Knowledge (XXG)

Proteomics

Source 📝

1195:
proteome. The turnover of some proteins is quite faster than others and the protein content of an artery may substantially vary from that of a vein. All these differences make even the simplest proteomic task of cataloging the proteome seem out of reach. To tackle this problem, priorities need to be established. Capturing the most meaningful subset of proteins among the entire proteome to generate a diagnostic tool is one such priority. Secondly, since cancer is associated with enhanced glycosylation of proteins, methods that focus on this part of proteins will also be useful. Again: multiparameter analysis best reveals a pathological state. As these technologies improve, the disease profiles should be continually related to respective gene expression changes. Due to the above-mentioned problems plasma proteomics remained challenging. However, technological advancements and continuous developments seem to result in a revival of plasma proteomics as it was shown recently by a technology called plasma proteome profiling. Due to such technologies researchers were able to investigate inflammation processes in mice, the heritability of plasma proteomes as well as to show the effect of such a common life style change like weight loss on the plasma proteome.
1092:
throughput and sensitivity of proteomic assays, often measured as samples analyzed per day and depth of proteome coverage, respectively, have driven development of cutting-edge instrumentation and methodologies. For many cellular events, the protein concentrations do not change; rather, their function is modulated by post-translational modifications (PTM). Methods of monitoring PTM are an underdeveloped area in proteomics. Selecting a particular subset of protein for analysis substantially reduces protein complexity, making it advantageous for diagnostic purposes where blood is the starting material. Another important aspect of proteomics, yet not addressed, is that proteomics methods should focus on studying proteins in the context of the environment. The increasing use of chemical cross-linkers, introduced into living cells to fix protein-protein, protein-DNA and other interactions, may ameliorate this problem partially. The challenge is to identify suitable methods of preserving relevant interactions. Another goal for studying proteins is development of more sophisticated methods to image proteins and other molecules in living cells and real-time.
667:
the fluctuating state of proteome among different cell population within a small area of human tissue. This is useful for profiling the status of cellular signaling molecules, among a cross-section of tissue that includes both normal and cancerous cells. This approach is useful in monitoring the status of key factors in normal prostate epithelium and invasive prostate cancer tissues. LCM then dissects these tissue and protein lysates were arrayed onto nitrocellulose slides, which were probed with specific antibodies. This method can track all kinds of molecular events and can compare diseased and healthy tissues within the same patient enabling the development of treatment strategies and diagnosis. The ability to acquire proteomics snapshots of neighboring cell populations, using reverse-phase microarrays in conjunction with LCM has a number of applications beyond the study of tumors. The approach can provide insights into normal physiology and pathology of all the tissues and is invaluable for characterizing developmental processes and anomalies.
646:
antibodies are arrayed to detect their respective antigens from a sample of human blood. Another approach is the arraying of multiple protein types for the study of properties like protein-DNA, protein-protein and protein-ligand interactions. Ideally, the functional proteomic arrays would contain the entire complement of the proteins of a given organism. The first version of such arrays consisted of 5000 purified proteins from yeast deposited onto glass microscopic slides. Despite the success of first chip, it was a greater challenge for protein arrays to be implemented. Proteins are inherently much more difficult to work with than DNA. They have a broad dynamic range, are less stable than DNA and their structure is difficult to preserve on glass slides, though they are essential for most assays. The global ICAT technology has striking advantages over protein chip technologies.
1050:. Some programs will accept post-translational modifications to aid in protein identification but then ignore the modification during further protein analysis. It is important to account for these modifications since they can affect the protein's structure. In turn, computational analysis of post-translational modifications has gained the attention of the scientific community. The current post-translational modification programs are only predictive. Chemists, biologists and computer scientists are working together to create and introduce new pipelines that allow for analysis of post-translational modifications that have been experimentally identified for their effect on the protein's structure and function. 598: 676: 617:
using isotopic labeling and selective chemistries to capture the fraction of protein among the complex mixture. Secondly, the ICAT technology was used to differentiate between partially purified or purified macromolecular complexes such as large RNA polymerase II pre-initiation complex and the proteins complexed with yeast transcription factor. Thirdly, ICAT labeling was recently combined with chromatin isolation to identify and quantify chromatin-associated proteins. Finally ICAT reagents are useful for proteomic profiling of cellular organelles and specific cellular fractions.
655: 27: 379:. Proteomic analysis is highly amenable to automation and large data sets are created, which are processed by software algorithms. Filter parameters are used to reduce the number of false hits, but they cannot be completely eliminated. Scientists have expressed the need for awareness that proteomics experiments should adhere to the criteria of analytical chemistry (sufficient data quality, sanity check, validation). 6430: 606:
proteins to be identified by mass spectrometry. Despite the advances in 2-DE and its maturity, it has its limits as well. The central concern is the inability to resolve all the proteins within a sample, given their dramatic range in expression level and differing properties. The combination of pore size, and protein charge, size and shape can greatly determine migration rate which leads to other complications.
