 2013).
982: 352: 189: 30: 1854: 1652:
Yang, Jenny Y.; Kerr, Tyler A.; Wang, Xinran S.; Barlow, Jeffrey M. (2020-11-18).
200:
processes that use protons. This technology remains economically noncompetitive.
2656: 2180: 2163: 1654:"Reducing CO 2 to HCO 2 – at Mild Potentials: Lessons from Formate Dehydrogenase" 1611: 913: 2501: 2476: 1980: 1653: 1563: 1546: 1377: 1167: 289: 17: 2271: 2124: 2101:"Graphene-supported single-atom catalysts and applications in electrocatalysis" 1878: 2199: 2069: 1815: 1797: 1258: 578: 373: 2763: 2723: 2664: 2625: 2549: 2510: 2372: 2337: 2280: 2245:
Singh, Chanderpratap; Mukhopadhyay, Subhabrata; Hod, Idan (January 5, 2021).
2132: 2077: 2030: 2006: 1886: 1727: 1677: 1619: 1572: 1332: 1175: 1132: 2755: 1257:
Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc (2011-08-01).
1076: 821: 585: 412:
increases as the average particle size decreases. For instance, most common
129: 125: 109: 70: 54: 46: 2771: 2731: 2714: 2697: 2682: 2431: 2422: 2405: 2298: 2223: 2215: 2140: 2038: 1934: 1839: 1831: 1685: 1627: 1580: 1488: 1429: 1393: 1350: 1323: 1282: 1274: 1183: 1140: 1017: 974: 802: 2616: 2599: 2099:
Zhang, Qin; Zhang, Xiaoxiang; Wang, Junzhong; Wang, Congwei (2021-01-15).
1547:"Fundamentals, Applications, and Future Directions of Bioelectrocatalysis" 1669: 856:
Kotrel, Stefan; BrUninger, Sigmar (2008). "Industrial Electrocatalysis".
706: 503: 245: 220: 196:. Several conversions that use of hydrogen gas could be transformed into 97:. In assessing the stability of electrocatalysts, the a key parameter is 34:
A platinum cathode electrocatalyst's stability being measured by chemist
2381: 2198:
Jiao, Long; Wang, Yang; Jiang, Hai-Long; Xu, Qiang (November 27, 2017).
966: 784: 2541: 2525: 2329: 2313: 1926: 1522: 1480: 1421: 1009: 722: 710: 212: 2022: 1444:"Dream or Reality? Electrification of the Chemical Process Industries" 1385: 1124: 922: 1719: 1703: 692:
reduction, including carbon-based materials and framework materials.
285: 249: 53:. Electrocatalysts are a specific form of catalysts that function at 2007:"Advanced Carbon Electrode Materials for Molecular Electrochemistry" 1305:
Kinzel, Niklas W.; Werlé, Christophe; Leitner, Walter (2021-01-19).
1855:"Strain-controlled electrocatalysis on multimetallic nanomaterials" 2200:"Metal-Organic Frameworks as Platforms for Catalytic Applications" 544: 398: 149: 2054:"Chemically Modified Carbon Nanotubes for Use in Electroanalysis" 747: 143:, the anode can oxidize water through a two electron process to 832:
Non-faradaic electrochemical modification of catalytic activity
404:
nanoparticles, while the number of other surface sites varies.
292:, an enzyme that contains a MoFe cluster, can be leveraged to 1596:"Nitrogenase Bioelectrochemistry for Synthesis Applications" 458:
of a nanoparticle changes and its band structure fades away
1040:"Electrocatalysis 101 | GCEP Symposium - October 11, 2012" 2164:"Carbon-based catalysts for metal-free electrocatalysis" 1211:
Electrochemical methods: fundamentals and applications
1059:
Electrochemical methods: fundamentals and applications
688:
variety of nanomaterials have also been studied for CO
1900: 1898: 1896: 1502:
Wang, Bo; Zhang, Yifeng; Minteer, Shelley D. (2023).
