Knowledge (XXG)

Microlens

Source đź“ť

20: 100:, tiny lens systems serve to focus and concentrate the light onto the photo-diode surface, instead of allowing it to fall on non-photosensitive areas of the pixel device. Fill-factor is the ratio of the active refracting area, i.e. that area which directs light to the photo-sensor, to the total contiguous area occupied by the microlens array. 95:
contain multiple lenses formed in a one-dimensional or two-dimensional array on a supporting substrate. If the individual lenses have circular apertures and are not allowed to overlap, they may be placed in a hexagonal array to obtain maximum coverage of the substrate. However, there will still be
182:
Micro-lenses in recent imaging chips have attained smaller and smaller sizes. The Samsung NX1 mirrorless system camera packs 28.2 million micro-lenses onto its CMOS imaging chip, one per photo-site, each with a side length of just 3.63 micrometer. For smartphones this process is miniaturized even
359:
and these factors have led to new definitions for focal length. To enable measurements on micro-lenses to be compared and parts to be interchanged, a series of international standards has been developed to assist users and manufacturers by defining microlens properties and describing appropriate
186:
Micro-lenses can be also made from liquids. Recently, a glass-like resilient free-form micro-lenses were realized via ultra-fast laser 3D nanolithography technique. The sustained ~2 GW/cm intensity for femtosecond pulsed irradiation shows its potential in high power and/or harsh environment
220:
Semiconductor stacking methodology can now be used to fabricate wafer-level optical elements in a chip scale package. The result is a wafer-level camera module that measures .575 mm x 0.575 mm. The module can be integrated into a catheter or endoscope with a diameter as small as
166:
The optical efficiency of diffracting lenses depends on the shape of the groove structure and, if the ideal shape can be approximated by a series of steps or multilevels, the structures may be fabricated using technology developed for the
216:
lens structure, where the lens wafers are precision aligned, bonded together and diced to form multi-element lens stacks. As of 2009 the technology was used in about 10 percent of the mobile phone camera lens market.
312:
to be explored and demonstrated. Colloidal micro-lenses have also enabled single molecule detection when used in conjunction with a long working distance, low light collection efficiency objective lens.
51:
the light. Because micro-lenses are so small, the substrate that supports them is usually thicker than the lens and this has to be taken into account in the design. More sophisticated lenses may use
147:
Advances in technology have enabled micro-lenses to be designed and fabricated to close tolerances by a variety of methods. In most cases multiple copies are required and these can be formed by
128:
in the molten glass to form the smooth spherical surfaces required for lenses, then mounting and grinding the lenses using conventional methods. The principle has been repeated by performing
347:
of such small lenses, measurements are often made with respect to the lens or substrate surface. Where a lens is used to couple light into an optical fibre the focused wavefront may exhibit
81:. They have grooves with stepped edges or multilevels that approximate the ideal shape. They have advantages in fabrication and replication by using standard semiconductor processes such as 43:(mm) and often as small as 10 micrometres (ÎĽm). The small sizes of the lenses means that a simple design can give good optical quality but sometimes unwanted effects arise due to optical 286:
proposed the use of an array of alternately transmitting and opaque strips to define the viewing directions for a pair of interlaced images and hence enable the observer to see a 3D
144:
and melting the polymer to form arrays of multiple lenses. More recently microlens arrays have been fabricated using convective assembly of colloidal particles from suspension.
380:. As methods of forming micro-lenses and detector arrays are further developed, the ability to mimic optical designs found in nature will lead to new compact optical systems. 657:
Li, Yuchao; Liu, Xiaoshuai; Yang, Xianguang; Lei, Hongxiang; Zhang, Yao; Li, Baojun (2017-11-28). "Enhancing Upconversion Fluorescence with a Natural Bio-microlens".
598:
Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas (2017-01-02).
183:
further: The Samsung Galaxy S6 has a CMOS sensor with pixels only 1.12 micrometer each. These pixels are covered with micro-lenses of an equally small pitch.
190:
Bio-microlenses have been developed to image biological specimens without causing damage. These can be made from a single cell attached to a fiber probe.
1026: 260:
and not inverted as is the case with conventional lenses. Micro-lens arrays have been developed to form compact imaging devices for applications such as
488:
Kumnorkaew, P; Ee, Y; Tansu, N; Gilchrist, J F (2008). "Investigation of the Deposition of Microsphere Monolayers for Fabrication of Microlens Arrays".
