Knowledge

Hilbert's twelfth problem

Source 📝

231:
Hilbert's original statement of his 12th problem is rather misleading: he seems to imply that the abelian extensions of imaginary quadratic fields are generated by special values of elliptic modular functions, which is not correct. (It is hard to tell exactly what Hilbert was saying, one problem
34:
Es handelt sich um meinen liebsten Jugendtraum, nĂ€mlich um den Nachweis, dass die Abel’schen Gleichungen mit Quadratwurzeln rationaler Zahlen durch die Transformations-Gleichungen elliptischer Functionen mit singularen Moduln grade so erschöpft werden, wie die ganzzahligen Abel’schen Gleichungen
385:
represents a torsion point on the corresponding elliptic curve. One interpretation of Hilbert's twelfth problem asks to provide a suitable analogue of exponential, elliptic, or modular functions, whose special values would generate the maximal abelian extension
314: 503:(in the abelian rank-one case), which in contrast dealt directly with the question of finding particular units that generate abelian extensions of number fields and describe leading coefficients of 236:.) First it is also necessary to use roots of unity, though Hilbert may have implicitly meant to include these. More seriously, while values of elliptic modular functions generate the 747: 418:, and then cutting down to the abelian extensions, so does not really solve Hilbert's problem which asks for a more direct construction of the abelian extensions. 443: 496:
that would take the subject much further, more than thirty years later serious doubts remain concerning its import for the question that Hilbert asked.
515:-adic solution to finding the maximal abelian extension of totally real fields by proving the integral Gross–Stark conjecture for Brumer–Stark units. 665: 673: 208:
is contained in a cyclotomic field. Kronecker's (and Hilbert's) question addresses the situation of a more general algebraic number field
587: 740: 232:
being that he may have been using the term "elliptic function" to mean both the elliptic function ℘ and the elliptic modular function
883: 872: 176:. All quadratic extensions, obtained by adjoining the roots of a quadratic polynomial, are abelian, and their study was commenced by 708: 640: 877: 867: 243: 905: 847: 857: 852: 832: 827: 915: 240:, for more general abelian extensions one also needs to use values of elliptic functions. For example, the abelian extension 862: 842: 837: 733: 817: 632: 485: 797: 172:. The simplest situation, which is already at the boundary of what is well understood, is when the group in question is 319:
One particularly appealing way to state the Kronecker–Weber theorem is by saying that the maximal abelian extension of
201: 138: 51: 802: 782: 772: 812: 807: 792: 787: 777: 767: 703:. Studies in the Development of Modern Mathematics. Vol. 2. New York: Gordon and Breach Science Publishers. 221: 106: 536: 153: 623: 339: 157: 96: 659: 463: 756: 500: 910: 439: 435: 335: 177: 237: 165: 566: 399: 42:
Kronecker in a letter to Dedekind in 1880 reproduced in volume V of his collected works, page 455
658:
Schappacher, Norbert (1998). "On the history of Hilbert's twelfth problem: a comedy of errors".
161: 354:
is an imaginary quadratic irrationality, can be obtained by adjoining the special values of ℘(
704: 669: 636: 565:
Dasgupta, Samit; Kakde, Mahesh (2021-03-03). "Brumer-Stark Units and Hilbert's 12th Problem".
493: 467: 114: 79: 55: 714: 687: 646: 615: 504: 473: 371: 193: 185: 75: 67: 683: 718: 691: 679: 650: 489: 451: 197: 137:
provided a construction of the maximal abelian extension of totally real fields using the
59: 130: 118: 71: 414:
in class field theory involves first constructing larger non-abelian extensions using
899: 619: 415: 403: 173: 532: 447: 169: 134: 122: 110: 63: 212:: what are the algebraic numbers necessary to construct all abelian extensions of 459: 427: 410:, and others in the first half of the 20th century. However the construction of 216:? The complete answer to this question has been completely worked out only when 725: 407: 17: 74:
that generate a whole family of further number fields, analogously to the
