Knowledge (XXG)

Microscope

Source 📝

1103:(STM). An atomic force microscope has a fine probe, usually of silicon or silicon nitride, attached to a cantilever; the probe is scanned over the surface of the sample, and the forces that cause an interaction between the probe and the surface of the sample are measured and mapped. A near-field scanning optical microscope is similar to an AFM but its probe consists of a light source in an optical fiber covered with a tip that has usually an aperture for the light to pass through. The microscope can capture either transmitted or reflected light to measure very localized optical properties of the surface, commonly of a biological specimen. Scanning tunneling microscopes have a metal tip with a single apical atom; the tip is attached to a tube through which a current flows. The tip is scanned over the surface of a conductive sample until a tunneling current flows; the current is kept constant by computer movement of the tip and an image is formed by the recorded movements of the tip. 1076:. This requires careful sample preparation, since electrons are scattered strongly by most materials. The samples must also be very thin (below 100 nm) in order for the electrons to pass through it. Cross-sections of cells stained with osmium and heavy metals reveal clear organelle membranes and proteins such as ribosomes. With a 0.1 nm level of resolution, detailed views of viruses (20 – 300 nm) and a strand of DNA (2 nm in width) can be obtained. In contrast, the SEM has raster coils to scan the surface of bulk objects with a fine electron beam. Therefore, the specimen do not necessarily need to be sectioned, but coating with a nanometric metal or carbon layer may be needed for nonconductive samples. SEM allows fast surface imaging of samples, possibly in thin water vapor to prevent drying. 394: 502: 582: 961: 653: 111: 1051: 2837: 782: 2938: 2645: 790: 1038: 2669: 49: 2139: 292: 1107: 2681: 809:(electron microscopes) or a probe (scanning probe microscopes). Alternatively, microscopes can be classified based on whether they analyze the sample via a scanning point (confocal optical microscopes, scanning electron microscopes and scanning probe microscopes) or analyze the sample all at once (wide field optical microscopes and transmission electron microscopes). 2950: 2657: 471:, which is central to achieving the theoretical limits of resolution for the light microscope. This method of sample illumination produces even lighting and overcomes the limited contrast and resolution imposed by early techniques of sample illumination. Further developments in sample illumination came from the discovery of 935:
is a recent optical technique that increases the sensitivity of a standard optical microscope to a point where it is possible to directly visualize nanometric films (down to 0.3 nanometre) and isolated nano-objects (down to 2 nm-diameter). The technique is based on the use of non-reflecting
851:
Scanning optical and electron microscopes, like the confocal microscope and scanning electron microscope, use lenses to focus a spot of light or electrons onto the sample then analyze the signals generated by the beam interacting with the sample. The point is then scanned over the sample to analyze a
566:
One of the latest discoveries made about using an electron microscope is the ability to identify a virus. Since this microscope produces a visible, clear image of small organelles, in an electron microscope there is no need for reagents to see the virus or harmful cells, resulting in a more efficient
462:
lens system to focus light on the specimen and the objective lens to capture the light from the specimen and form an image. Early instruments were limited until this principle was fully appreciated and developed from the late 19th to very early 20th century, and until electric lamps were available as
613:
from quantum tunnelling theory, that read very small forces exchanged between a probe and the surface of a sample. The probe approaches the surface so closely that electrons can flow continuously between probe and sample, making a current from surface to probe. The microscope was not initially well
1090:
The different types of scanning probe microscopes arise from the many different types of interactions that occur when a small probe is scanned over and interacts with a specimen. These interactions or modes can be recorded or mapped as function of location on the surface to form a characterization
855:
Scanning probe microscopes also analyze a single point in the sample and then scan the probe over a rectangular sample region to build up an image. As these microscopes do not use electromagnetic or electron radiation for imaging they are not subject to the same resolution limit as the optical and
753:
are approaching the resolution of electron microscopes. This occurs because the diffraction limit is occurred from light or excitation, which makes the resolution must be doubled to become super saturated. Stefan Hell was awarded the 2014 Nobel Prize in Chemistry for the development of the STED
768:
X-ray microscopes are instruments that use electromagnetic radiation usually in the soft X-ray band to image objects. Technological advances in X-ray lens optics in the early 1970s made the instrument a viable imaging choice. They are often used in tomography (see
357:(also sometimes cited as compound microscope inventor) seems to have found after 1610 that he could close focus his telescope to view small objects and, after seeing a compound microscope built by Drebbel exhibited in Rome in 1624, built his own improved version. 852:
rectangular region. Magnification of the image is achieved by displaying the data from scanning a physically small sample area on a relatively large screen. These microscopes have the same resolution limit as wide field optical, probe, and electron microscopes.
533:(TEM). The transmission electron microscope works on similar principles to an optical microscope but uses electrons in the place of light and electromagnets in the place of glass lenses. Use of electrons, instead of light, allows for much higher resolution. 1126:
in principle, they are used for such jobs as detecting defects in the subsurfaces of materials including those found in integrated circuits. On February 4, 2013, Australian engineers built a "quantum microscope" which provides unparalleled precision.
1880:
Aspden, Reuben S.; Gemmell, Nathan R.; Morris, Peter A.; Tasca, Daniel S.; Mertens, Lena; Tanner, Michael G.; Kirkwood, Robert A.; Ruggeri, Alessandro; Tosi, Alberto; Boyd, Robert W.; Buller, Gerald S.; Hadfield, Robert H.; Padgett, Miles J. (2015).
555:, developed the first commercial transmission electron microscope and, in the 1950s, major scientific conferences on electron microscopy started being held. In 1965, the first commercial scanning electron microscope was developed by Professor Sir 622:
began publishing articles that tied theory to the experimental results obtained by the instrument. This was closely followed in 1985 with functioning commercial instruments, and in 1986 with Gerd Binnig, Quate, and Gerber's invention of the
901:), to focus light on the eye or on to another light detector. Mirror-based optical microscopes operate in the same manner. Typical magnification of a light microscope, assuming visible range light, is up to 1,250× with a theoretical 385:, 1637) describes microscopes wherein a concave mirror, with its concavity towards the object, is used, in conjunction with a lens, for illuminating the object, which is mounted on a point fixing it at the focus of the mirror. 773:) to produce three dimensional images of objects, including biological materials that have not been chemically fixed. Currently research is being done to improve optics for hard X-rays which have greater penetrating power. 1033:
to photon-sparse microscopy, the sample is illuminated with infrared photons, each of which is spatially correlated with an entangled partner in the visible band for efficient imaging by a photon-counting camera.
217:
There are many types of microscopes, and they may be grouped in different ways. One way is to describe the method an instrument uses to interact with a sample and produce images, either by sending a beam of
434:
had a huge impact, largely because of its impressive illustrations. Hooke created tiny lenses of small glass globules made by fusing the ends of threads of spun glass. A significant contribution came from
1072:(SEMs). They both have series of electromagnetic and electrostatic lenses to focus a high energy beam of electrons on a sample. In a TEM the electrons pass through the sample, analogous to 416:
The microscope was still largely a novelty until the 1660s and 1670s when naturalists in Italy, the Netherlands and England began using them to study biology. Italian scientist
2330: 2066: 1751: 330:, appeared in Europe around 1620. The inventor is unknown, even though many claims have been made over the years. Several revolve around the spectacle-making centers in the 310:
accounts of the optical properties of water-filled spheres (5th century BC) followed by many centuries of writings on optics, the earliest known use of simple microscopes (
925:
limited. The use of shorter wavelengths of light, such as ultraviolet, is one way to improve the spatial resolution of the optical microscope, as are devices such as the
2880: 234:
from a sample, or by scanning across and a short distance from the surface of a sample using a probe. The most common microscope (and the first to be invented) is the
443:
between the holes in two metal plates riveted together, and with an adjustable-by-screws needle attached to mount the specimen. Then, Van Leeuwenhoek re-discovered
2988: 2363: 2791: 2121: 1160: 480: 455:, and helped popularise the use of microscopes to view biological ultrastructure. On 9 October 1676, van Leeuwenhoek reported the discovery of micro-organisms. 680:
structures were developed. The main groups of techniques involve targeted chemical staining of particular cell structures, for example, the chemical compound
2719: 2126: 4217: 4196: 2592: 1514: 59: 4306: 750: 2109: 2059: 797:
Microscopes can be separated into several different classes. One grouping is based on what interacts with the sample to generate the image, i.e.,
1558: 393: 3832: 2923: 2918: 2786: 2615: 2403: 2186: 2156: 1096: 926: 501: 1970: 1945: 1822: 1665: 1541: 1483: 1416: 1361: 1317: 1284: 1214: 544:. Although TEMs were being used for research before WWII, and became popular afterwards, the SEM was not commercially available until 1965. 946:
light can be used to visualize circuitry embedded in bonded silicon devices, since silicon is transparent in this region of wavelengths.