249:
used to generate the image to be projected. Current research also relies on micro-lenses of various types to act as concentrators for high efficiency
241:, to collect and focus light that would have otherwise fallen onto the non-sensitive areas of the sensor. Micro-lens arrays are also used in some 792: 163:. The ability to fabricate arrays containing thousands or millions of precisely spaced lenses has led to an increased number of applications. 324:) that eliminates the need for initial focusing prior to capturing images. Instead, focus is achieved in software during post-processing. 766: 806: 256:
Combinations of microlens arrays have been designed that have novel imaging properties, such as the ability to form an image at unit
205:-like techniques. The end product is cost effective, miniaturized optics that enable the reduced form factor of camera modules for 47:
at the small features. A typical microlens may be a single element with one plane surface and one spherical convex surface to
96:
gaps between the lenses which can only be reduced by making the micro-lenses with non-circular apertures. With optical
73:, focus light by refraction in a set of concentric curved surfaces. Such lenses can be made very thin and lightweight. 58:
A different type of microlens has two flat and parallel surfaces and the focusing action is obtained by a variation of
1078:
Optics and photonics - Microlens arrays - Part 3: Test methods for optical properties other than wavefront aberrations
66:. Some micro-lenses achieve their focusing action by both a variation in refractive index and by the surface shape. 995: 432:
Popovic, CD; Sprague, RA; Neville Connell, GA (1988). "Techniques for monolithic fabrication of microlens arrays".
152: 1139: 113: 19: 301:
Hitachi have 3D displays free of 3D glasses using arrays of microlens to create the stereoscopic effect.
940:"Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability" 368:
Examples of micro-optics are to be found in nature ranging from simple structures to gather light for
355:. It is useful to know the distance at which the maximum amount of light is concentrated in the fibre 951: 844: 784: 713: 611: 562: 441: 351:
and light from different regions of the microlens aperture may be focused to different points on the
348: 309: 86: 474:
Daly D, Stevens R F, Hutley M C, Davies N, "The manufacture of microlenses by melting photoresist".
155:
from a master lens array. The master lens array may also be replicated through the generation of an
55:
surfaces and others may use several layers of optical material to achieve their design performance.
176: 74: 63: 287: 172: 168: 1020: 977: 862: 749: 731: 682: 674: 639: 580: 505: 457: 295: 242: 148: 600:"Optically Clear and Resilient Free-Form ÎĽ-Optics 3D-Printed via Ultrafast Laser Lithography" 551:"Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates" 967: 959: 852: 739: 721: 666: 629: 619: 570: 497: 449: 399: 394: 321: 305: 291: 283: 201:
enables the design and manufacture of miniaturized optics at the wafer level using advanced
129: 82: 59: 1134: 389: 344: 125: 1090:
Optics and photonics - Microlens arrays - Part 4: Test methods for geometrical properties
1066:
Optics and photonics - Microlens arrays - Part 2: Test methods for wavefront aberrations
955: 848: 717: 615: 566: 445: 332:
In order to characterize micro-lenses it is necessary to measure parameters such as the
972: 939: 744: 701: 634: 599: 369: 206: 156: 121: 1128: 257: 230: 202: 32: 373: 352: 333: 265: 250: 109: 97: 70: 233:; microlens arrays are often used to increase the light collection efficiency of 212:
The technology is scalable from a single-element CIF/VGA lens to a multi-element
304:
More recently, the availability of arrays of spherical micro-lenses has enabled
261: 238: 137: 133: 78: 44: 549:
S. Grilli; L. Miccio; V. Vespini; A. Finizio; S. De Nicola; P. Ferraro (2008).
524:
Microoptics technology: fabrication and applications of lens arrays and devices
726: 279: 275: 213: 117: 48: 40: 735: 678: 670: 337: 234: 981: 963: 866: 753: 686: 643: 584: 509: 461: 857: 832: 575: 550: 453: 356: 36: 1002: 116:
both developed techniques to make small glass lenses for use with their
807:"New Miniature Camera Module Emerges for Disposable Medical Endoscopes" 624: 340:. Special techniques and new definitions have been developed for this. 160: 52: 906:
Lippmann, G (1908). "Epreuves reversibles. Photographies integrales".