618:(1976). "Some contemporary problems with origins in the Jugendtraum". In 588:"Mathematicians Find Long-Sought Building Blocks for Special Polynomials" 535:
proved the existence of the absolute abelian extension as the well-known
458:
in general. The question of which extensions can be found is that of the
455: 225: 126: 426:
Developments since around 1960 have certainly contributed. Before that
661:
Matériaux pour l'histoire des mathématiques au XX siÚcle (Nice, 1996)
571: 88:, or "dearest dream of his youth", so the problem is also known as 394:. In this form, it remains unsolved. A description of the field 729: 164:
made it clear that field extensions are controlled by certain
309:{\displaystyle \mathbf {Q} (i,{\sqrt{1+2i}})/\mathbf {Q} (i)} 144:
The general case of Hilbert's twelfth problem is still open.
631:. Proc. Sympos. Pure Math. Vol. 28. Providence, RI: 316:
is not generated by singular moduli and roots of unity.
625:
Mathematical developments arising from Hilbert problems
377:
and elliptic functions ℘, and roots of unity, where
323:
can be obtained by adjoining the special values exp(2
246: 470:, these representations have been studied in depth. 308: 82:described the complex multiplication issue as his 180:. Another type of abelian extension of the field 200:is contained in a larger cyclotomic field. The 196:. Already Gauss had shown that, in fact, every 30: 476:argued in 1973 that the modern version of the 129:. In the special case of totally real fields, 741: 701:Kronecker's Jugendtraum and modular functions 8: 478: 466:. Since this is the most accessible case of 342:shows that the maximal abelian extension of 100: 83: 32: 454:. This gives rise to abelian extensions of 444:Complex multiplication of abelian varieties 204:shows that any finite abelian extension of 748: 734: 726: 511:. In 2021, Dasgupta and Kakde announced a 570: 292: 287: 277: 261: 247: 245: 381:is in the imaginary quadratic field and 27:Problem about mathematical number fields 557: 524: 586:Houston-Edwards, Kelsey (2021-05-25). 446:was an area opened up by the work of 431: 7: 664:. SĂ©min. Congr. Vol. 3. Paris: 192:th roots of unity, resulting in the 66:. It is one of the 23 mathematical 35:durch die Kreisteilungsgleichungen. 121:related to the field in question. 25: 293: 248: 105:, does this for the case of any 438:to study abelian extensions of 666:SociĂ©tĂ© MathĂ©matique de France 303: 297: 284: 252: 70:and asks for analogues of the 1: 633:American Mathematical Society 499:A separate development was 434:) in his dissertation used 338:. Similarly, the theory of 158:fields of algebraic numbers 152:The fundamental problem of 932: 390:of a general number field 188:is given by adjoining the 148:Description of the problem 763: 486:Hasse–Weil zeta functions 224:or its generalization, a 222:imaginary quadratic field 117:chosen with a particular 107:imaginary quadratic field 99:, now often known as the 48:Hilbert's twelfth problem 537:Takagi existence theorem 95:The classical theory of 50:is the extension of the 906:Algebraic number theory 492:. While he envisaged a 202:Kronecker–Weber theorem 154:algebraic number theory 139:Brumer–Stark conjecture 90:Kronecker's Jugendtraum 52:Kronecker–Weber theorem 699:VlǎduĆŁ, S. G. (1991). 479: 464:Galois representations 462:of such varieties, as 340:complex multiplication 310: 101: 97:complex multiplication 84: 39: 33: 440:real quadratic fields 436:Hilbert modular forms 311: 102:Kronecker Jugendtraum 78:and their subfields. 668:. pp. 243–273. 635:. pp. 401–418. 398:was obtained in the 336:exponential function 244: 85:liebster Jugendtraum 422:Modern developments 238:Hilbert class field 156:is to describe the 916:Hilbert's problems 757:Hilbert's problems 501:Stark's conjecture 400:class field theory 306: 115:elliptic functions 56:abelian extensions 893: 892: 675:978-2-85629-065-1 620:Browder, Felix E. 494:grandiose program 490:Shimura varieties 484:should deal with 468:ℓ-adic cohomology 372:modular functions 282: 194:cyclotomic fields 125:extended this to 111:modular functions 80:Leopold Kronecker 76:cyclotomic fields 16:(Redirected from 923: 750: 743: 736: 727: 722: 695: 654: 630: 616:Langlands, R. P. 602: 601: 599: 598: 583: 577: 576: 