630:
New types of scanning probe microscope have continued to be developed as the ability to machine ultra-fine probes and tips has advanced.
338:(claim made by his son) or Zacharias' father, Hans Martens, or both, claims it was invented by their neighbor and rival spectacle maker, 2885: 2238: 2233: 2218: 2181: 2104: 696:. These techniques use these different fluorophores for analysis of cell structure at a molecular level in both live and fixed samples. 1406: 2981: 2821: 2801: 2356: 2094: 2052: 914: 720: 2685: 3893: 1280: 282: 88: 1762: 70: 3870: 2865: 2861: 2712: 1065: 530: 262: 4340: 4325: 2248: 2213: 793:
Evolution of spatial resolution achieved with optical, transmission (TEM) and aberration-corrected electron microscopes (ACTEM)
1334: 296: 2890: 2661: 2622: 2388: 2228: 2208: 2203: 2166: 2024: 754:
technique, along with Eric Betzig and William Moerner who adapted fluorescence microscopy for single-molecule visualization.
513:
In the early 20th century a significant alternative to the light microscope was developed, an instrument that uses a beam of
1449:
J. William Rosenthal, Spectacles and Other Vision Aids: A History and Guide to Collecting, Norman Publishing, 1996, page 391
1021:
Digital microscopy with very low light levels to avoid damage to vulnerable biological samples is available using sensitive
1431:
William Rosenthal, Spectacles and Other Vision Aids: A History and Guide to Collecting, Norman Publishing, 1996, pp. 391–92
4161: 4050: 3391: 2974: 2649: 2349: 2171: 2116: 1295:
Atti Della Fondazione Giorgio Ronchi E Contributi Dell'Istituto Nazionale Di Ottica, Volume 30, La Fondazione-1975, p. 554
1165: 1100: 2954: 63: 3865: 1119: 1069: 942:
light enables the resolution of microscopic features as well as the imaging of samples that are transparent to the eye.
560: 537: 266: 2942: 2705: 2393: 2268: 2263: 1185: 1180: 1170: 732: 581: 424:
by some historians of biology, began his analysis of biological structures with the lungs. The publication in 1665 of
35: 181: 164: 3941: 3910: 3822: 2908: 2566: 2284: 2198: 2138: 1839: 902: 439:
who achieved up to 300 times magnification using a simple single lens microscope. He sandwiched a very small glass
4065: 3396: 2781: 2469: 2459: 2294: 2258: 2253: 2176: 2161: 2075: 1085: 968: 693: 610: 576: 472: 270: 3467: 1700:
Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James (2000).
741:
Much current research (in the early 21st century) on optical microscope techniques is focused on development of
69:
Help add sources such as review articles, monographs, or textbooks. Please also establish the relevance for any
2540: 2500: 2223: 3070: 1786: 3900: 3817: 3281: 2869: 2851: 2766: 2629: 2510: 2418: 2289: 2089: 1243: 1092: 1073: 950: 661: 639: 624: 619: 436: 254: 960: 536:
Development of the transmission electron microscope was quickly followed in 1935 by the development of the
3503: 3251: 3220: 2771: 2608: 652: 468: 157: 3493: 3371: 3083: 2776: 2408: 2243: 1015: 825: 770: 405:
of organic tissue based on the use of a microscope did not appear until 1644, in Giambattista Odierna's
1732:
Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002).
953:
many wavelengths of light ranging from the ultraviolet to the visible can be used to cause samples to
4330: 3789: 3449: 3291: 2464: 2428: 2380: 2372: 1897: 886: 837: 656:
Fluorescence microscope with the filter cube turret above the objective lenses, coupled with a camera
368: 195: 1377: 848:
of the radiation used to image the sample, where shorter wavelengths allow for a higher resolution.
812:
Wide field optical microscopes and transmission electron microscopes both use the theory of lenses (
4335: 3477: 3286: 3201: 3138: 2856: 2796: 2505: 1059: 1050: 1026: 700: 699:
The rise of fluorescence microscopy drove the development of a major modern microscope design, the
647: 496: 258: 144: 2668: 1440:
Raymond J. Seeger, Men of Physics: Galileo Galilei, His Life and His Works, Elsevier – 2016, p. 24
1142:
when the flashlight is activated. However, mobile app microscopes are harder to use due to visual
964:
Unstained cells viewed by typical brightfield (left) compared to phase-contrast microscopy (right)
110: 4004: 3987: 3926: 3827: 3751: 3687: 3682: 3600: 3421: 2747: 2535: 2530: 2525: 2398: 1986: 1862: 1255: 1247: 1139: 1010:
is used to obtain an image, which is then displayed on a computer monitor. These sensors may use
999: 972: 879: 869: 865: 841: 829: 689: 643: 606: 459: 319: 286: 235: 140: 31: 4272: 4262: 4070: 4060: 3837: 3641: 3631: 3626: 3472: 3386: 3381: 3133: 2601: 2576: 2571: 2561: 2474: 2433: 2413: 1966: 1941: 1915: 1818: 1661: 1638: 1620: 1537: 1479: 1412: 1357: 1313: 1276: 1210: 984: 417: 378: 335: 1351: 1275:
by Henry C. King, Harold Spencer Jones Publisher Courier Dover Publications, 2003, pp. 25–27
820:
lenses for electron microscopes) in order to magnify the image generated by the passage of a
458:
The performance of a compound light microscope depends on the quality and correct use of the
3610: 3575: 3565: 3557: 3532: 3516: 3426: 3333: 3236: 3128: 2836: 2826: 2673: 2581: 2299: 1905: 1854: 1628: 1612: 1239: 1175: 1029:
may minimize the risk of damage to the most light-sensitive samples. In this application of
893:
producing an enlarged image of a sample placed in the focal plane. Optical microscopes have
763: 716: 548: 484: 464: 350: 311: 318:
in the 13th century. The earliest known examples of compound microscopes, which combine an
30:
This article is about microscopes, the instruments, in general. For light microscopes, see
4287: 4014: 3880: 3662: 3636: 3411: 3306: 2913: 1504: 1022: 742: 594: 354: 339: 1580:
Knoll, Max (1935). "Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper".
2015: 1901: 4282: 4232: 4122: 4096: 4040: 3997: 3992: 3931: 3590: 3580: 3241: 3123: 3088: 3050: 3035: 2806: 2454: 2315: 1633: 1600: 1007: 873: 677: 614:
received due to the complex nature of the underlying theoretical explanations. In 1984
556: 448: 444: 358: 130: 711:
technology limited practical application of the technique. It was not until 1978 when
4319: 4227: 4106: 3936: 3605: 3542: 3206: 3040: 2875: 2520: 1509: 1458: 1143: 1030: 943: 890: 817: 712: 704: 615: 476: 246: 1866: 1259: 789: 4267: 4055: 4019: 3946: 3842: 3812: 3807: 3735: 3570: 3356: 3311: 3228: 3196: 3179: 3158: 3148: 3078: 3060: 2556: 2479: 1382: 1037: 976: 954: 781: 452: 430: 425: 231: 227: 1472: 1470:
Gould, Stephen Jay (2000). "Chapter 2: The Sharp-Eyed Lynx, Outfoxed by Nature".