713:
on carbon backed tin-dioxide nanoparticles can break
2477:"A Practical Beginner's Guide to Cyclic Voltammetry" 2639:Siu, Juno C.; Fu, Niankai; Lin, Song (2020-03-17). 1853:Luo, Mingchuan; Guo, Shaojun (September 26, 2017). 1594:Milton, Ross D.; Minteer, Shelley D. (2019-12-17). 700:
Aqueous solutions of methanol can decompose into CO
679:into useable products is a potential way to combat 132:would require its own specialized electrocatalyst. 27:
Catalyst participating in electrochemical reactions
1743:"A comprehensive review on PEM water electrolysis" 1702:Qiao, Yan; Bao, Shu-Juan; Li, Chang Ming (2010). 1913:(5). The Royal Society of Chemistry: 2054–2073. 69:. Major challenges in electrocatalysts focus on 1977:"CNTs tuned to provide electrocatalyst support" 738:Advanced oxidation processes in water treatment 2449:. Science learning New Zealand. Archived from 272:Another process attracting much effort is the 8: 192:, because the electrons can be sourced from 667:Electrochemical reduction of carbon dioxide 274:electrochemical reduction of carbon dioxide 104:In many electrochemical systems, including 1089:: CS1 maint: location missing publisher ( 1057:Bard, Allen J.; Larry R. Faulkner (2001). 2713: 2672: 2615: 2500: 2421: 2380: 2288: 2270: 2179: 1562: 1340: 1322: 921: 792: 1950:International Journal of Hydrogen Energy 1747:International Journal of Hydrogen Energy 1658:Journal of the American Chemical Society 597: 563: 358: 262: 258: 237: 233: 229: 203:Another example is found in the area of 29: 2410:Angewandte Chemie International Edition 1820:Angewandte Chemie International Edition 1311:Angewandte Chemie International Edition 1263:Angewandte Chemie International Edition 848: 657:HER can be promoted by many catalysts. 2748:Environmental Science & Technology 2404:Kunze, Julia; Ulrich Stimming (2009). 2193: 2191: 2005:McCreery, Richard L. (June 17, 2008). 2000: 1998: 1647: 1645: 1300: 1298: 1296: 1294: 1292: 1252: 1250: 1248: 1246: 1082: 184:Electrification of catalytic processes 1809: 1807: 1697: 1695: 1540: 1538: 1536: 1534: 1532: 1208:; Faulkner, Larry R. (January 2001). 1033: 1031: 1029: 1027: 124:. In these systems, each of the two 7: 1106: 1104: 1102: 1100: 1038:Jaramillo, Tom (September 3, 2014). 891: 889: 887: 885: 554:Water splitting / Hydrogen evolution 2750:. American Chemical Society (ACS). 2168:Current Opinion in Electrochemistry 1816:"Electrochemistry of Nanoparticles" 858:Handbook of Heterogeneous Catalysis 288:can function as electrocatalysts. 2530:Energy & Environmental Science 2445:Haverkamp, Richard (3 June 2008). 1708:Energy & Environmental Science 1511:Energy & Environmental Science 531:Covalent organic frameworks (COFs) 25: 2598:Sachdeva, Harshita (2020-09-30). 1979:. Nanotechweb.org. Archived from 2573:"Booze-powered cars coming soon" 2571:Harris, Mark (26 January 2009). 2524:Pan, Fuping; Yang, Yang (2020). 2454:(QuickTime video and transcript) 1061:(Second ed.). Hoboken, NJ. 866:10.1002/9783527610044.hetcat0103 244:In the electrified version, the 168:Synthetic coordination complexes 2575:. techradar.com. Archived from 896:Roduner, Emil (June 13, 2017). 