574: 562: 540: 529: 482: 474:Robert Langlands 326: 315: 313: 312: 307: 296: 291: 283: 281: 276: 262: 251: 186:rational numbers 104: 87: 68:Hilbert problems 60:rational numbers 43: 37: 21: 931: 930: 926: 925: 924: 922: 921: 920: 896: 895: 894: 889: 759: 754: 711: 698: 676: 657: 643: 628: 614: 611: 606: 605: 596: 594: 592:Quanta Magazine 585: 584: 580: 564: 563: 559: 554: 549: 544: 543: 531:In particular, 530: 526: 521: 424: 402:, developed by 324: 263: 242: 241: 198:quadratic field 150: 45: 41: 28: 23: 22: 15: 12: 11: 5: 929: 927: 919: 918: 913: 908: 898: 897: 891: 890: 888: 887: 880: 875: 870: 865: 860: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 764: 761: 760: 755: 753: 752: 745: 738: 730: 724: 723: 709: 696: 674: 655: 641: 610: 607: 604: 603: 578: 556: 555: 553: 550: 548: 545: 542: 541: 523: 522: 520: 517: 423: 420: 305: 302: 299: 295: 290: 286: 280: 275: 272: 269: 266: 260: 257: 254: 250: 160:. The work of 149: 146: 131:Samit Dasgupta 119:period lattice 72:roots of unity 62:, to any base 29: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 928: 917: 914: 912: 909: 907: 904: 903: 901: 885: 881: 879: 876: 874: 871: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 765: 762: 758: 751: 746: 744: 739: 737: 732: 731: 728: 720: 716: 712: 710:2-88124-754-7 706: 702: 697: 693: 689: 685: 681: 677: 671: 667: 663: 662: 656: 652: 648: 644: 642:0-8218-1428-1 638: 634: 627: 626: 621: 617: 613: 612: 608: 593: 589: 582: 579: 573: 568: 561: 558: 551: 546: 538: 534: 528: 525: 518: 516: 514: 510: 508: 502: 497: 495: 491: 487: 483: 481: 475: 471: 469: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 421: 419: 417: 416:Kummer theory 413: 409: 405: 401: 397: 393: 389: 384: 380: 376: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 322: 317: 300: 288: 278: 273: 270: 267: 264: 258: 255: 239: 235: 229: 227: 223: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 170:Galois groups 167: 163: 159: 155: 147: 145: 142: 140: 136: 132: 128: 124: 120: 116: 112: 108: 103: 98: 93: 91: 86: 81: 77: 73: 69: 65: 61: 57: 53: 49: 44: 38: 36: 19: 822: 700: 660: 624: 595:. Retrieved 591: 581: 560: 533:Teiji Takagi 527: 512: 506: 498: 477: 472: 460:Tate modules 425: 411: 395: 391: 387: 382: 378: 374: 367: 363: 359: 355: 351: 347: 343: 331: 327: 320: 318: 233: 230: 217: 213: 209: 205: 189: 181: 151: 143: 135:Mahesh Kakde 123:Goro Shimura 94: 89: 64:number field 47: 46: 40: 31: 911:Conjectures 480:Jugendtraum 109:, by using 18:Jugendtraum 900:Categories 719:0731.11001 692:1044.01530 651:0345.14006 597:2021-05-28 572:2103.02516 547:References 509:-functions 408:Emil Artin 552:Footnotes 456:CM-fields 406:himself, 350:), where 334:) of the 127:CM fields 452:Taniyama 226:CM-field 684:1640262 622:(ed.). 609:Sources 448:Shimura 430: ( 404:Hilbert 174:abelian 58:of the 717:  707:  690:  682:  672:  649:  639:  505:Artin 362:) and 220:is an 168:, the 166:groups 162:Galois 629:(PDF) 567:arXiv 519:Notes 428:Hecke 370:) of 178:Gauss 705:ISBN 670:ISBN 637:ISBN 450:and 432:1912 133:and 113:and 715:Zbl 688:Zbl 647:Zbl 488:of 184:of 54:on 902:: 884:24 878:23 873:22 868:21 863:20 858:19 853:18 848:17 843:16 838:15 833:14 828:13 823:12 818:11 813:10 713:. 686:. 680:MR 678:. 645:. 590:. 442:. 228:. 141:. 92:. 886:) 882:( 808:9 803:8 798:7 793:6 788:5 783:4 778:3 773:2 768:1 749:e 742:t 735:v 721:. 694:. 653:. 600:. 575:. 569:: 539:. 513:p 507:L 412:K 396:K 392:K 388:K 383:z 379:τ 375:j 368:τ 366:( 364:j 360:z 358:, 356:τ 352:τ 348:τ 346:( 344:Q 332:n 330:/ 328:i 325:π 321:Q 304:) 301:i 298:( 294:Q 289:/ 285:) 279:4 274:i 271:2 268:+ 265:1 259:, 256:i 253:( 249:Q 234:j 218:K 214:K 210:K 206:Q 190:n 182:Q 20:)

Index

Jugendtraum
Kronecker–Weber theorem
abelian extensions
rational numbers
number field
Hilbert problems
roots of unity
cyclotomic fields
Leopold Kronecker
complex multiplication
imaginary quadratic field
modular functions
elliptic functions
period lattice
Goro Shimura
CM fields
Samit Dasgupta
Mahesh Kakde
Brumer–Stark conjecture
algebraic number theory
fields of algebraic numbers
Galois
groups
Galois groups
abelian
Gauss
rational numbers
cyclotomic fields
quadratic field
Kronecker–Weber theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