1025:
digital cameras. It has been demonstrated that a light source providing pairs of
4181: 4009: 3969: 3905: 3888: 3761: 3730: 3715: 3710: 3672: 3547: 3511: 3361: 3163: 3118: 2449: 1147: 939: 922: 918: 913:. This limits practical magnification to ~1,500×. Specialized techniques (e.g., 590: 522: 506: 331: 253:
sample to produce an observable image. Other major types of microscopes are the
211: 1882: 1733: 1701: 824:
transmitted through the sample, or reflected by the sample. The waves used are
660:
The most recent developments in light microscope largely centre on the rise of
4186: 4176: 4127: 4045: 3857: 3702: 3677: 3537: 3416: 3346: 3301: 3296: 3276: 3246: 3143: 3045: 2997: 2811: 2728: 2515: 2325: 1135: 992: 906: 894: 845: 746: 736: 347: 327: 315: 291: 203: 1919: 1883:"Photon-sparse microscopy: visible light imaging using infrared illumination" 1624: 4277: 4075: 3725: 3338: 3153: 3113: 3055: 2484: 2191: 2044: 1910: 1106: 980: 910: 541: 526: 440: 421: 402: 343: 250: 199: 1642: 991:
to view the slide. This microscope technique made it possible to study the
602: 17: 1838:
Pennycook, S.J.; Varela, M.; Hetherington, C.J.D.; Kirkland, A.I. (2011).
1054:
Transmission electron micrograph of a dividing cell undergoing cytokinesis
73:
cited. Unsourced or poorly sourced material may be challenged and removed.
4222: 4101: 4091: 3847: 3756: 3720: 3401: 3351: 2035: 1616: 1474:
The Lying Stones of Marrakech: Penultimate Reflections in Natural History
1003: 1002:. In addition to, or instead of, directly viewing the object through the 988: 833: 806: 673: 514: 323: 223: 1518:. Vol. 18 (11th ed.). Cambridge University Press. p. 392. 1122:
use sound waves to measure variations in acoustic impedance. Similar to
668:. During the last decades of the 20th century, particularly in the post- 487:
in 1955; both of which allow imaging of unstained, transparent samples.
4242: 4237: 4035: 3692: 3667: 3657: 3585: 3406: 3366: 2966: 2341: 1459:
uoregon.edu, Galileo Galilei (Excerpt from the Encyclopedia Britannica)
1251: 979:
in the light passing through a transparent specimen are converted into
802: 749:
can improve resolution by around two to four times and techniques like
665: 552: 306:
Although objects resembling lenses date back 4,000 years and there are
243: 207: 1858: 998:
The traditional optical microscope has more recently evolved into the
785:
Types of microscopes illustrated by the principles of their beam paths
3595: 2816: 2697: 2099: 1840:"Materials Advances through Aberration-Corrected Electron Microscopy" 957:, which allows viewing by eye or with specifically sensitive cameras. 932: 898: 883: 813: 669: 307: 187: 170: 1940:(3rd rev. & extended ed.). Berlin: Springer. p. 620. 1091:
map. The three most common types of scanning probe microscopes are
878:
The most common type of microscope (and the first invented) is the
4212: 4191: 1123: 1105: 1049: 1036: 959: 798: 780: 708: 651: 580: 518: 500: 392: 300: 290: 219: 210:
of investigating small objects and structures using a microscope.
1503: 987:
changes in the image. The use of phase contrast does not require
627:, then Binnig's and Rohrer's Nobel Prize in Physics for the SPM. 3766: 3065: 1011: 821: 681: 239: 4148: 3967: 3787: 3447: 3008: 2970: 2701: 2345: 2048: 723:
and the technique rapidly gained popularity through the 1980s.
559:
and his postgraduate student Gary Stewart, and marketed by the
547:
Transmission electron microscopes became popular following the
529:, developed the first prototype electron microscope in 1931, a 214:
means being invisible to the eye unless aided by a microscope.
1559:"Early Microscopes Revealed a New World of Tiny Living Things" 1230:
Bardell, David (May 2004). "The Invention of the Microscope".
685: 598: 42: 2030: 1601:"Modern Uses of Electron Microscopy for Detection of Viruses" 1408:
Reading the Book of Nature in the Dutch Golden Age, 1575-1715
1146:, are often limited to 40x, and the resolution limits of the 688:, use of antibodies conjugated to fluorescent reporters, see 198:
used to examine objects that are too small to be seen by the
2137: 1099:(NSOM or SNOM, scanning near-field optical microscopy), and 1752:"The Nobel Prize in Chemistry 2014 – Scientific Background" 936:
substrates for cross-polarized reflected light microscopy.
618:
and D.R. Hamann, while at AT&T's Bell Laboratories in
1660:. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. 2881:
Total internal reflection fluorescence microscopy (TIRF)
1310:
Fundamentals of light microscopy and electronic imaging
1244:
10.1893/0005-3155(2004)75<78:tiotm>2.0.co;2
921:) may exceed this magnification but the resolution is 1734:"Looking at the Structure of Cells in the Microscope" 1599:
Goldsmith, Cynthia S.; Miller, Sara E. (2009-10-01).
1110:
Leaf surface viewed by a scanning electron microscope
365:
for the compound microscope Galileo submitted to the
353:, who was noted to have a version in London in 1619. 2919:
Photo-activated localization microscopy (PALM/STORM)
1350:
Albert Van Helden; Sven Dupré; Rob van Gent (2010).
4255: 4205: 4159: 4115: 4084: 4028: 3980: 3919: 3879: 3856: 3800: 3744: 3701: 3650: 3619: 3556: 3525: 3502: 3486: 3460: 3326: 3260: 3172: 3097: 3019: 2899: 2844: 2757: 2590: 2549: 2493: 2442: 2379: 2308: 2277: 2149: 2082: 609:phenomenon. They created a practical instrument, a 136: 125: 117: 1534:Bad medicine: doctors doing harm since Hippocrates 1471: 1356:. Amsterdam University Press. pp. 32–36, 43. 467:developed a key principle of sample illumination, 1536:. Oxford : Oxford University Press. p. 110. 1308:Murphy, Douglas B.; Davidson, Michael W. (2011). 1064:The two major types of electron microscopes are 1018:(CCD) technology, depending on the application. 314:) dates back to the widespread use of lenses in 1815:Modern developments in X-ray and neutron optics 751:stimulated emission depletion (STED) microscopy 346:patent in 1608), and claims it was invented by 1006:, a type of sensor similar to those used in a 397:Carl Zeiss binocular compound microscope, 1914 334:, including claims it was invented in 1590 by 2982: 2822:Interference reflection microscopy (IRM/RICM) 2713: 2357: 2060: 1161:Fluorescence interference contrast microscopy 366: 194: 'to look (at); examine, inspect') is a 8: 2038:Exploring the World of Optics and Microscopy 745:analysis of fluorescently labelled samples. 