1275: 6418: 759:
that fits the active site of an enzyme, but cannot be released by the enzyme, inactivates the enzyme. This is the basis of new drug-discovery tools, which aim to find new drugs to inactivate proteins involved in disease. As genetic differences among individuals are found, researchers expect to use these techniques to develop personalized drugs that are more effective for the individual.
546:(Stål)) male accessory gland proteins (Acps) that may be transferred to females via mating, causing an increase in fecundity (i.e. birth rate) of females. To identify changes in the types of accessory gland proteins (Acps) and reproductive proteins that mated female planthoppers received from male planthoppers, researchers conducted a comparative proteomic analysis of mated 1083:
tissue-biofluid as information channels, significant biofluid proxies can be identified and then used for the guided development of clinical diagnostics. Candidate biomarkers are then predicted based on information transfer criteria across the tissue-biofluid channels. Significant biofluid-tissue relationships can be used to prioritize clinical validation of biomarkers.
1191:
It also contains tissue leakage proteins due to the blood circulation through different tissues in the body. The blood thus contains information on the physiological state of all tissues and, combined with its accessibility, makes the blood proteome invaluable for medical purposes. It is thought that characterizing the proteome of blood plasma is a daunting challenge.
1038:
programs use the chemical properties of amino acids and structural properties of known proteins to predict the 3D model of sample proteins. This also allows scientists to model protein interactions on a larger scale. In addition, biomedical engineers are developing methods to factor in the flexibility of protein structures to make comparisons and predictions.
1289: 610:
separated by multidimensional liquid chromatography and analyzed by tandem mass spectrometry. Isotope coded affinity tag (ICAT) reagents are the widely used isotope tags. In this method, the cysteine residues of proteins get covalently attached to the ICAT reagent, thereby reducing the complexity of the mixtures omitting the non-cysteine residues.
1002:
are currently programs available for protein identification. These programs take the peptide sequences output from mass spectrometry and microarray and return information about matching or similar proteins. This is done through algorithms implemented by the program which perform alignments with proteins from known databases such as UniProt and
445:
upper femtomolar range (10 M). Digital immunoassay technology has improved detection sensitivity three logs, to the attomolar range (10 M). This capability has the potential to open new advances in diagnostics and therapeutics, but such technologies have been relegated to manual procedures that are not well suited for efficient routine use.
231:. Determining which proteins are poly-ubiquitinated helps understand how protein pathways are regulated. This is, therefore, an additional legitimate "proteomic" study. Similarly, once a researcher determines which substrates are ubiquitinated by each ligase, determining the set of ligases expressed in a particular cell type is helpful. 395:. If a complex biological sample is analyzed, either a very specific antibody needs to be used in quantitative dot blot analysis (QDB), or biochemical separation then needs to be used before the detection step, as there are too many analytes in the sample to perform accurate detection and quantification. 1190:
Characterizing the human plasma proteome has become a major goal in the proteomics arena, but it is also the most challenging proteomes of all human tissues. It contains immunoglobulin, cytokines, protein hormones, and secreted proteins indicative of infection on top of resident, hemostatic proteins.
1091:
A number of emerging concepts have the potential to improve the current features of proteomics. Obtaining absolute quantification of proteins and monitoring post-translational modifications are the two tasks that impact the understanding of protein function in healthy and diseased cells. Further, the
736:
The bioorthoganal field is expanding and is driving further applications within proteomics. It is worthwhile noting the limitations and benefits. Rapid reactions can create bioconjuctions and create high concentrations with low amounts of reactants. Contrarily slow kinetic reactions like aldehyde and
609:
The second quantitative approach uses stable isotope tags to differentially label proteins from two different complex mixtures. Here, the proteins within a complex mixture are labeled isotopically first, and then digested to yield labeled peptides. The labeled mixtures are then combined, the peptides
1100:
Advances in quantitative proteomics would clearly enable more in-depth analysis of cellular systems. Another research frontier is the analysis of single cells, and protein covariation across single cells which reflects biological processes such as protein complex formation, immune functions, as well
1001:
Mass spectrometry and microarray produce peptide fragmentation information but do not give identification of specific proteins present in the original sample. Due to the lack of specific protein identification, past researchers were forced to decipher the peptide fragments themselves. However, there
971:
Structural proteomics includes the analysis of protein structures at large-scale. It compares protein structures and helps identify functions of newly discovered genes. The structural analysis also helps to understand that where drugs bind to proteins and also shows where proteins interact with each
666:
with micro array technology, to produce reverse-phase protein microarrays. In this type of microarrays, the whole collection of protein themselves are immobilized with the intent of capturing various stages of disease within an individual patient. When used with LCM, reverse phase arrays can monitor
605:
There are two mass spectrometry-based methods currently used for protein profiling. The more established and widespread method uses high resolution, two-dimensional electrophoresis to separate proteins from different samples in parallel, followed by selection and staining of differentially expressed
444:
Disease detection at the molecular level is driving the emerging revolution of early diagnosis and treatment. A challenge facing the field is that protein biomarkers for early diagnosis may be present in very low abundance. The lower limit of detection with conventional immunoassay technology is the
440:
Immunoassays can also be carried out using recombinantly generated immunoglobulin derivatives or synthetically designed protein scaffolds that are selected for high antigen specificity. Such binders include single domain antibody fragments (Nanobodies), designed ankyrin repeat proteins (DARPins) and
215:
Because protein phosphorylation is one of the most studied protein modifications, many "proteomic" efforts are geared to determining the set of phosphorylated proteins in a particular cell or tissue-type under particular circumstances. This alerts the scientist to the signaling pathways that may be
887:
at a larger scale. It helps identify main proteins in a particular sample, and those proteins differentially expressed in related samples—such as diseased vs. healthy tissue. If a protein is found only in a diseased sample then it can be a useful drug target or diagnostic marker. Proteins with the
758:
information to identify proteins associated with a disease, which computer software can then use as targets for new drugs. For example, if a certain protein is implicated in a disease, its 3D structure provides the information to design drugs to interfere with the action of the protein. A molecule
645:
Balancing the use of mass spectrometers in proteomics and in medicine is the use of protein micro arrays. The aim behind protein micro arrays is to print thousands of protein detecting features for the interrogation of biological samples. Antibody arrays are an example in which a host of different
1058:
One example of the use of bioinformatics and the use of computational methods is the study of protein biomarkers. Computational predictive models have shown that extensive and diverse feto-maternal protein trafficking occurs during pregnancy and can be readily detected non-invasively in maternal
914:
Understanding the proteome, the structure and function of each protein and the complexities of protein–protein interactions are critical for developing the most effective diagnostic techniques and disease treatments in the future. For example, proteomics is highly useful in the identification of
616:
using stable isotopic tagging is an increasingly useful tool in modern development. Firstly, chemical reactions have been used to introduce tags into specific sites or proteins for the purpose of probing specific protein functionalities. The isolation of phosphorylated peptides has been achieved
453:
While protein detection with antibodies is still very common in molecular biology, other methods have been developed as well, that do not rely on an antibody. These methods offer various advantages, for instance they often are able to determine the sequence of a protein or peptide, they may have
298:
for a specific cancer subtype is sought, the proteomics scientist might elect to study multiple blood serum samples from multiple cancer patients to minimise confounding factors and account for experimental noise. Thus, complicated experimental designs are sometimes necessary to account for the
1194:
The depth of the plasma proteome encompasses a dynamic range of more than 10 between the highest abundant protein (albumin) and the lowest (some cytokines) and is thought to be one of the main challenges for proteomics. Temporal and spatial dynamics further complicate the study of human plasma
1037:
is a leading technique, solving difficulties with crystallization (in X-ray crystallography) and conformational ambiguity (in NMR); resolution was 2.2Å as of 2015. Now, through bioinformatics, there are computer programs that can in some cases predict and model the structure of proteins. These
582:
Proteomics has steadily gained momentum over the past decade with the evolution of several approaches. Few of these are new, and others build on traditional methods. Mass spectrometry-based methods, affinity proteomics, and micro arrays are the most common technologies for large-scale study of
368:
of tryptic peptides. Although early large-scale shotgun proteomics analyses showed considerable variability between laboratories, presumably due in part to technical and experimental differences between laboratories, reproducibility has been improved in more recent mass spectrometry analysis,
1082:
discovery, integrating biofluid and tissue information. This new approach takes advantage of functional synergy between certain biofluids and tissues with the potential for clinically significant findings not possible if tissues and biofluids were considered individually. By conceptualizing
698:
Specific biomolecules that are capable of being metabolized in cells or tissues are inserted into proteins or glycans. The molecule will have an affinity tag, modifying the protein allowing it to be detected. Azidohomoalanine (AHA) utilizes this affinity tag via incorporation with Met-t-RNA
984:
and microarray. It would often take weeks or months to analyze the data and perform comparisons by hand. For this reason, biologists and chemists are collaborating with computer scientists and mathematicians to create programs and pipeline to computationally analyze the protein data. Using
636:
Affinity proteomics uses antibodies or other affinity reagents (such as oligonucleotide-based aptamers) as protein-specific detection probes. Currently this method can interrogate several thousand proteins, typically from biofluids such as plasma, serum or cerebrospinal fluid (CSF). A key
564:
There are many approaches to characterizing the human proteome, which is estimated to contain between 20,000 and 25,000 non-redundant proteins. The number of unique protein species likely will increase by between 50,000 and 500,000 due to RNA splicing and proteolysis events, and when
171:
Not only does the translation from mRNA cause differences, but many proteins also are subjected to a wide variety of chemical modifications after translation. The most common and widely studied post-translational modifications include phosphorylation and glycosylation. Many of these
156:
is not always translated into protein, and the amount of protein produced for a given amount of mRNA depends on the gene it is transcribed from and on the cell's physiological state. Proteomics confirms the presence of the protein and provides a direct measure of its quantity.