519:Metal—organic frameworks (MOFs) 2604:Green Processing and Synthesis 1962:10.1016/j.ijhydene.2013.01.151 1759:10.1016/j.ijhydene.2013.01.151 717:at room temperature with only 444:Reaction sites relative number 317:Heterogeneous electrocatalysts 84:An electrocatalyst lowers the 1: 2645:Accounts of Chemical Research 2481:Journal of Chemical Education 2447:"What is an electrocatalyst?" 2162:Dai, Liming (June 13, 2017). 1975:Wang, Xin (19 January 2008). 1600:Accounts of Chemical Research 1259:"Splitting Water with Cobalt" 2657:10.1021/acs.accounts.9b00529 2181:10.1016/j.coelec.2017.06.004 1612:10.1021/acs.accounts.9b00494 914:10.1016/j.cattod.2017.05.091 744:Advanced oxidation processes 573:of this reaction through an 541:Research on electrocatalysis 454:: below a certain size, the 429:surface area to volume ratio 159:Homogeneous electrocatalysts 2502:10.1021/acs.jchemed.7b00361 1564:10.1021/acs.chemrev.0c00472 1378:10.1021/acs.chemrev.1c01001 1168:10.1021/acs.chemrev.8b00797 593:standard hydrogen electrode 248:is provided in the form of 178:hydrogen evolution reaction 2821: 2272:10.1186/s40580-020-00251-6 1879:10.1038/natrevmats.2017.59 1772:Mistry, H.; Varela, A.S.; 696:Ethanol-powered fuel cells 664: 575:internal combustion engine 557: 2070:10.1007/s00604-005-0449-x 1798:10.1038/natrevmats.2016.9 721:as a by-product, so that 135:Half-reactions involving 51:electrochemical reactions 2373:10.1021/acscatal.9b03790 2125:10.1088/1361-6528/abbd70 1859:Nature Reviews Materials 1778:Nature Reviews Materials 1469:Chemical Society Reviews 1410:Chemical Society Reviews 998:Chemical Society Reviews 661:Carbon dioxide reduction 294:fix atmospheric nitrogen 261:+ 6 H + 6 e → 2 NH 2756:10.1021/acs.est.2c04874 671:Electrocatalysis for CO 2715:10.1002/cphc.201700447 2423:10.1002/anie.200903603 2216:10.1002/adma.201703663 1832:10.1002/anie.201306828 1324:10.1002/anie.202006988 1275:10.1002/anie.201007987 569: 550: 495:Carbon-based materials 405: 368: 174:coordination complexes 155: 38: 2617:10.1515/gps-2020-0055 827:Electrolysis of water 765:Nature Communications 567: 560:Electrolysis of water 548: 410:specific surface area 402: 362: 298:formate dehydrogenase 153: 141:electrolysis of water 112:and various forms of 80:Background and theory 49:that participates in 33: 1670:10.1021/jacs.0c07965 606:Reduction Potential 451:Electronic structure 395:Particle size effect 306:Microbial fuel cells 63:platinized electrode 2493:2018JChEd..95..197E 2263:2021NanoC...8....1S 2117:2021Nanot..32c2001Z 1919:2011Nanos...3.2054K 1871:2017NatRM...217059L 1790:2016NatRM...116009M 1664:(46): 19438–19445. 1557:(23): 12903–12993. 1372:(14): 12427–12474. 1317:(21): 11628–11686. 1162:(22): 11551–11575. 967:10.1038/nature11115 959:2012Natur.486...43D 785:10.1038/ncomms13549 777:2016NatCo...713549V 599: 582:thermodynamic cycle 514:Framework materials 385:coordination number 336:hydrogen production 209:Haber-Bosch process 194:renewable resources 128:and its associated 118:faradaic efficiency 2542:10.1039/D0EE00900H 2330:10.1039/C9MH00856J 2318:Materials Horizons 2204:Advanced Materials 1983:on 22 January 2009 1927:10.1039/c0nr00857e 1523:10.1039/D2EE03132A 1481:10.1039/C9CS00159J 1422:10.1039/D3CS00419H 1010:10.1039/C4CS00470A 753:Additional reading 729:Chemical synthesis 598: 570: 551: 406: 369: 207:. The traditional 156: 114:electrolytic cells 39: 2708:(19): 2573–2605. 