737:Microscopy § Sub-diffraction techniques 521:to generate an image. The German physicist, 103: 3942:Nuclear magnetic resonance (NMR) instrument 4169: 4156: 4145: 3977: 3964: 3797: 3784: 3457: 3444: 3016: 3005: 2989: 2975: 2967: 2720: 2706: 2698: 2364: 2350: 2342: 2067: 2053: 2045: 1931: 1929: 1738:Molecular Biology of the Cell. 4th Edition 1527: 1525: 109: 1909: 1632: 1497: 1495: 1312:(2nd ed.). Oxford: Wiley-Blackwell. 1209:. Hoboken, NJ: Wiley-Interscience. 2008. 1207:Characterization and Analysis of Polymers 89:Learn how and when to remove this message 4307:Instruments used in medical laboratories 2792:Differential interference contrast (DIC) 1961:Sakurai, T.; Watanabe, Y., eds. (2000). 1303: 1301: 788: 703:. The principle was patented in 1957 by 3823:Inductively coupled plasma (ICP) device 2031:Nikon MicroscopyU, tutorials from Nikon 1987:"Quantum Microscope for Living Biology" 1808: 1806: 1198: 1097:near-field scanning optical microscopes 1041:Modern transmission electron microscope 844:in these microscopes is limited by the 3871:Transmission electron microscope (TEM) 2787:Quantitative phase-contrast microscopy 2616:Analytical and Bioanalytical Chemistry 2142:Typical atomic force microscopy set-up 1138:microscopes can optionally be used as 975:illumination technique in which small 927:near-field scanning optical microscope 856:electron microscopes described above. 102: 2404:High-performance liquid chromatograph 1963:Advances in scanning probe microscopy 1727: 1725: 1723: 1721: 1719: 1717: 1715: 1695: 1693: 1691: 1689: 1687: 1685: 1683: 1681: 1679: 1677: 672:era, many techniques for fluorescent 7: 2949: 2914:Stimulated emission depletion (STED) 2656: 1658:Roadmap of Scanning Probe Microscopy 692:, and fluorescent proteins, such as 2680: 1938:Springer handbook of nanotechnology 1787:"The Nobel Prize in Chemistry 2014" 1706:Molecular Cell Biology. 4th Edition 525:, working with electrical engineer 505:Electron microscope constructed by 373:in 1625 (Galileo had called it the 3866:Scanning electron microscope (SEM) 1702:"Microscopy and Cell Architecture" 721:confocal laser scanning microscope 481:differential interference contrast 401:The first detailed account of the 295:18th-century microscopes from the 25: 2886:Lightsheet microscopy (LSFM/SPIM) 1582:Zeitschrift für Technische Physik 1066:transmission electron microscopes 287:Optical microscope § History 283:Timeline of microscope technology 3911:Thermogravimetric analyzer (TGA) 3721:Nuclear magnetic resonance (NMR) 2948: 2937: 2936: 2835: 2679: 2667: 2655: 2644: 2643: 531:transmission electron microscope 389:Rise of modern light microscopes 263:transmission electron microscope 47: 2249:Scanning quantum dot microscopy 897:glass (occasionally plastic or 2891:Lattice light-sheet microscopy 2802:Second harmonic imaging (SHIM) 2389:Atomic absorption spectrometer 2204:Photothermal microspectroscopy 2016:Milestones in Light Microscopy 1378:"Who Invented the Microscope?" 1101:scanning tunneling microscopes 719:developed the first practical 1: 2036:Molecular Expressions : 1936:Bhushan, Bharat, ed. (2010). 1605:Clinical Microbiology Reviews 1166:Laser capture microdissection 1120:Scanning acoustic microscopes 1070:scanning electron microscopes 585:First atomic force microscope 64:secondary or tertiary sources 1353:The Origins of the Telescope 1273:The history of the telescope 915:scanning confocal microscopy 727:Super resolution microscopes 561:Cambridge Instrument Company 538:scanning electron microscope 267:scanning electron microscope 2394:Flame emission spectrometer 2187:Near-field scanning optical 2157:Ballistic electron emission 2040:, Florida State University. 1557:Liz Logan (27 April 2016). 1333:Sir Norman Lockyer (1876). 1186:Royal Microscopical Society 1181:Multifocal plane microscopy 1171:Microscope image processing 733:Super-resolution microscopy 605:, Switzerland to study the 342:(who applied for the first 36:Microscope (disambiguation) 4357: 2285:Scanning probe lithography 2025:FAQ on Optical Microscopes 1405:Eric Jorink (2010-10-25). 1083: 1057: 863: 816:for light microscopes and 761: 730: 637: 574: 571:Scanning probe microscopes 551:. Ernst Ruska, working at 494: 322:near the specimen with an 280: 271:scanning probe microscopes 180: 177: 'small' and 163: 29: 4304: 4172: 4155: 4144: 4066:Time-domain reflectometer 3976: 3963: 3833:Liquid chromatograph (LC) 3796: 3783: 3456: 3443: 3015: 3004: 2932: 2833: 2735: 2639: 2470:Ion mobility spectrometry 2460:Electroanalytical methods 2295:Feature-oriented scanning 2259:Scanning SQUID microscopy 2254:Scanning SQUID microscope 2135: 2076:Scanning probe microscopy 1086:Scanning probe microscopy 969:Phase-contrast microscopy 771:micro-computed tomography 694:green fluorescent protein 611:scanning probe microscope 577:scanning probe microscope 567:way to detect pathogens. 367: 297:Musée des Arts et Métiers 108: 71:primary research articles 2239:Scanning joule expansion 2234:Scanning ion-conductance 2219:Scanning electrochemical 2182:Magnetic resonance force 1093:atomic force microscopes 1074:basic optical microscopy 634:Fluorescence microscopes 226:through a sample in its 121:Small sample observation 56:This scientific article 3901:Melting-point apparatus 3282:Cryogenic storage dewar 2852:Fluorescence microscopy 2812:Structured illumination 2767:Bright-field microscopy 2630:Analytical Biochemistry 2419:Melting point apparatus 2290:Dip-pen nanolithography 2027:(archived 4 April 2009) 1911:10.1364/OPTICA.2.001049 1532:Wootton, David (2006). 1515:Encyclopædia Britannica 951:fluorescence microscopy 889:containing one or more 805:(optical microscopes), 747:Structured illumination 662:fluorescence microscopy 640:fluorescence microscope 625:atomic force microscope 620:Murray Hill, New Jersey 463:light sources. In 1893 437:Antonie van Leeuwenhoek 420:, called the father of 269:) and various types of 255:fluorescence microscope 4341:Scientific instruments 4326:Microbiology equipment 3838:Mass spectrometer (MS) 3828:Gas chromatograph (GC) 2924:Near-field (NSOM/SNOM) 2862:Multiphoton microscopy 2609:Analytica Chimica Acta 2143: 1656:Morita, Seizo (2007). 1111: 1055: 1042: 965: 794: 786: 657: 586: 510: 398: 303: 249:that passed through a 34:. For other uses, see 4213:Acid-resistant gloves 3894:differential scanning 2777:Dark-field microscopy 2501:Coning and quartering 2409:Infrared spectrometer 2244:Scanning Kelvin probe 2141: 1502:Henker, Otto (1911). 