628:. In this approach, increased throughput and sensitivity is achieved by avoiding the need for tandem mass spectrometry, and making use of precisely determined separation time information and highly accurate mass determinations for peptide and protein identifications. 915:
candidate biomarkers (proteins in body fluids that are of value for diagnosis), identification of the bacterial antigens that are targeted by the immune response, and identification of possible immunohistochemistry markers of infectious or neoplastic diseases.
1125:
responses to these perturbations results in functional changes to the proteome implicated in response to the stimulus. Therefore, describing and quantifying proteome-wide changes in protein abundance is crucial towards understanding biological phenomenon more
637:
differentiator for this technology is the ability to analyze hundreds or thousands of samples in a reasonable timeframe (a matter of days or weeks); mass spectrometry-based methods are not scalable to this level of sample throughput for proteomics analyses.
75:
is the entire set of proteins produced or modified by an organism or system. Proteomics enables the identification of ever-increasing numbers of proteins. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes.
918:
An interesting use of proteomics is using specific protein biomarkers to diagnose disease. A number of techniques allow to test for proteins produced during a particular disease, which helps to diagnose the disease quickly. Techniques include
145:, proteomics is the next step in the study of biological systems. It is more complicated than genomics because an organism's genome is more or less constant, whereas proteomes differ from cell to cell and from time to time. Distinct genes are 3272:
Rozanova, Svitlana; Barkovits, Katalin; Nikolov, Miroslav; Schmidt, Carla; Urlaub, Henning; Marcus, Katrin (2021), Marcus, Katrin; Eisenacher, Martin; Sitek, Barbara (eds.), "Quantitative Mass Spectrometry-Based Proteomics: An Overview",
6353: 1024:
forms the 3D configuration of the protein. Understanding the protein's structure aids in the identification of the protein's interactions and function. It used to be that the 3D structure of proteins could only be determined using
541:
Comparative proteomic analysis may reveal the role of proteins in complex biological systems, including reproduction. For example, treatment with the insecticide triazophos causes an increase in the content of brown planthopper
537:
Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE) may be used to quantify variation in the 2-D DIGE process and establish statistically valid thresholds for assigning quantitative changes between samples.
5210:
Arora PS, Yamagiwa H, Srivastava A, Bolander ME, Sarkar G (2005). "Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease".
910:
has defined a biomarker as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention."
2276:
Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003). "Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome".
2936:
Wang LP, Shen J, Ge LQ, Wu JC, Yang GQ, Jahn GC (November 2010). "Insecticide-induced increase in the protein content of male accessory glands and its effect on the fecundity of females in the brown planthopper,
437:, they are known as phospho-specific antibodies. Also, there are antibodies specific to other modifications. These may be used to determine the set of proteins that have undergone the modification of interest. 3131:
Klopfleisch R, Klose P, Weise C, Bondzio A, Multhaup G, Einspanier R, Gruber AD (December 2010). "Proteome of metastatic canine mammary carcinomas: similarities to and differences from human breast cancer".
963:. Parallel analysis of the genome and the proteome facilitates discovery of post-translational modifications and proteolytic events, especially when comparing multiple species (comparative proteogenomics). 4792:
Huffman RG, Leduc A, Wichmann C, di Gioia M, Borriello F, Specht H, et al. (2022-03-18). "Prioritized single-cell proteomics reveals molecular and functional polarization across primary macrophages".
2892:
Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, et al. (March 2001). "Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology".
3169:"Proteomic analysis of differentially expressed protein in hemocytes of wild giant freshwater prawn Macrobrachium rosenbergii infected with infectious hypodermal and hematopoietic necrosis virus (IHHNV)" 525:
Several hybrid technologies use antibody-based purification of individual analytes and then perform mass spectrometric analysis for identification and quantification. Examples of these methods are the
1071:. Such work shows that the fetal proteins detected in pregnant woman's blood originate from a diverse group of tissues and organs from the developing fetus. The proteomic networks contain many 5540: 1162:. Similar datasets in other cell types, tissue types, and species, particularly using deep shotgun mass spectrometry, will be an immensely important resource for research in fields like 1213:
journals are more focused on the large-scale analysis of whole proteomes or at least large sets of proteins. Some relevant proteomics journals are listed below (with their publishers).
1223: 2971:
Ge LQ, Cheng Y, Wu JC, Jahn GC (October 2011). "Proteomic analysis of insecticide triazophos-induced mating-responsive proteins of Nilaparvata lugens Stål (Hemiptera: Delphacidae)".
414:
studies. These are among the most common tools used by molecular biologists today. There are several specific techniques and protocols that use antibodies for protein detection. The
6519: 109:
The first studies of proteins that could be regarded as proteomics began in 1974, after the introduction of the two-dimensional gel and mapping of the proteins from the bacterium
1870:
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, et al. (July 1995). "Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium".