2416:(49): 9230–9237. 2058:Microchimica Acta 2023:10.1021/cr068076m 1956:(12): 4901–4934. 1826:(14): 3558–3586. 1753:(12): 4901–4934. 1606:(12): 3351–3360. 1475:(24): 5658–5716. 1448:www.aiche-cep.com 1416:(21): 7305–7332. 1269:(32): 7238–7266. 1229:978-0-471-04372-0 1125:10.1021/cr068076m 655: 654: 437:Equilibrium shape 379:According to the 205:nitrogen fixation 145:hydrogen peroxide 86:activation energy 16:(Redirected from 2812: 2800:Electrochemistry 2784: 2783: 2742: 2736: 2735: 2717: 2693: 2687: 2686: 2676: 2636: 2630: 2629: 2619: 2595: 2589: 2588: 2586: 2584: 2568: 2562: 2561: 2536:(8): 2275–2309. 2521: 2515: 2514: 2504: 2472: 2466: 2465: 2463: 2461: 2456:on 29 April 2023 2455: 2442: 2436: 2435: 2425: 2401: 2395: 2394: 2384: 2356: 2350: 2349: 2309: 2303: 2302: 2292: 2274: 2251:Nano Convergence 2242: 2236: 2235: 2195: 2186: 2185: 2183: 2159: 2153: 2152: 2096: 2090: 2089: 2064:(3–4): 187–214. 2049: 2043: 2042: 2017:(7): 2646–2687. 2011:Chemical Reviews 2002: 1993: 1992: 1990: 1988: 1972: 1966: 1965: 1945: 1939: 1938: 1902: 1891: 1890: 1850: 1844: 1843: 1811: 1802: 1801: 1769: 1763: 1762: 1738: 1732: 1731: 1720:10.1039/b923503e 1699: 1690: 1689: 1649: 1640: 1639: 1591: 1585: 1584: 1566: 1551:Chemical Reviews 1542: 1527: 1526: 1508: 1499: 1493: 1492: 1464: 1458: 1457: 1455: 1454: 1440: 1434: 1433: 1404: 1398: 1397: 1366:Chemical Reviews 1361: 1355: 1354: 1344: 1326: 1302: 1287: 1286: 1254: 1241: 1240: 1238: 1236: 1202: 1196: 1195: 1156:Chemical Reviews 1151: 1145: 1144: 1119:(7): 2646–2687. 1113:Chemical Reviews 1108: 1095: 1094: 1088: 1080: 1054: 1048: 1047: 1035: 1022: 1021: 1004:(8): 2060–2086. 993: 987: 986: 942: 936: 935: 925: 893: 880: 879: 853: 817:Electrochemistry 806: 796: 600: 500:Carbon nanotubes 474:Ostwald ripening 265: 240: 21: 18:Electrocatalysis 2820: 2819: 2815: 2814: 2813: 2811: 2810: 2809: 2790: 2789: 2788: 2787: 2744: 2743: 2739: 2695: 2694: 2690: 2638: 2637: 2633: 2597: 2596: 2592: 2582: 2580: 2579:on 2 March 2009 2570: 2569: 2565: 2523: 2522: 2518: 2474: 2473: 2469: 2459: 2457: 2453: 2444: 2443: 2439: 2403: 2402: 2398: 2358: 2357: 2353: 2311: 2310: 2306: 2244: 2243: 2239: 2210:(37): 1703663. 2197: 2196: 2189: 2161: 2160: 2156: 2098: 2097: 2093: 2051: 2050: 2046: 2004: 2003: 1996: 1986: 1984: 1974: 1973: 1969: 1947: 1946: 1942: 1904: 1903: 1894: 1852: 1851: 1847: 1813: 1812: 1805: 1771: 1770: 1766: 1740: 1739: 1735: 1701: 1700: 1693: 1651: 1650: 1643: 1593: 1592: 1588: 1544: 1543: 1530: 1506: 1501: 1500: 1496: 1466: 1465: 1461: 1452: 1450: 1442: 1441: 1437: 1406: 1405: 1401: 1363: 1362: 1358: 1304: 1303: 1290: 1256: 1255: 1244: 1234: 1232: 1230: 1204: 1203: 1199: 1153: 1152: 1148: 1110: 1109: 1098: 1081: 1069: 1056: 1055: 1051: 1037: 1036: 1025: 995: 994: 990: 953:(7401): 43–51. 