1478:. New York: Harmony. 1109: 1053: 1040: 1016:charge-coupled device 963: 905:of around 0.250  792: 784: 655: 584: 563:as the "Stereoscan". 504: 396: 294: 281:Further information: 196:laboratory instrument 27:Scientific instrument 3790:Analytical chemistry 3292:Laminar flow cabinet 2998:Laboratory equipment 2845:Fluorescence methods 2623:Analytical Chemistry 2465:Gravimetric analysis 2429:Optical spectrometer 2373:Analytical chemistry 2331:Vibrational analysis 2214:Scanning capacitance 1965:. Berlin: Springer. 1817:. Berlin: Springer. 1617:10.1128/cmr.00027-09 838:electron microscopes 491:Electron microscopes 407:L'occhio della mosca 369:Accademia dei Lincei 4162:Personal protective 3071:Meker–Fisher burner 2876:Image deconvolution 2857:Confocal microscopy 2797:Dispersion staining 2772:Köhler illumination 2229:Scanning Hall probe 2209:Piezoresponse force 2167:Electrostatic force 1902:2015Optic...2.1049A 1386:. 14 September 2013 1060:Electron microscope 1046:Electron microscope 973:optical microscopic 830:optical microscopes 701:confocal microscope 648:confocal microscope 497:electron microscope 469:Köhler illumination 403:microscopic anatomy 259:electron microscope 145:electron microscope 126:Notable experiments 105: 4005:Function generator 3988:Bench power supply 3927:Analytical balance 3688:Ostwald viscometer 3683:Graduated cylinder 3422:Inoculation needle 2748:Optical microscopy 2729:Optical microscopy 2536:Separation process 2531:Sample preparation 2172:Kelvin probe force 2144: 2117:Scanning tunneling 1791:www.nobelprize.org 1759:www.nobelprize.org 1505:"Microscope"  1140:optical microscope 1112: 1056: 1043: 1000:digital microscope 966: 880:optical microscope 870:Digital microscope 866:Optical microscope 860:Optical microscope 795: 787: 690:immunofluorescence 658: 644:immunofluorescence 607:quantum tunnelling 589:From 1981 to 1983 587: 511: 399: 312:magnifying glasses 304: 236:optical microscope 141:Optical microscope 32:Optical microscope 4313: 4312: 4300: 4299: 4296: 4295: 4273:Fire extinguisher 4263:Biosafety cabinet 4251: 4250: 4140: 4139: 4136: 4135: 4071:Transistor tester 4061:Spectrum analyzer 3959: 3958: 3955: 3954: 3779: 3778: 3775: 3774: 3651:Measuring devices 3473:Soxhlet extractor 3439: 3438: 3435: 3434: 3387:Spectrophotometer 3382:Pipeclay triangle 3134:Mortar and pestle 2964: 2963: 2909:Diffraction limit 2695: 2694: 2577:Standard addition 2572:Internal standard 2562:Calibration curve 2475:Mass spectrometry 2434:Spectrophotometer 2414:Mass spectrometer 2399:Gas chromatograph 2339: 2338: 2020:Nature Publishing 1993:. 4 February 2013 1972:978-3-642-56949-4 1947:978-3-642-02525-9 1859:10.1557/mrs2006.4 1824:978-3-540-74561-7 1813:Erko, A. (2008). 1667:978-3-540-34315-8 1561:. Smithsonian.com 1543:978-0-19-280355-9 1485:978-0-224-05044-9 1418:978-90-04-18671-2 1363:978-90-6984-615-6 1319:978-0-471-69214-0 1285:978-0-486-43265-6 1216:978-0-470-23300-9 1027:entangled photons 758:X-ray microscopes 418:Marcello Malpighi 336:Zacharias Janssen 150: 149: 99: 98: 91: 58:needs additional 16:(Redirected from 4348: 4170: 4157: 4146: 4051:Network analyzer 3978: 3965: 3798: 3785: 3458: 3445: 3427:Inoculation loop 3297:Microtiter plate 3237:Test tube holder 3129:Magnetic stirrer 3017: 3006: 2991: 2984: 2977: 2968: 2952: 2951: 2940: 2939: 2902:limit techniques 2839: 2760:contrast methods 2758:Illumination and 2722: 2715: 2708: 2699: 2683: 2682: 2671: 2659: 2658: 2647: 2646: 2582:Isotope dilution 2366: 2359: 2352: 2343: 2300:Millipede memory 2269:Scanning voltage 2264:Scanning thermal 2069: 2062: 2055: 2046: 2003: 2002: 2000: 1998: 1983: 1977: 1976: 1958: 1952: 1951: 1933: 1924: 1923: 1913: 1887: 1877: 1871: 1870: 1844: 1835: 1829: 1828: 1810: 1801: 1800: 1798: 1797: 1783: 1777: 1776: 1774: 1773: 1767: 1761:. Archived from 1756: 1748: 1742: 1741: 1729: 1710: 1709: 1697: 1672: 1671: 1653: 1647: 1646: 1636: 1596: 1590: 1589: 1577: 1571: 1570: 1568: 1566: 1554: 1548: 1547: 1529: 1520: 1519: 1507: 1499: 1490: 1489: 1477: 1467: 1461: 1456: 1450: 1447: 1441: 1438: 1432: 1429: 1423: 1422: 1402: 1396: 1395: 1393: 1391: 1374: 1368: 1367: 1347: 1341: 1340: 1336:Nature Volume 14 1330: 1324: 1323: 1305: 1296: 1293: 1287: 1270: 1264: 1263: 1227: 1221: 1220: 1203: 1176:Microscope slide 903:resolution limit 764:X-ray microscope 717:Christoph Cremer 549:Second World War 485:Georges Nomarski 483:illumination by 372: 371: 361:coined the name 351:Cornelis Drebbel 251:thinly sectioned 232:photon emissions 191: 184: 174: 167: 113: 106: 94: 87: 83: 80: 74: 51: 50: 43: 21: 4356: 4355: 4351: 4350: 4349: 4347: 4346: 4345: 4316: 4315: 4314: 4309: 4292: 4288:Solvent cabinet 4247: 4218:Eyewash station 4201: 4166: 4164:equipment (PPE) 4163: 4151: 4132: 4111: 4080: 4024: 4015:Pulse generator 3981:Control devices 3972: 3951: 3915: 3881:Thermochemistry 3875: 3852: 3792: 3771: 3740: 3697: 3663:Conical measure 3646: 3615: 3552: 3521: 3498: 3482: 3452: 3431: 3412:Test tube brush 3322: 3307:Picotiter plate 3270: 3256: 3252:Lab drying rack 3211:Extension clamp 3187: 3168: 3107: 3093: 3029: 3011: 3000: 2995: 2965: 2960: 2928: 2901: 2900:Sub-diffraction 2895: 2840: 2831: 2759: 2753: 2731: 2726: 2696: 2691: 2635: 2586: 2545: 2489: 2438: 2381:Instrumentation 2375: 2370: 2340: 2335: 2304: 2273: 2199:Photon scanning 2145: 2133: 2122:Electrochemical 2110:Photoconductive 2078: 2073: 2012: 2007: 2006: 1996: 1994: 1985: 1984: 1980: 1973: 1960: 1959: 1955: 1948: 1935: 1934: 1927: 1885: 1879: 1878: 1874: 1842: 1837: 1836: 1832: 1825: 1812: 1811: 1804: 1795: 1793: 1785: 1784: 1780: 1771: 1769: 1765: 1754: 1750: 1749: 1745: 1731: 1730: 1713: 1699: 1698: 1675: 1668: 1655: 1654: 1650: 1598: 1597: 1593: 1579: 1578: 1574: 1564: 1562: 1556: 1555: 1551: 1544: 1531: 1530: 1523: 1501: 1500: 1493: 1486: 1469: 1468: 1464: 1457: 1453: 1448: 1444: 1439: 1435: 1430: 1426: 1419: 1404: 1403: 1399: 1389: 1387: 1376: 1375: 1371: 1364: 1349: 1348: 1344: 1332: 1331: 1327: 1320: 1307: 1306: 1299: 1294: 1290: 1271: 1267: 1229: 1228: 1224: 1217: 1205: 1204: 1200: 1195: 1190: 1156: 1133: 1117: 1088: 1082: 1062: 1048: 1023:photon-counting 995:in live cells. 876: 864:Main articles: 862: 826:electromagnetic 779: 766: 760: 743:superresolution 739: 731:Main articles: 729: 650: 636: 595:Heinrich Rohrer 579: 573: 499: 493: 445:red blood cells 391: 377:'little eye'). 