501: 377: 268: 702:"Single-cell biomagnifier for optical nanoscopes and nanotweezers" 317: 141: 18: 767:"Wafer-Level Camera Technologies Shrink Camera Phone Handsets", 246: 1054:
Optics and photonics - Microlens arrays - Part 1: Vocabulary
16:
Small lens, generally with a diameter less than a millimetre
1114:
Duparré J. et al., "Microoptical telescope compound eye".
290:. The strips were later replaced by Hess with an array of 700:
Li, Yuchao; Liu, Xiaoshuai; Li, Baojun (December 2019).
343:
For example, because it is not practical to locate the
924:
Stevens R F, Davies N. "Lens arrays and photography".
69:
Another class of microlens, sometimes known as micro-
175:. The study of such diffracting lenses is known as 478:, May 1991. IOP Short Meeting Series No 30, 23–34. 298:, to make more efficient use of the illumination. 229:Single micro-lenses are used to couple light to 831:J. H. Karp; E. J. Tremblay; J. E. Ford (2010). 785:"Will Tessera's 'smart module' gamble pay off?" 881:Parallax stereogram and process of making same 894:Improved manufacture of stereoscopic pictures 8: 245:, to focus light to the active areas of the 938:Schwartz JJ; Stavrakis S; Quake SR (2010). 535:Veldkamp W B, McHugh T J. "Binary optics", 971: 856: 743: 725: 633: 623: 574: 476:Proceedings of seminar "Microlens Arrays" 23:A microlens array used in a spectrograph 1118:, Vol. 13, Issue 3, pp. 889–903 (2005). 833:"Planar micro-optic solar concentrator" 411: 1025:: CS1 maint: archived copy as title ( 1018: 539:, Vol. 266 No. 5 pp 50–55, (May 1992). 422:. The Royal Society of London. (1665). 1101:Land M. "The optics of animal eyes". 7: 320:to achieve light field photography ( 62:across the lens. These are known as 926:The Journal of Photographic Science 316:Micro-lens arrays are also used by 120:. Hooke melted small filaments of 14: 706:Light: Science & Applications 526:. Marcel Dekker, New York (1999). 159:using the master lens array as a 1043:. Academic Press, London (1984). 795:from the original on 2023-01-01. 1: 1105:, vol 57, pp. 167–189, (1985) 1039:Iga K, Kokburn Y, Oikawa M. 928:. Vol 39 pp 199–208, (1991). 783:LaPedus, Mark (2009-10-12). 253:for electricity production. 77:micro-lenses focus light by 64:gradient-index (GRIN) lenses 1041:Fundamentals of microoptics 883:. US Patent 725,567 (1903). 336:and quality of transmitted 1156: 896:. UK Patent 13,034 (1912). 274:Another application is in 727:10.1038/s41377-019-0168-4 199:Wafer-level optics (WLO) 671:10.1021/acsnano.7b04420 132:into materials such as 114:Antonie van Leeuwenhoek 1103:Proc Royal Institution 964:10.1038/nnano.2009.452 364:Micro-optics in nature 24: 944:Nature Nanotechnology 360:measurement methods. 108:In the 17th century, 22: 858:10.1364/OE.18.001122 576:10.1364/OE.16.008084 454:10.1364/ao.27.001281 418:Hooke R, Preface to 349:spherical aberration 310:integral photography 87:reactive-ion etching 956:2010NatNa...5..127S 849:2010OExpr..18.1122K 718:2019LSA.....8...61L 665:(11): 10672–10680. 616:2017Mate...10...12J 567:2008OExpr..16.8084G 537:Scientific American 496:(21): 12150–12157. 446:1988ApOpt..27.1281P 35:, generally with a 1088:ISO 14880-4:2006. 1076:ISO 14880-3:2006. 1064:ISO 14880-2:2006. 1052:ISO 14880-1:2001. 