944: 943: 939: 902:Catalysis Today 895: 894: 883: 876: 855: 854: 850: 845: 813: 758: 755: 740: 731: 703: 698: 691: 686: 678: 674: 669: 663: 645: 641: 637: 622: 611: 562: 556: 543: 527:water splitting 524: 516: 497: 397: 349: 344: 332: 319: 312: 303: 282: 264: 260: 256: 252:and electrons: 239: 235: 231: 227: 198:electrochemical 186: 170: 161: 99:turnover number 82: 76: 43:electrocatalyst 28: 23: 22: 15: 12: 11: 5: 2818: 2816: 2808: 2807: 2802: 2792: 2791: 2786: 2785: 2737: 2688: 2651:(3): 547–560. 2631: 2610:(1): 515–537. 2590: 2563: 2516: 2487:(2): 197–206. 2467: 2437: 2396: 2351: 2324:(2): 411–454. 2304: 2237: 2187: 2154: 2105:Nanotechnology 2091: 2044: 1994: 1967: 1940: 1892: 1845: 1803: 1764: 1733: 1691: 1641: 1586: 1528: 1517:(2): 404–420. 1494: 1459: 1435: 1399: 1356: 1288: 1242: 1228: 1206:Bard, Allen J. 1197: 1146: 1096: 1067: 1049: 1023: 988: 937: 881: 875:978-3527312412 874: 847: 846: 844: 841: 840: 839: 837:Tafel equation 834: 829: 824: 819: 812: 809: 808: 807: 754: 751: 739: 736: 730: 727: 719:carbon dioxide 701: 697: 694: 689: 684: 681:climate change 676: 672: 665:Main article: 662: 659: 653: 652: 647: 643: 639: 638:+ 4H + 4e → 2H 635: 630: 629: 624: 620: 615: 614: 609: 604: 603:Half Reaction 558:Main article: 555: 552: 542: 539: 525:reduction and 522: 515: 512: 496: 493: 492: 491: 483: 480:Capping agents 477: 467: 459: 447: 441: 422:platinum black 414:PEM fuel cells 396: 393: 348: 345: 343: 340: 331: 330:Bulk materials 328: 318: 315: 310: 301: 281: 278: 267: 266: 242: 241: 185: 182: 169: 166: 160: 157: 137:multiple steps 122:overpotentials 106:galvanic cells 95:Tafel equation 81: 78: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2817: 2806: 2803: 2801: 2798: 2797: 2795: 2781: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2741: 2738: 2733: 2729: 2725: 2721: 2716: 2711: 2707: 2703: 2699: 2692: 2689: 2684: 2680: 2675: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2635: 2632: 2627: 2623: 2618: 2613: 2609: 2605: 2601: 2594: 2591: 2578: 2574: 2567: 2564: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2520: 2517: 2512: 2508: 2503: 2498: 2494: 2490: 2486: 2482: 2478: 2471: 2468: 2452: 2448: 2441: 2438: 2433: 2429: 2424: 2419: 2415: 2411: 2407: 2400: 2397: 2392: 2388: 2383: 2378: 2374: 2370: 2366: 2362: 2361:ACS Catalysis 2355: 2352: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2308: 2305: 2300: 2296: 2291: 2286: 2282: 2278: 2273: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2238: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2192: 2188: 2182: 2177: 2173: 2169: 2165: 2158: 2155: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2111:(3): 032001. 2110: 2106: 2102: 2095: 2092: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2048: 2045: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2001: 1999: 1995: 1982: 1978: 1971: 1968: 1963: 1959: 1955: 1951: 1944: 1941: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1901: 1899: 1897: 1893: 1888: 1884: 1880: 1876: 1872: 1868: 1865:(11): 17059. 