355:Galileo Galilei 340:Hans Lippershey 289: 279: 230:, by detecting 95: 84: 78: 75: 68: 52: 48: 39: 28: 23: 22: 15: 12: 11: 5: 4354: 4352: 4344: 4343: 4338: 4333: 4328: 4318: 4317: 4311: 4310: 4305: 4302: 4301: 4298: 4297: 4294: 4293: 4291: 4290: 4285: 4283:Safety cabinet 4280: 4275: 4270: 4265: 4259: 4257: 4253: 4252: 4249: 4248: 4246: 4245: 4243:Safety goggles 4240: 4238:Safety glasses 4235: 4233:Nitrile gloves 4230: 4228:Medical gloves 4225: 4220: 4215: 4209: 4207: 4203: 4202: 4200: 4199: 4194: 4189: 4184: 4179: 4173: 4167: 4160: 4153: 4152: 4149: 4142: 4141: 4138: 4137: 4134: 4133: 4131: 4130: 4125: 4123:Alligator clip 4119: 4117: 4113: 4112: 4110: 4109: 4104: 4099: 4097:Soldering iron 4094: 4088: 4086: 4082: 4081: 4079: 4078: 4073: 4068: 4063: 4058: 4053: 4048: 4043: 4041:Logic analyzer 4038: 4032: 4030: 4026: 4025: 4023: 4022: 4017: 4012: 4007: 4002: 4001: 4000: 3998:Voltage source 3995: 3993:Current source 3984: 3982: 3974: 3973: 3968: 3961: 3960: 3957: 3956: 3953: 3952: 3950: 3949: 3944: 3939: 3934: 3932:Colony counter 3929: 3923: 3921: 3917: 3916: 3914: 3913: 3908: 3903: 3898: 3897: 3896: 3885: 3883: 3877: 3876: 3874: 3873: 3868: 3862: 3860: 3854: 3853: 3851: 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3804: 3802: 3794: 3793: 3788: 3781: 3780: 3777: 3776: 3773: 3772: 3770: 3769: 3764: 3759: 3754: 3748: 3746: 3742: 3741: 3739: 3738: 3733: 3728: 3723: 3718: 3713: 3707: 3705: 3699: 3698: 3696: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3654: 3652: 3648: 3647: 3645: 3644: 3639: 3634: 3629: 3623: 3621: 3617: 3616: 3614: 3613: 3608: 3603: 3598: 3593: 3588: 3583: 3578: 3573: 3571:Vacuum (Dewar) 3568: 3562: 3560: 3554: 3553: 3551: 3550: 3545: 3540: 3535: 3529: 3527: 3523: 3522: 3520: 3519: 3514: 3508: 3506: 3500: 3499: 3497: 3496: 3490: 3488: 3484: 3483: 3481: 3480: 3475: 3470: 3464: 3462: 3454: 3453: 3448: 3441: 3440: 3437: 3436: 3433: 3432: 3430: 3429: 3424: 3419: 3414: 3409: 3404: 3399: 3394: 3389: 3384: 3379: 3374: 3369: 3364: 3359: 3354: 3349: 3344: 3341: 3336: 3330: 3328: 3324: 3323: 3321: 3320: 3317: 3314: 3309: 3304: 3299: 3294: 3289: 3284: 3279: 3273: 3271: 3269: 3268: 3265: 3261: 3258: 3257: 3255: 3254: 3249: 3244: 3242:Test tube rack 3239: 3234: 3231: 3226: 3223: 3218: 3217:Funnel support 3215: 3212: 3209: 3204: 3199: 3194: 3190: 3188: 3186: 3185: 3182: 3177: 3173: 3170: 3169: 3167: 3166: 3161: 3156: 3151: 3146: 3141: 3136: 3131: 3126: 3124:Liquid whistle 3121: 3116: 3110: 3108: 3106: 3105: 3102: 3098: 3095: 3094: 3092: 3091: 3089:Vacuum dry box 3086: 3081: 3076: 3073: 3068: 3063: 3058: 3053: 3051:Heating mantle 3048: 3043: 3038: 3036:Alcohol burner 3032: 3030: 3028: 3027: 3024: 3020: 3013: 3012: 3009: 3002: 3001: 2996: 2994: 2993: 2986: 2979: 2971: 2962: 2961: 2959: 2958: 2946: 2933: 2930: 2929: 2927: 2926: 2921: 2916: 2911: 2905: 2903: 2897: 2896: 2894: 2893: 2888: 2883: 2878: 2873: 2859: 2854: 2848: 2846: 2842: 2841: 2834: 2832: 2830: 2829: 2824: 2819: 2814: 2809: 2807:4Pi microscope 2804: 2799: 2794: 2789: 2784: 2782:Phase contrast 2779: 2774: 2769: 2763: 2761: 2755: 2754: 2752: 2751: 2744: 2736: 2733: 2732: 2727: 2725: 2724: 2717: 2710: 2702: 2693: 2692: 2690: 2689: 2677: 2665: 2653: 2640: 2637: 2636: 2634: 2633: 2626: 2619: 2612: 2605: 2597: 2595: 2588: 2587: 2585: 2584: 2579: 2574: 2569: 2564: 2559: 2553: 2551: 2547: 2546: 2544: 2543: 2538: 2533: 2528: 2523: 2518: 2513: 2508: 2503: 2497: 2495: 2491: 2490: 2488: 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2455:Chromatography 2452: 2446: 2444: 2440: 2439: 2437: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2385: 2383: 2377: 2376: 2371: 2369: 2368: 2361: 2354: 2346: 2337: 2336: 2334: 2333: 2328: 2323: 2318: 2316:Nanotechnology 2312: 2310: 2306: 2305: 2303: 2302: 2297: 2292: 2287: 2281: 2279: 2275: 2274: 2272: 2271: 2266: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2211: 2206: 2201: 2196: 2195: 2194: 2184: 2179: 2177:Magnetic force 2174: 2169: 2164: 2162:Chemical force 2159: 2153: 2151: 2147: 2146: 2136: 2134: 2132: 2131: 2130: 2129: 2127:Spin polarized 2124: 2114: 2113: 2112: 2107: 2102: 2097: 2086: 2084: 2080: 2079: 2074: 2072: 2071: 2064: 2057: 2049: 2043: 2042: 2033: 2028: 2022: 2011: 2010:External links 2008: 2005: 2004: 1978: 1971: 1953: 1946: 1925: 1872: 1830: 1823: 1802: 1778: 1743: 1711: 1673: 1666: 1648: 1611:(4): 552–563. 1591: 1572: 1549: 1542: 1521: 1510:Chisholm, Hugh 1491: 1484: 1462: 1451: 1442: 1433: 1424: 1417: 1397: 1369: 1362: 1342: 1325: 1318: 1297: 1288: 1265: 1222: 1215: 1197: 1196: 1194: 1191: 1189: 1188: 1183: 1178: 1173: 1168: 1163: 1157: 1155: 1152: 1132: 1129: 1116: 1113: 1084:Main article: 1081: 1080:Scanning probe 1078: 1058:Main article: 1047: 1044: 1008:digital camera 874:USB microscope 861: 858: 778: 775: 762:Main article: 759: 756: 728: 725: 635: 632: 572: 569: 557:Charles Oatley 492: 489: 473:phase contrast 449:Jan Swammerdam 390: 387: 379:René Descartes 359:Giovanni Faber 320:objective lens 278: 275: 148: 147: 138: 134: 133: 127: 123: 122: 119: 115: 114: 97: 96: 55: 53: 46: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4353: 4342: 4339: 4337: 4334: 4332: 4329: 4327: 4324: 4323: 4321: 4308: 4303: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4260: 4258: 4254: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4210: 4208: 4204: 4198: 4197:Safety shower 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4174: 4171: 4168: 4165: 4158: 4154: 4147: 4143: 4129: 4126: 4124: 4121: 4120: 4118: 4114: 4108: 4107:Wire stripper 4105: 4103: 4100: 4098: 4095: 4093: 4090: 4089: 4087: 4083: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4033: 4031: 4027: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 3999: 3996: 3994: 3991: 3990: 3989: 3986: 3985: 3983: 3979: 3975: 3971: 3966: 3962: 3948: 3945: 3943: 3940: 3938: 3937:Spiral plater 3935: 3933: 3930: 3928: 3925: 3924: 3922: 3918: 3912: 3909: 3907: 3904: 3902: 3899: 3895: 3892: 3891: 3890: 3887: 3886: 3884: 3882: 3878: 3872: 3869: 3867: 3864: 3863: 3861: 3859: 3855: 3849: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3805: 3803: 3801:Compositional 3799: 3795: 3791: 3786: 3782: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3749: 3747: 3743: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3708: 3706: 3704: 3700: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3655: 3653: 3649: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3624: 