6534: 797: 782: 470:
is subjected to multiple steps of chemical degradation to resolve its sequence. These early methods have mostly been supplanted by technologies that offer higher throughput.
267:. Some proteins undergo all these modifications, often in time-dependent combinations. This illustrates the potential complexity of studying protein structure and function. 6468: 3434:
Eichelbaum K, Winter M, Berriel Diaz M, Herzig S, Krijgsveld J (October 2012). "Selective enrichment of newly synthesized proteins for quantitative secretome analysis".
750:
One major development to come from the study of human genes and proteins has been the identification of potential new drugs for the treatment of disease. This relies on
687:
have revealed applications in protein analysis. The extension of using organic molecules to observe their reaction with proteins reveals extensive methods to tag them.
718:. However, using ketones and aldehydes as bioorthogonal reporters revealed slow kinetics indicating that while effective for labeling, the concentration must be high. 2860: 5279:
Ceciliani F, Eckersall D, Burchmore R, Lecchi C (March 2014). "Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics".
4049:
Ceciliani F, Eckersall D, Burchmore R, Lecchi C (March 2014). "Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics".
529:, developed by Randall Nelson in 1995, and the SISCAPA (Stable Isotope Standard Capture with Anti-Peptide Antibodies) method, introduced by Leigh Anderson in 2004. 679:
Ketone and aldehyde mechanism with cell surface labeling. Staudinger ligations and their interaction with azide groups for labeling are shown in the second figure.
993:
bioinformatics resource portal. The applications of bioinformatics-based proteomics include medicine, disease diagnosis, biomarker identification, and many more.
762:
Proteomics is also used to reveal complex plant-insect interactions that help identify candidate genes involved in the defensive response of plants to herbivory.
3009:
Reumann S (May 2011). "Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics".
1075:
that are proxies for development and illustrate the potential clinical application of this technology as a way to monitor normal and abnormal fetal development.
5576: 1427: 568:
In addition, the first promising attempts to decipher the proteome of animal tumors have recently been reported. This method was used as a functional method in
777:
Interaction proteomics is the analysis of protein interactions from scales of binary interactions to proteome- or network-wide. Most proteins function via
101:. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells and in single cells. 6348: 478: 3682:"Proteome Analysis of Rice (Oryza sativa L.) Mutants Reveals Differentially Induced Proteins during Brown Planthopper (Nilaparvata lugens) Infestation" 699:
synthetase to incorporate into proteins. This has allowed AHA to assist in determine the identity of newly synthesized proteins created in response to
6042: 662:
This is a promising and newer microarray application for the diagnosis, study and treatment of complex diseases such as cancer. The technology merges
294:
Therefore, a "proteomics" study may become complex very quickly, even if the topic of study is restricted. In more ambitious settings, such as when a
5545: 3227:
Weston AD, Hood L (2004). "Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine".
2322:
Washburn MP, Wolters D, Yates JR (March 2001). "Large-scale analysis of the yeast proteome by multidimensional protein identification technology".
509:
separation. More recently, on-line methods have been developed where individual peptides (in bottom-up proteomics approaches) are separated using
83:. It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of 989:
techniques, researchers are capable of faster analysis and data storage. A good place to find lists of current programs and databases is on the
212:—causes a protein to become a target for binding or interacting with a distinct set of other proteins that recognize the phosphorylated domain. 1059:
whole blood. This computational approach circumvented a major limitation, the abundance of maternal proteins interfering with the detection of
1158:
provides quantitative protein expression data for ~200 proteins in over 4,000 tumor samples with matched transcriptomic and genomic data from
6390: 6037: 5476: 5457: 5437: 5417: 5335: 5262: 3797: 3354: 3292: 625: 422:
may be used for detection and quantification of individual proteins, where in an initial step, a complex protein mixture is separated using
373:
shows increased reproducibility and repeatability compared with shotgun methods, although at the expense of data density and effectiveness.
291:. Further increasing proteome complexity, as mentioned, most proteins are able to undergo a wide range of post-translational modifications. 79:
Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the
5841: 1585:"Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling" 3093:
Jensen ON (February 2004). "Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry".
565:
post-translational modification also are considered, the total number of unique human proteins is estimated to range in the low millions.
4006:
Biomarkers Definitions Working Group (March 2001). "Biomarkers and surrogate endpoints: preferred definitions and conceptual framework".
943:
and secretion pathways using proteomic approaches, has recently emerged as an important tool for the discovery of biomarkers of disease.
152:
In the past this phenomenon was assessed by RNA analysis, which was found to lack correlation with protein content. It is now known that
5249: 1450: 506: 2561:"Spectral quality overrides software score-A brief tutorial on the analysis of peptide fragmentation data for mass spectrometry laymen" 1063:, to fetal proteomic analysis of maternal blood. Computational models can use fetal gene transcripts previously identified in maternal 6075: 1218: 884: 477:-based techniques, a development that was made possible by the discovery of "soft ionization" methods developed in the 1980s, such as 328:
that profoundly affect their activities; for example, some proteins are not active until they become phosphorylated. Methods such as
5569: 5354: 5346: 4560: 1480: 928: 415: 3615: 3602:
Rakwal R, Komatsu S (July 2000). "Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis".