625:10.3390/ma10010012 292:cylindrical lenses 288:stereoscopic image 243:digital projectors 194:Wafer-level optics 173:wafer-level optics 171:industry, such as 169:integrated circuit 25: 561:(11): 8084–8093. 502:10.1021/la801100g 296:lenticular screen 93:Micro-lens arrays 1147: 1119: 1112: 1106: 1099: 1093: 1086: 1080: 1074: 1068: 1062: 1056: 1050: 1044: 1037: 1031: 1030: 1024: 1016: 1014: 1013: 1007: 1001:. Archived from 1000: 992: 986: 985: 975: 935: 929: 922: 916: 915: 903: 897: 890: 884: 877: 871: 870: 860: 843:(2): 1122–1133. 828: 822: 821: 819: 818: 803: 797: 796: 780: 774: 764: 758: 757: 747: 729: 697: 691: 690: 654: 648: 647: 637: 627: 595: 589: 588: 578: 546: 540: 533: 527: 520: 514: 513: 485: 479: 472: 466: 465: 440:(7): 1281–1284. 429: 423: 416: 400:Plenoptic camera 395:Integral imaging 345:principal planes 328:Characterization 322:plenoptic camera 306:Gabriel Lippmann 284:Frederic E. Ives 130:photolithography 124:and allowed the 83:photolithography 60:refractive index 1155: 1154: 1150: 1149: 1148: 1146: 1145: 1144: 1140:Microtechnology 1125: 1124: 1123: 1122: 1113: 1109: 1100: 1096: 1087: 1083: 1075: 1071: 1063: 1059: 1051: 1047: 1038: 1034: 1017: 1011: 1009: 1005: 998: 996:"Archived copy" 994: 993: 989: 937: 936: 932: 923: 919: 905: 904: 900: 891: 887: 878: 874: 830: 829: 825: 816: 814: 805: 804: 800: 782: 781: 777: 765: 761: 699: 698: 694: 656: 655: 651: 597: 596: 592: 548: 547: 543: 534: 530: 522:Borrelli, N F. 521: 517: 487: 486: 482: 473: 469: 431: 430: 426: 417: 413: 408: 390:Lenticular lens 386: 366: 330: 227: 196: 126:surface tension 106: 17: 12: 11: 5: 1153: 1151: 1143: 1142: 1137: 1127: 1126: 1121: 1120: 1116:Optics Express 1107: 1094: 1081: 1069: 1057: 1045: 1032: 987: 950:(2): 127–132. 930: 917: 908:Comptes Rendus 898: 885: 872: 837:Optics Express 823: 811:mddionline.com 798: 775: 759: 692: 649: 590: 555:Optics Express 541: 528: 515: 480: 467: 424: 410: 409: 407: 404: 403: 402: 397: 392: 385: 382: 370:photosynthesis 365: 362: 329: 326: 231:optical fibres 226: 223: 207:mobile devices 195: 192: 187:applications. 122:Venetian glass 105: 102: 71:Fresnel lenses 15: 13: 10: 9: 6: 4: 3: 2: 1152: 1141: 1138: 1136: 1133: 1132: 1130: 1117: 1111: 1108: 1104: 1098: 1095: 1091: 1085: 1082: 1079: 1073: 1070: 1067: 1061: 1058: 1055: 1049: 1046: 1042: 1036: 1033: 1028: 1022: 1008:on 2012-09-16 1004: 997: 991: 988: 983: 979: 974: 969: 965: 961: 957: 953: 949: 945: 941: 934: 931: 927: 921: 918: 913: 909: 902: 899: 895: 889: 886: 882: 876: 873: 868: 864: 859: 854: 850: 846: 842: 838: 834: 827: 824: 812: 808: 802: 799: 794: 790: 786: 779: 776: 772: 771:, August 2007 770: 769:Photonics.com 763: 760: 755: 751: 746: 741: 737: 733: 728: 723: 719: 715: 711: 707: 703: 696: 693: 688: 684: 680: 676: 672: 668: 664: 660: 653: 650: 645: 641: 636: 631: 626: 621: 617: 613: 609: 605: 601: 594: 591: 586: 582: 577: 572: 568: 564: 560: 556: 552: 545: 542: 538: 532: 529: 525: 519: 516: 511: 507: 503: 499: 495: 491: 484: 481: 477: 471: 468: 463: 459: 455: 451: 447: 443: 439: 435: 428: 425: 421: 415: 412: 405: 401: 398: 396: 393: 391: 388: 387: 383: 381: 379: 375: 374:compound eyes 372:in leaves to 371: 363: 361: 358: 354: 350: 346: 341: 339: 335: 327: 325: 323: 319: 314: 311: 307: 302: 299: 297: 293: 289: 285: 281: 277: 272: 270: 267: 263: 259: 