3622: 3618: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3587: 3584: 3582: 3579: 3577: 3574: 3572: 3569: 3567: 3564: 3563: 3561: 3559: 3555: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3530: 3528: 3524: 3518: 3515: 3513: 3510: 3509: 3507: 3505: 3501: 3495: 3492: 3491: 3489: 3485: 3479: 3476: 3474: 3471: 3469: 3466: 3465: 3463: 3459: 3455: 3451: 3446: 3442: 3428: 3425: 3423: 3420: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3383: 3380: 3378: 3375: 3373: 3370: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343:Balance brush 3342: 3340: 3337: 3335: 3332: 3331: 3329: 3325: 3319:Weighing dish 3318: 3316:Weighing boat 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3274: 3272: 3266: 3263: 3262: 3259: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3232: 3230: 3227: 3224: 3222: 3219: 3216: 3213: 3210: 3208: 3207:Burette clamp 3205: 3203: 3200: 3198: 3195: 3192: 3191: 3189: 3183: 3181: 3178: 3175: 3174: 3171: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3111: 3109: 3103: 3100: 3099: 3096: 3090: 3087: 3085: 3082: 3080: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3041:Bunsen burner 3039: 3037: 3034: 3033: 3031: 3025: 3022: 3021: 3018: 3014: 3007: 3003: 2999: 2992: 2987: 2985: 2980: 2978: 2973: 2972: 2969: 2957: 2956: 2947: 2945: 2944: 2935: 2934: 2931: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2906: 2904: 2898: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2871: 2867: 2863: 2860: 2858: 2855: 2853: 2850: 2849: 2847: 2843: 2838: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2764: 2762: 2756: 2750: 2749: 2745: 2743: 2742: 2738: 2737: 2734: 2730: 2723: 2718: 2716: 2711: 2709: 2704: 2703: 2700: 2688: 2687: 2678: 2676: 2675: 2670: 2666: 2664: 2663: 2654: 2652: 2651: 2642: 2641: 2638: 2632: 2631: 2627: 2625: 2624: 2620: 2618: 2617: 2613: 2611: 2610: 2606: 2604: 2603: 2599: 2598: 2596: 2594: 2589: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2567:Matrix effect 2565: 2563: 2560: 2558: 2555: 2554: 2552: 2548: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2526:Pulverization 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2498: 2496: 2492: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2447: 2445: 2441: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2386: 2384: 2382: 2378: 2374: 2367: 2362: 2360: 2355: 2353: 2348: 2347: 2344: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2313: 2311: 2307: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2282: 2280: 2276: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2224:Scanning gate 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2193: 2190: 2189: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2154: 2152: 2148: 2140: 2128: 2125: 2123: 2120: 2119: 2118: 2115: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2092: 2091: 2088: 2087: 2085: 2081: 2077: 2070: 2065: 2063: 2058: 2056: 2051: 2050: 2047: 2041: 2039: 2034: 2032: 2029: 2026: 2023: 2021: 2017: 2014: 2013: 2009: 1992: 1991:Science Daily 1988: 1982: 1979: 1974: 1968: 1964: 1957: 1954: 1949: 1943: 1939: 1932: 1930: 1926: 1921: 1917: 1912: 1907: 1903: 1899: 1895: 1891: 1884: 1876: 1873: 1868: 1864: 1860: 1856: 1852: 1848: 1841: 1834: 1831: 1826: 1820: 1816: 1809: 1807: 1803: 1792: 1788: 1782: 1779: 1768:on 2018-03-20 1764: 1760: 1753: 1747: 1744: 1739: 1735: 1728: 1726: 1724: 1722: 1720: 1718: 1716: 1712: 1707: 1703: 1696: 1694: 1692: 1690: 1688: 1686: 1684: 1682: 1680: 1678: 1674: 1669: 1663: 1659: 1652: 1649: 1644: 1640: 1635: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1595: 1592: 1587: 1583: 1576: 1573: 1560: 1553: 1550: 1545: 1539: 1535: 1528: 1526: 1522: 1517: 1516: 1511: 1506: 1498: 1496: 1492: 1487: 1481: 1476: 1475: 1466: 1463: 1460: 1455: 1452: 1446: 1443: 1437: 1434: 1428: 1425: 1420: 1414: 1410: 1409: 1401: 1398: 1385: 1384: 1379: 1373: 1370: 1365: 1359: 1355: 1354: 1346: 1343: 1338: 1337: 1329: 1326: 1321: 1315: 1311: 1304: 1302: 1298: 1292: 1289: 1286: 1282: 1281:0-486-43265-3 1278: 1274: 1269: 1266: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1223: 1218: 1212: 1208: 1202: 1199: 1192: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1158: 1153: 1151: 1149: 1145: 1141: 1137: 1130: 1128: 1125: 1121: 1114: 1108: 1104: 1102: 1098: 1094: 1087: 1079: 1077: 1075: 1071: 1067: 1061: 1052: 1045: 1039: 1035: 1032: 1031:ghost imaging 1028: 1024: 1019: 1017: 1013: 1009: 1005: 1001: 996: 994: 990: 986: 982: 978: 974: 970: 962: 958: 956: 952: 947: 945: 944:Near infrared 941: 937: 934: 930: 928: 924: 920: 916: 912: 908: 904: 900: 896: 892: 888: 885: 882:. This is an 881: 875: 871: 867: 859: 857: 853: 849: 847: 843: 839: 835: 831: 827: 823: 819: 818:electromagnet 815: 810: 808: 804: 800: 791: 783: 776: 774: 772: 765: 757: 755: 752: 748: 744: 738: 734: 726: 724: 722: 718: 714: 710: 706: 705:Marvin Minsky 702: 697: 695: 691: 687: 683: 679: 675: 671: 667: 663: 654: 649: 645: 641: 633: 631: 628: 626: 621: 617: 616:Jerry Tersoff 612: 608: 604: 600: 596: 592: 583: 578: 570: 568: 564: 562: 558: 554: 550: 545: 543: 539: 534: 532: 528: 524: 520: 516: 508: 503: 498: 490: 488: 486: 482: 479:in 1953, and 478: 477:Frits Zernike 474: 470: 466: 465:August Köhler 461: 456: 454: 450: 446: 442: 438: 433: 432: 427: 423: 419: 414: 412: 411:The Fly's Eye 408: 404: 395: 388: 386: 384: 380: 376: 370: 364: 360: 356: 352: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 302: 298: 293: 288: 284: 276: 274: 272: 268: 264: 260: 256: 252: 248: 247:visible light 245: 241: 238:, which uses 237: 233: 229: 225: 221: 215: 213: 209: 205: 201: 197: 193: 190: 183: 179: 176: 173: 166: 162: 159: 158:Ancient Greek 155: 146: 142: 139: 137:Related items 135: 132: 129:Discovery of 128: 124: 120: 116: 112: 107: 101: 93: 90: 82: 72: 66: 65: 61: 54: 45: 44: 41: 37: 33: 19: 4268:Fire blanket 4206:Eye and hand 4192:Rubber apron 4056:Oscilloscope 4020:Potentiostat 3947:Plate reader 3843:pH indicator 3813:CHN analyzer 3808:AutoAnalyzer 3601:Round-bottom 3494:Boston round 3376: 3357:Filter paper 3312:Refrigerator 3229:Retort stand 3197:Clamp holder 3193:Beaker clamp 3159:Vortex mixer 3154:Stirring rod 3149:Static mixer 3079:Teclu burner 2953: 2941: 2870:Three-photon 2746: 2740: 2739: 2684: 2672: 2660: 2648: 2628: 2621: 2614: 2607: 2600: 2593:publications 2557:Chemometrics 2541:Sub-sampling 2480:Spectroscopy 2423: 2320: 2278:Applications 2090:Atomic force 2037: 2019: 1995:. Retrieved 1990: 1981: 1962: 1956: 1937: 1896:(12): 1049. 