658:
Mechanisms showing how AHA labels onto proteins and where biotin-FLAG-alkyne tags mark the amino acid. Hand Drawn via Sigma Aldrich
3391:
Stoevesandt O, Taussig MJ (August 2012). "Affinity proteomics: the role of specific binding reagents in human proteome analysis".
6454: 2778:"The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing" 1422: 1047: 825: 867:
is also informative). Proteome-wide analysis of protein interactions, and integration of these interaction patterns into larger
778: 675: 597: 501:
For the analysis of complex biological samples, a reduction of sample complexity is required. This may be performed off-line by
6422: 6368: 1343: 324: 166: 346:
many proteins form complexes with other proteins or RNA molecules, and only function in the presence of these other molecules.
4196:"Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation" 2906: 526: 1101:
as cell cycle and priming of cancer cells for drug resistance Biological systems are subject to a variety of perturbations (
6461: 2868: 454:
higher throughput than antibody-based, and they sometimes can identify and quantify proteins for which no antibody exists.
6396: 1485: 907: 726: 688: 663: 510: 6577: 6572: 5562: 1989:"Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models" 1444: 1338: 1230: 1015: 924: 972:
other. This understanding is achieved using different technologies such as X-ray crystallography and NMR spectroscopy.
6312: 5053:"Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics" 93:
generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to
6541: 433:
specific to that modification. For example, some antibodies only recognize certain proteins when they are tyrosine-
370: 2414:
Domon B, Aebersold R (July 2010). "Options and considerations when selecting a quantitative proteomics strategy".
2367:"Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry" 1505:
Anderson NL, Anderson NG (August 1998). "Proteome and proteomics: new technologies, new concepts, and new words".
319:
produced in abundance may be degraded rapidly or translated inefficiently, resulting in a small amount of protein.
6514: 6488: 6402: 1303: 1235: 1114: 888:
same or similar expression profiles may also be functionally related. There are technologies such as 2D-PAGE and
829: 817: 809: 570: 387:
In proteomics, there are multiple methods to study proteins. Generally, proteins may be detected by using either
122: 4540: 275:
A cell may make different sets of proteins at different times or under different conditions, for example during
149:
in different cell types, which means that even the basic set of proteins produced in a cell must be identified.
6546: 6358: 6203: 6135: 2510:"Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses" 1118: 1106: 1034: 561:
has been established as the major unbiased approach for identifying new peroxisomal proteins on a large scale.
280: 4245:"Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes" 1203:
Numerous journals are dedicated to the field of proteomics and related areas. Note that journals dealing with
654: 6477: 6343: 6215: 4489:"High-throughput discovery and characterization of fetal protein trafficking in the blood of pregnant women" 1393: 1159: 860: 833: 684: 613: 514: 482: 3905:
Sabidó E, Selevsek N, Aebersold R (August 2012). "Mass spectrometry-based proteomics for systems biology".
2036:
Dhingra V, Gupta M, Andacht T, Fu ZF (August 2005). "New frontiers in proteomics research: a perspective".
1548:
Blackstock WP, Weir MP (March 1999). "Proteomics: quantitative and physical mapping of cellular proteins".
6384: 6300: 6103: 6068: 5651: 3867:
Bensimon A, Heck AJ, Aebersold R (7 July 2012). "Mass spectrometry-based proteomics and network biology".
3236: 2286: 1328: 1021: 805: 700: 5108:
Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, et al. (December 2016).
6363: 6317: 5736: 5711: 5691: 1242: 1167: 1122: 1026: 276: 4381:"A systematic framework for molecular dynamics simulations of protein post-translational modifications" 2141:
Srinivas PR, Verma M, Zhao Y, Srivastava S (August 2002). "Proteomics for cancer biomarker discovery".
1734:"Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments" 1840:"[48] Two-dimensional polyacrylamide gel electrophoresis for separation of ribosomal proteins" 6123: 6108: 5956: 5766: 5716: 5064: 4392: 2617: 2230: 1926: 1308: 1259: 1254: 1079: 1072: 864: 801: 786: 490: 340: 126: 94: 80: 20: 4104:"Increased expression of BRCA2 and RAD51 in lymph node metastases of canine mammary adenocarcinomas" 3241: 2653:"Selection and identification of single domain antibody fragments from camel heavy-chain antibodies" 1583:
Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. (March 2016).
6598: 6551: 6333: 6307: 6165: 6152: 6113: 5871: 5741: 3645:
Wu J, Baldwin IT (2010). "New insights into plant responses to the attack from insect herbivores".
2291: 1417: 1383: 1368: 1318: 730: 486: 228: 84: 2700:
Stumpp MT, Binz HK, Amstutz P (August 2008). "DARPins: a new generation of protein therapeutics".