1864: 1860: 1856: 1849: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1808: 1804: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1765: 1760: 1756: 1752: 1748: 1744: 1737: 1734: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1696: 1692: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1646: 1642: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1590: 1587: 1582: 1578: 1574: 1570: 1565: 1560: 1556: 1552: 1548: 1541: 1539: 1537: 1535: 1533: 1529: 1524: 1520: 1516: 1512: 1505: 1498: 1495: 1490: 1486: 1482: 1478: 1474: 1470: 1463: 1460: 1449: 1445: 1439: 1436: 1431: 1427: 1423: 1419: 1415: 1411: 1403: 1400: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1360: 1357: 1352: 1348: 1343: 1338: 1334: 1330: 1325: 1320: 1316: 1312: 1308: 1301: 1299: 1297: 1295: 1293: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1253: 1251: 1249: 1247: 1243: 1231: 1225: 1221: 1217: 1213: 1212: 1207: 1201: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1105: 1103: 1101: 1097: 1092: 1086: 1078: 1074: 1070: 1068:0-471-04372-9 1064: 1060: 1053: 1050: 1045: 1041: 1034: 1032: 1030: 1028: 1024: 1019: 1015: 1011: 1007: 1003: 999: 992: 989: 984: 980: 976: 972: 968: 964: 960: 956: 952: 948: 941: 938: 933: 929: 924: 919: 915: 911: 907: 903: 899: 892: 890: 888: 886: 882: 877: 871: 867: 863: 859: 852: 849: 842: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 814: 810: 804: 800: 795: 790: 786: 782: 778: 774: 770: 766: 762: 757: 756: 752: 750: 749: 745: 737: 735: 728: 726: 724: 720: 716: 712: 708: 695: 693: 682: 668: 660: 658: 651: 648: 646: 632: 631: 628: 625: 623: 617: 616: 613: 605: 602: 601: 596: 594: 589: 587: 583: 580: 576: 566: 561: 553: 547: 540: 538: 534: 532: 528: 520: 513: 511: 509: 508:nanomaterials 505: 501: 494: 489: 488: 484: 481: 478: 475: 471: 468: 465: 464: 460: 457: 456:work function 453: 452: 448: 445: 442: 439: 438: 434: 433: 432: 430: 427:Although the 425: 423: 419: 418:electrolyzers 415: 411: 401: 394: 392: 388: 386: 382: 377: 375: 366: 361: 357: 354: 351:A variety of 347:Nanoparticles 346: 342:Nanomaterials 341: 339: 337: 329: 327: 325: 316: 314: 307: 299: 295: 291: 287: 279: 277: 275: 270: 255: 254: 253: 251: 247: 226: 225: 224: 222: 218: 217:hydrogenation 214: 210: 206: 201: 199: 195: 191: 183: 181: 179: 175: 167: 165: 158: 152: 148: 146: 142: 138: 133: 131: 127: 123: 119: 115: 111: 107: 102: 100: 96: 90: 87: 79: 77: 74: 72: 68: 67:half reaction 64: 60: 59:heterogeneous 56: 52: 48: 44: 37: 36:Xiaoping Wang 32: 19: 2747: 2740: 2705: 2702:ChemPhysChem 2701: 2691: 2648: 2644: 2634: 2607: 2603: 2593: 2581:. Retrieved 2577:the original 2566: 2533: 2529: 2519: 2484: 2480: 2470: 2458:. Retrieved 2451:the original 2440: 2413: 2409: 2399: 2382:10397/100175 2367:(1): 81–92. 2364: 2360: 2354: 2321: 2317: 2307: 2254: 2250: 2240: 2207: 2203: 2174:(1): 18–25. 2171: 2167: 2157: 2108: 2104: 2094: 2061: 2057: 2047: 2014: 2010: 1985:. Retrieved 1981:the original 1970: 1953: 1949: 1943: 1910: 1906: 1862: 1858: 1848: 1823: 1819: 1781: 1777: 1774:Strasser, P. 1767: 1750: 1746: 1736: 1711: 1707: 1661: 1657: 1603: 1599: 1589: 1554: 1550: 1514: 1510: 1497: 1472: 1468: 1462: 1451:. Retrieved 1447: 1438: 1413: 1409: 1402: 1369: 1365: 1359: 1314: 1310: 1266: 1262: 1233:. Retrieved 1210: 1200: 1159: 1155: 1149: 1116: 1112: 1058: 1052: 1043: 1001: 997: 991: 950: 946: 940: 905: 901: 857: 851: 768: 764: 741: 732: 715:carbon bonds 699: 670: 656: 649: 633: 626: 618: 607: 590: 571: 535: 517: 498: 485: 479: 469: 461: 449: 443: 435: 426: 407: 389: 378: 370: 353:nanoparticle 350: 333: 320: 283: 271: 268: 243: 202: 190:green energy 187: 171: 162: 134: 103: 91: 83: 75: 42: 40: 2583:27 February 2460:27 February 1987:27 February 1784:(4): 1–14. 