1893: 1889: 1875: 1850: 1847:MRS Bulletin 1846: 1833: 1814: 1794:. Retrieved 1790: 1781: 1770:. Retrieved 1763:the original 1758: 1746: 1737: 1705: 1657: 1651: 1608: 1604: 1594: 1585: 1581: 1575: 1563:. Retrieved 1552: 1533: 1513: 1473: 1465: 1454: 1445: 1436: 1427: 1407: 1400: 1388:. Retrieved 1383:Live Science 1381: 1372: 1352: 1345: 1335: 1328: 1309: 1291: 1272: 1268: 1238:(2): 78–84. 1235: 1231: 1225: 1206: 1201: 1134: 1118: 1089: 1063: 1020: 997: 977:phase shifts 967: 948: 938: 931: 909:or 250  877: 854: 850: 811: 796: 767: 740: 698: 659: 629: 588: 565: 546: 535: 517:rather than 512: 457: 431:Micrographia 429: 426:Robert Hooke 415: 410: 406: 400: 382: 374: 362: 305: 228:optical path 216: 188: 185: 178: 171: 168: 161: 153: 151: 100: 85: 76: 57: 40: 4331:Microscopes 4256:Other items 4182:Face shield 4029:Measurement 4010:Galvanostat 3970:Electronics 3920:Other items 3906:Thermometer 3889:Calorimeter 3818:Colorimeter 3762:Gas syringe 3745:Other items 3673:Eye dropper 3548:Watch glass 3533:Evaporating 3512:Cold finger 3327:Other items 3233:Screw clamp 3225:Pinch clamp 3214:Flask clamp 3164:Wash bottle 3119:Homogenizer 2686:WikiProject 2550:Calibration 2511:Dissolution 2450:Calorimetry 2105:Non-contact 1148:camera lens 1131:Mobile apps 1115:Other types 1068:(TEMs) and 940:Ultraviolet 923:diffraction 919:Vertico SMI 907:micrometres 707:, although 591:Gerd Binnig 523:Ernst Ruska 507:Ernst Ruska 453:spermatozoa 332:Netherlands 212:Microscopic 18:Microscopes 4336:Microscopy 4320:Categories 4187:Respirator 4128:Test probe 4046:Multimeter 3858:Microscopy 3678:Eudiometer 3642:Separatory 3611:Volumetric 3576:Erlenmeyer 3504:Condensers 3468:Dean–Stark 3417:Wire brush 3377:Microscope 3372:Centrifuge 3347:Cork borer 3302:Petri dish 3277:Agar plate 3264:Containers 3247:Wire gauze 3084:Water bath 3046:Desiccator 2866:Two-photon 2741:Microscope 2591:Prominent 2516:Filtration 2443:Techniques 2424:Microscope 2326:Microscopy 2321:Microscope 2095:Conductive 1997:5 February 1796:2018-03-20 1772:2018-03-20 1588:: 467–475. 1193:References 1136:Mobile app 993:cell cycle 911:nanometres 895:refractive 887:instrument 846:wavelength 842:Resolution 836:beams (in 638:See also: 597:worked at 575:See also: 495:See also: 383:Dioptrique 375:occhiolino 363:microscope 348:expatriate 328:real image 326:to view a 316:eyeglasses 261:(both the 204:Microscopy 156:(from 154:microscope 104:Microscope 79:April 2017 4278:Fume hood 4223:Glove box 4076:Voltmeter 3461:Apparatus 3450:Glassware 3339:Autoclave 3334:Aspirator 3287:Incubator 3221:Iron ring 3144:Sonicator 3114:Chemostat 3056:Hot plate 2485:Titration 2192:Nano-FTIR 1920:2334-2536 1853:: 36–43. 1625:0893-8512 1411:. BRILL. 1004:eyepieces 981:amplitude 955:fluoresce 807:electrons 684:to label 542:Max Knoll 527:Max Knoll 515:electrons 460:condensor 441:ball lens 422:histology 344:telescope 224:electrons 200:naked eye 60:citations 4177:Lab coat 4102:Tweezers 4092:Heat gun 3848:pH meter 3757:Bell jar 3637:Dropping 3591:Florence 3581:Fernbach 3543:Syracuse 3402:Scoopula 3352:Crucible 3061:Lab oven 2943:Category 2650:Category 2506:Dilution 2494:Sampling 2309:See also 2100:Infrared 1867:41889433 1643:19822888 1390:31 March 1260:96668398 1154:See also 1150:itself. 989:staining 985:contrast 834:electron 678:cellular 674:staining 324:eyepiece 265:and the 4116:General 4036:Ammeter 3736:Thistle 3693:Pipette 3668:Cuvette 3658:Burette 3627:Büchner 3620:Funnels 3606:Schlenk 3586:Fleaker 3566:Büchner 3487:Bottles 3407:Spatula 3397:Stopper 3367:Forceps 3267:Storage 3184:Holders 3104:Shakers 3075:Striker 3023:Heaters 3010:General 2955:Commons 2662:Commons 2602:Analyst 2521:Masking 1898:Bibcode 1634:2772359 1512:(ed.). 1252:4608700 1095:(AFM), 884:optical 803:photons 670:genomic 666:biology 553:Siemens 509:in 1933 447:(after 277:History 244:refract 208:science 206:is the 4150:Safety 3752:Beaker 3731:Thiele 3716:Cragie 3711:Drying 3632:Hirsch 3596:Retort 3558:Flasks 3526:Dishes 3517:Liebig 3478:Kipp's 3392:Splint 3202:Tripod 3180:Clamps 3176:Stands 3139:Shaker 3101:Mixers 3026:Dryers 2817:Sarfus 2674:Portal 2083:Common 1969:  1944:  1918:  1890:Optica 1865:  1821:  1664:  1641:  1631:  1623:  1565:3 June 1540:  1482:  1415:  1360:  1316:  1279:  1258:  1250:  1213:  971:is an 933:Sarfus 899:quartz 891:lenses 872:, and 814:optics 713:Thomas 646:, and 603:Zürich 451:) and 240:lenses 189:skopéō 182:σκοπέω 172:mikrós 165:μικρός 4085:Tools 3703:Tubes 3538:Petri 2827:Raman 2150:Other 1886:(PDF) 1863:S2CID 1843:(PDF) 1766:(PDF) 1755:(PDF) 1508:. In 1256:S2CID 1248:JSTOR 1144:noise 1124:Sonar 832:) or 799:light 777:Types 709:laser 519:light 409:, or 308:Greek 301:Paris 220:light 160: 131:cells 3767:Vial 3726:Test 3362:File 3066:Kiln 1999:2013 1967:ISBN 1942:ISBN 1916:ISSN 1819:ISBN 1662:ISBN 1639:PMID 1621:ISSN 1567:2016 1538:ISBN 1480:ISBN 1413:ISBN 1392:2017 1358:ISBN 1314:ISBN 1277:ISBN 1232:BIOS 1211:ISBN 1012:CMOS 828:(in 822:wave 735:and 715:and 682:DAPI 593:and 285:and 118:Uses 1906:doi 1855:doi 1629:PMC 1613:doi 1240:doi 1014:or 983:or 949:In 840:). 801:or 686:DNA 676:of 664:in 601:in 599:IBM 540:by 475:by 428:'s 242:to 222:or 62:to 4322:: 2868:, 2018:, 1989:. 1928:^ 1914:. 1904:. 1892:. 1888:. 1861:. 1851:31 1849:. 1845:. 1805:^ 1789:. 1757:. 1736:. 1714:^ 1704:. 1676:^ 1637:. 1627:. 1619:. 1609:22 1607:. 1603:. 1586:16 1584:. 1524:^ 1494:^ 1380:. 1300:^ 1283:, 1254:. 1246:. 1236:75 1234:. 929:. 917:, 868:, 642:, 413:. 299:, 273:. 257:, 202:. 152:A 143:, 2990:e 2983:t 2976:v 2872:) 2864:( 2721:e 2714:t 2707:v 2365:e 2358:t 2351:v 2068:e 2061:t 2054:v 2001:. 1975:. 1950:. 1922:. 1908:: 1900:: 1894:2 1869:. 1857:: 1827:. 1799:. 1775:. 1740:. 1708:. 1670:. 1645:. 1615:: 1569:. 1546:. 1488:. 1421:. 1394:. 1366:. 1339:. 1322:. 1262:. 1242:: 1219:. 381:( 192:) 186:( 175:) 169:( 92:) 86:( 81:) 77:( 67:. 38:. 20:)

Index

Microscopes
Optical microscope
Microscope (disambiguation)
citations
secondary or tertiary sources
primary research articles
Learn how and when to remove this message

cells
Optical microscope
electron microscope
Ancient Greek
μικρός
σκοπέω
laboratory instrument
naked eye
Microscopy
science
Microscopic
light
electrons
optical path
photon emissions
optical microscope
lenses
refract
visible light
thinly sectioned
fluorescence microscope
electron microscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.