6567: 6287: 6098: 6032: 5986: 5966: 5951: 5776: 5771: 5585: 5314: 5248:
Belhajjame K, Embury SM, Fan H, Goble CA, Hermjakob H, Hubbard SJ, et al. (September 2005).
5236: 4806: 4578: 4440:"Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications" 4176: 4133: 4084: 4031: 3846: 3627: 3459: 3416: 3368: 3306: 3034: 2918: 2682: 2590: 2439: 2347: 2123: 1895: 1771: 1530: 1378: 1358: 1323: 868: 848: 821: 715: 418:(ELISA) has been used for decades to detect and quantitatively measure proteins in samples. The 365: 2365:
Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham AJ, Bunk DM, et al. (February 2010).
1839: 5051:
Malmström E, Kilsgård O, Hauri S, Smeds E, Herwald H, Malmström L, Malmström J (January 2016).
733:. This reaction has already been used to label other biomolecules in living cells and animals. 6603: 6524: 6498: 6338: 6147: 6061: 5971: 5851: 5706: 5509: 5472: 5453: 5433: 5413: 5392: 5350: 5342: 5331: 5306: 5258: 5228: 5188: 5139: 5090: 5033: 4982: 4947: 4906: 4857: 4774: 4723: 4674: 4625: 4566: 4556: 4518: 4469: 4420: 4361: 4274: 4225: 4168: 4125: 4076: 4023: 3988: 3922: 3884: 3838: 3803: 3793: 3762: 3713: 3662: 3619: 3584: 3543: 3494: 3451: 3408: 3360: 3350: 3298: 3288: 3254: 3198: 3149: 3110: 3075: 3026: 2988: 2910: 2842: 2834: 2799: 2758: 2717: 2674: 2633: 2582: 2541: 2490: 2431: 2396: 2339: 2304: 2258: 2199: 2150: 2115: 2072: 2053: 2018: 1944: 1887: 1846:, Nucleic Acids and Protein Synthesis Part F, vol. 30, Academic Press, pp. 497–505, 1820: 1763: 1714: 1665: 1614: 1565: 1522: 1438: 1353: 1046:
Most programs available for protein analysis are not written for proteins that have undergone
981: 956: 940: 932: 889: 592: 550:
females. The results indicated that these proteins participate in the reproductive process of
474: 463: 392: 329: 98: 34: 5268: 3821:
Visser NF, Heck AJ (June 2008). "Surface plasmon resonance mass spectrometry in proteomics".
1130:, on the level of the entire system. In this way, proteomics can be seen as complementary to 737:
ketone condensation while effective require a high concentration making it cost inefficient.
6262: 6257: 5696: 5499: 5382: 5374: 5296: 5288: 5220: 5178: 5170: 5129: 5121: 5080: 5072: 5023: 5013: 4974: 4937: 4926:"The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum" 4896: 4888: 4847: 4837: 4798: 4764: 4754: 4713: 4705: 4664: 4656: 4617: 4548: 4508: 4500: 4459: 4451: 4410: 4400: 4351: 4341: 4264: 4256: 4215: 4207: 4160: 4115: 4066: 4058: 4015: 3978: 3970: 3914: 3876: 3830: 3785: 3752: 3744: 3703: 3693: 3680:
Sangha JS, Chen YH, Kaur J, Khan W, Abduljaleel Z, Alanazi MS, et al. (February 2013).
3654: 3611: 3574: 3533: 3525: 3486: 3443: 3400: 3340: 3332: 3278: 3277:, Methods in Molecular Biology, vol. 2228, New York, NY: Springer US, pp. 85–116, 3246: 3188: 3180: 3141: 3102: 3065: 3018: 2980: 2950: 2902: 2826: 2789: 2776:
Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG, et al. (August 2016).
2748: 2709: 2664: 2625: 2572: 2531: 2521: 2480: 2470: 2459:"A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of this Field" 2423: 2386: 2378: 2331: 2296: 2248: 2238: 2189: 2181: 2105: 2045: 2008: 2000: 1934: 1879: 1847: 1810: 1802: 1753: 1745: 1704: 1696: 1655: 1645: 1604: 1596: 1557: 1514: 1333: 1030: 692: 621: 620:
Another quantitative approach is the accurate mass and time (AMT) tag approach developed by
111: 4194:
Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, et al. (September 2007).
2817:
Nelson RW, Krone JR, Bieber AL, Williams P (April 1995). "Mass spectrometric immunoassay".
356:. One major factor affecting reproducibility in proteomics experiments is the simultaneous 121:
is a blend of the words "protein" and "genome". It was coined in 1994 by then-Ph.D student
52:
of all living organisms, with many functions such as the formation of structural fibers of
6529: 6277: 6267: 6252: 6188: 5981: 5946: 5535: 5028: 4590: 3880: 3345: 3331:, Methods in Molecular Biology, vol. 893, Totowa, NJ: Humana Press, pp. 85–100, 1388: 1294: 1135: 960: 852: 766: 333: 240: 181: 146: 142: 26: 5361:
Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA (December 2005).