1235:27 February 1044:Youtube.com 908:: 263–268. 619:2H + 2e → H 367:simulation. 313:reduction. 304:reduction. 290:Nitrogenase 2794:Categories 1714:(5): 544. 1453:2021-08-22 923:2263/68699 843:References 476:phenomenon 374:adsorption 126:electrodes 110:fuel cells 71:fuel cells 61:such as a 2805:Catalysis 2780:256030682 2764:0013-936X 2724:1439-4235 2665:0001-4842 2626:2191-9550 2558:219737955 2550:1754-5692 2511:0021-9584 2391:212979103 2346:204292382 2338:2051-6347 2281:2196-5404 2232:205282723 2149:222146032 2133:0957-4484 2078:0026-3672 2031:0009-2665 1907:Nanoscale 1887:2058-8437 1728:1754-5692 1678:0002-7863 1636:208643374 1620:0001-4842 1573:0009-2665 1333:1433-7851 1192:202761809 1176:0009-2665 1133:0009-2665 1085:cite book 932:103395714 822:Catalysis 771:: 13549. 586:fuel cell 470:Stability 381:TSK model 324:interface 211:produces 130:half-cell 120:and high 93:with the 55:electrode 2772:36657468 2732:28732139 2683:32077681 2432:19894237 2299:33403521 2257:(1): 1. 2224:29178384 2141:33002887 2086:93373402 2039:18557655 1935:21399781 1840:24574053 1686:33141560 1628:31800207 1581:33050699 1489:31742279 1430:37814786 1394:35640056 1351:33464678 1283:21748828 1216:New York 1184:31553169 1141:18557655 1077:43859504 1018:25672249 975:22678278 811:See also 803:27941752 707:platinum 504:graphene 246:hydrogen 236:→ 2 NH 221:nitrogen 47:catalyst 2674:7245362 2489:Bibcode 2290:7785767 2259:Bibcode 2113:Bibcode 1915:Bibcode 1867:Bibcode 1786:Bibcode 1386:1922077 1342:8248444 983:4349039 955:Bibcode 794:5159813 773:Bibcode 723:ethanol 711:rhodium 595:(SHE). 487:Support 463:Defects 356:strain. 286:enzymes 280:Enzymes 250:protons 213:ammonia 2778:  2770:  2762:  2730:  2722:  2681:  2671:  2663:  2624:  2556:  2548:  2509:  2430:  2389:  2344:  2336:  2297:  2287:  2279:  2230:  2222:  2147:  2139:  2131:  2084:  2076:  2037:  2029:  1933:  1885:  1838:  1726:  1684:  1676:  1634:  1626:  1618:  1579:  1571:  1487:  1428:  1392:  1384:  1349:  1339:  1331:  1281:  1226:  1190:  1182:  1174:  1139:  1131:  1075:  1065:  1016:  981:  973:  947:Nature 930:  872:  801:  791:  2776:S2CID 2554:S2CID 2387:S2CID 2342:S2CID 2228:S2CID 2145:S2CID 2082:S2CID 1632:S2CID 1507:(PDF) 1220:Wiley 1188:S2CID 979:S2CID 928:S2CID 650:+1.23 621:2 (g) 284:Some 232:+ 3 H 223:gas: 172:Many 45:is a 2768:PMID 2760:ISSN 2728:PMID 2720:ISSN 2679:PMID 2661:ISSN 2622:ISSN 2585:2009 2546:ISSN 2507:ISSN 2462:2009 2428:PMID 2334:ISSN 2295:PMID 2277:ISSN 2220:PMID 2137:PMID 2129:ISSN 2074:ISSN 2035:PMID 2027:ISSN 1989:2009 1931:PMID 1883:ISSN 1836:PMID 1724:ISSN 1682:PMID 1674:ISSN 1624:PMID 1616:ISSN 1577:PMID 1569:ISSN 1485:PMID 1426:PMID 1390:PMID 1382:OSTI 1347:PMID 1329:ISSN 1279:PMID 1237:2009 1224:ISBN 1180:PMID 1172:ISSN 1137:PMID 1129:ISSN 1091:link 1073:OCLC 1063:ISBN 1014:PMID 971:PMID 870:ISBN 799:PMID 748:PFAS 709:and 636:2(g) 612:(V) 579:Otto 502:and 416:and 180:. 