258:magnification 254: 252: 251:photovoltaics 248: 244: 240: 236: 232: 224: 222: 221:1.0 mm. 218: 215: 210: 208: 204: 203:semiconductor 200: 193: 191: 188: 184: 180: 178: 177:binary optics 174: 170: 164: 162: 158: 154: 150: 145: 143: 139: 135: 131: 127: 123: 119: 115: 111: 103: 101: 99: 98:sensor arrays 94: 90: 88: 84: 80: 76: 72: 67: 65: 61: 56: 54: 50: 46: 42: 38: 34: 30: 21: 1115: 1110: 1102: 1097: 1089: 1084: 1077: 1072: 1065: 1060: 1053: 1048: 1040: 1035: 1010:. Retrieved 1003:the original 990: 947: 943: 933: 925: 920: 911: 907: 901: 893: 888: 880: 875: 840: 836: 826: 815:. Retrieved 813:. 2019-10-22 810: 801: 788: 778: 768: 762: 709: 705: 695: 662: 658: 652: 607: 603: 593: 558: 554: 544: 536: 531: 523: 518: 493: 489: 483: 475: 470: 437: 433: 427: 420:Micrographia 419: 414: 367: 353:optical axis 342: 334:focal length 331: 315: 308:'s idea for 303: 300: 273: 266:mobile-phone 262:photocopiers 255: 239:CMOS sensors 228: 225:Applications 219: 211: 198: 197: 189: 185: 181: 165: 146: 110:Robert Hooke 107: 92: 91: 75:Binary-optic 68: 57: 39:less than a 28: 26: 294:known as a 282:. In 1902, 157:electroform 134:photoresist 118:microscopes 104:Fabrication 79:diffraction 45:diffraction 31:is a small 1129:Categories 1012:2012-09-16 914:: 446–451. 817:2020-06-25 406:References 276:3D imaging 235:CCD arrays 214:mega pixel 53:aspherical 41:millimetre 879:Ives FE. 736:2047-7538 712:(1): 61. 679:1936-0851 610:(1): 12. 604:Materials 434:Appl. Opt 338:wavefront 153:embossing 29:microlens 1021:cite web 982:20023643 892:Hess W. 867:20173935 793:Archived 789:EE Times 754:31645911 687:28873297 659:ACS Nano 644:28772389 585:18545521 510:18533633 490:Langmuir 462:20531555 384:See also 357:aperture 280:displays 149:moulding 140:curable 37:diameter 973:4141882 952:Bibcode 845:Bibcode 745:6804537 714:Bibcode 635:5344581 612:Bibcode 563:Bibcode 442:Bibcode 378:insects 269:cameras 161:mandrel 89:(RIE). 49:refract 1135:Lenses 980:  970:  865:  752:  742:  734:  685:  677:  642:  632:  583:  508:  460:  1006:(PDF) 999:(PDF) 318:Lytro 142:epoxy 1027:link 978:PMID 863:PMID 750:PMID 732:ISSN 683:PMID 675:ISSN 640:PMID 581:PMID 506:PMID 458:PMID 278:and 264:and 237:and 112:and 85:and 33:lens 968:PMC 960:doi 912:146 853:doi 740:PMC 722:doi 667:doi 630:PMC 620:doi 571:doi 498:doi 450:doi 376:in 247:LCD 151:or 136:or 1131:: 1023:}} 1019:{{ 976:. 966:. 958:. 946:. 942:. 910:. 861:. 851:. 841:18 839:. 835:. 809:. 791:. 787:. 748:. 738:. 730:. 720:. 708:. 704:. 681:. 673:. 663:11 661:. 638:. 628:. 618:. 608:10 606:. 602:. 579:. 569:. 559:16 557:. 553:. 504:. 494:24 492:. 456:. 448:. 438:27 436:. 271:. 209:. 179:. 138:UV 27:A 1092:. 1029:) 1015:. 984:. 962:: 954:: 948:5 869:. 855:: 847:: 820:. 773:. 756:. 724:: 716:: 710:8 689:. 669:: 646:. 622:: 614:: 587:. 573:: 565:: 512:. 500:: 464:. 452:: 444::

Index


lens
diameter
millimetre
diffraction
refract
aspherical
refractive index
gradient-index (GRIN) lenses
Fresnel lenses
Binary-optic
diffraction
photolithography
reactive-ion etching
sensor arrays
Robert Hooke
Antonie van Leeuwenhoek
microscopes
Venetian glass
surface tension
photolithography
photoresist
UV
epoxy
moulding
embossing
electroform
mandrel
integrated circuit
wafer-level optics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