2752:doi 2710:doi 2669:PMC 2653:doi 2612:doi 2538:doi 2497:doi 2418:doi 2377:hdl 2369:doi 2326:doi 2285:PMC 2267:doi 2212:doi 2176:doi 2121:doi 2066:doi 2062:152 2019:doi 2015:108 1958:doi 1923:doi 1875:doi 1828:doi 1794:doi 1755:doi 1716:doi 1666:doi 1662:142 1608:doi 1559:doi 1555:120 1519:doi 1477:doi 1418:doi 1374:doi 1370:122 1337:PMC 1319:doi 1271:doi 1164:doi 1160:119 1121:doi 1117:108 1006:doi 963:doi 951:486 918:hdl 910:doi 906:309 862:doi 789:PMC 781:doi 644:(l) 627:≡ 0 610:red 424:). 365:DFT 219:of 215:by 41:An 2796:: 2774:. 2766:. 2758:. 2726:. 2718:. 2706:18 2704:. 2700:. 2677:. 2667:. 2659:. 2649:53 2647:. 2643:. 2620:. 2606:. 2602:. 2552:. 2544:. 2534:13 2532:. 2528:. 2505:. 2495:. 2485:95 2483:. 2479:. 2426:. 2414:48 2412:. 2408:. 2385:. 2375:. 2365:10 2363:. 2340:. 2332:. 2320:. 2316:. 2293:. 2283:. 2275:. 2265:. 2253:. 2249:. 2226:. 2218:. 2208:30 2206:. 2202:. 2190:^ 2170:. 2166:. 2143:. 2135:. 2127:. 2119:. 2109:32 2107:. 2103:. 2080:. 2072:. 2060:. 2056:. 2033:. 2025:. 2013:. 2009:. 1997:^ 1954:38 1952:. 1929:. 1921:. 1909:. 1895:^ 1881:. 1873:. 1861:. 1857:. 1834:. 1824:53 1822:. 1818:. 1806:^ 1792:. 1780:. 1751:38 1749:. 1745:. 1722:. 1710:. 1706:. 1694:^ 1680:. 1672:. 1660:. 1656:. 1644:^ 1630:. 1622:. 1614:. 1604:52 1602:. 1598:. 1575:. 1567:. 1553:. 1549:. 1531:^ 1515:16 1513:. 1509:. 1483:. 1473:48 1471:. 1446:. 1424:. 1414:52 1412:. 1388:. 1380:. 1368:. 1345:. 1335:. 1327:. 1315:60 1313:. 1309:. 1291:^ 1277:. 1267:50 1265:. 1261:. 1245:^ 1222:. 1218:: 1214:. 1186:. 1178:. 1170:. 1158:. 1135:. 1127:. 1115:. 1099:^ 1087:}} 1083:{{ 1071:. 1042:. 1026:^ 1012:. 1002:44 1000:. 977:. 969:. 961:. 949:. 926:. 916:. 904:. 900:. 884:^ 868:. 860:. 797:. 787:. 779:. 767:. 763:. 276:. 108:, 73:. 2782:. 2754:: 2734:. 2712:: 2685:. 2655:: 2628:. 2614:: 2608:9 2587:. 2560:. 2540:: 2513:. 2499:: 2491:: 2464:. 2434:. 2420:: 2393:. 2379:: 2371:: 2348:. 2328:: 2322:7 2301:. 2269:: 2261:: 2255:8 2234:. 2214:: 2184:. 2178:: 2172:4 2151:. 2123:: 2115:: 2088:. 2068:: 2041:. 2021:: 1991:. 1964:. 1960:: 1937:. 1925:: 1917:: 1911:3 1889:. 1877:: 1869:: 1863:2 1842:. 1830:: 1800:. 1796:: 1788:: 1782:1 1761:. 1757:: 1730:. 1718:: 1712:3 1688:. 1668:: 1638:. 1610:: 1583:. 1561:: 1525:. 1521:: 1491:. 1479:: 1456:. 1432:. 1420:: 1396:. 1376:: 1353:. 1321:: 1285:. 1273:: 1239:. 1194:. 1166:: 1143:. 1123:: 1093:) 1079:. 1046:. 1020:. 1008:: 985:. 965:: 957:: 934:. 920:: 912:: 878:. 864:: 805:. 783:: 775:: 769:7 702:2 690:2 685:2 677:2 673:2 642:O 640:2 634:O 608:E 523:2 311:2 302:2 263:3 259:2 257:N 238:3 234:2 230:2 228:N 20:)

Index

Electrocatalysis

Xiaoping Wang
catalyst
electrochemical reactions
electrode
heterogeneous
platinized electrode
half reaction
fuel cells
activation energy
Tafel equation
turnover number
galvanic cells
fuel cells
electrolytic cells
faradaic efficiency
overpotentials
electrodes
half-cell
multiple steps
electrolysis of water
hydrogen peroxide

coordination complexes
hydrogen evolution reaction
green energy
renewable resources
electrochemical
nitrogen fixation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