5068: 4605: 4396: 4243:
Gupta N, Benhamida J, Bhargava V, Goodman D, Kain E, Kerman I, et al. (July 2008).
3658: 3324: 2621: 2234: 1930: 1758: 1733: 980:
Much proteomics data is collected with the help of high throughput technologies such as
6608: 6434: 6272: 6175: 6118: 5836: 5646: 5387: 5362: 5183: 5158: 5134: 5109: 5085: 5052: 4901: 4876: 4852: 4825: 4769: 4742: 4718: 4693: 4692:
Derks J, Leduc A, Wallmann G, Huffman RG, Willetts M, Khan S, et al. (July 2022).
4669: 4644: 4513: 4488: 4464: 4439: 4415: 4380: 4356: 4329: 4269: 4244: 4220: 4195: 3983: 3958: 3757: 3732: 3708: 3681: 3538: 3513: 3193: 3168: 2536: 2509: 2485: 2458: 2391: 2366: 2253: 2218: 2013: 1988: 1815: 1790: 1709: 1684: 1660: 1633: 1609: 1584: 1363: 1280: 1110: 986: 952: 856: 517:; the direct coupling of separation and analysis explains the term "on-line" analysis. 434: 288: 244: 227:
is a small protein that may be affixed to certain protein substrates by enzymes called
189: 5504: 5487: 5157:
Liu Y, Buil A, Collins BC, Gillet LC, Blum LC, Cheng LY, et al. (February 2015).
5110:"Proteomics reveals the effects of sustained weight loss on the human plasma proteome" 2669: 2652: 1732:
Gatto L, Aebersold R, Cox J, Demichev V, Derks J, Emmott E, et al. (March 2023).
1561: 493:
workflows where often additional separation is performed before analysis (see below).
6592: 6247: 6193: 6157: 5916: 5811: 5701: 5676: 5671: 5530: 5406: 4810: 3310: 2594: 2194: 2169: 1987:
Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS (December 2008).
1851: 1775: 1060: 837: 264: 256: 153: 53: 49: 5488:"Biomarkers of cardiovascular disease: molecular basis and practical considerations" 5318: 5240: 4180: 4137: 4088: 3850: 3631: 3420: 3372: 3038: 2922: 2443: 2351: 2092:
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (November 2006).
2004: 1534: 307:
Proteomics gives a different level of understanding than genomics for many reasons:
6237: 6198: 6130: 5961: 5941: 5906: 5901: 5891: 5886: 5866: 5846: 5756: 5726: 5686: 5666: 5656: 5636: 5631: 5626: 5621: 3748: 3463: 2686: 2127: 2094:"Global, in vivo, and site-specific phosphorylation dynamics in signaling networks" 1899: 1433: 1143: 920: 419: 411: 407: 4035: 2651:
Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (September 1997).
2049: 5469:
Proteome Research: New Frontiers in Functional Genomics (Principles and Practice)
4942: 4925: 4759: 4621: 4405: 3974: 3943: 3918: 3477:
Lang K, Chin JW (January 2014). "Bioorthogonal reactions for labeling proteins".
3323:
Nikolov, Miroslav; Schmidt, Carla; Urlaub, Henning (2012), Marcus, Katrin (ed.),
2954: 2753: 2736: 2713: 6210: 6142: 6011: 6006: 5976: 5931: 5876: 5816: 5801: 5796: 5761: 5721: 5611: 5601: 5596: 4978: 4660: 3789: 3336: 3283: 3184: 1456: 1373: 1139: 1064: 936: 813: 790: 252: 248: 5018: 5001: 4842: 4709: 4552: 4330:"A local average distance descriptor for flexible protein structure comparison" 4120: 4103: 3579: 3562: 3529: 3106: 3070: 3053: 2737:"Aptamers: an emerging class of molecules that rival antibodies in diagnostics" 2608:
Duncan MW (June 2012). "Good mass spectrometry and its place in good science".
2457:
Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC (July 2020).
2223:
Proceedings of the National Academy of Sciences of the United States of America
2110: 2093: 1806: 1749: 1274: 6242: 6232: 6227: 5996: 5991: 5921: 5861: 5826: 5821: 5791: 5751: 5731: 5661: 5641: 5224: 4802: 1462: 1348: 1270: 1102: 403: 361: 284: 61: 5292: 4965:
Anderson L (July 2014). "Six decades searching for meaning in the proteome".
4629: 4604:
Peters-Clarke, Trenton M.; Coon, Joshua J.; Riley, Nicholas M. (2024-05-21).
4164: 4062: 3834: 2794: 2777: 2526: 2475: 1883: 6354:
Matrix-assisted laser desorption ionization-time of flight mass spectrometer
6222: 5911: 5896: 5881: 5831: 5806: 5159:"Quantitative variability of 342 plasma proteins in a human twin population" 4875:
Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, et al. (November 2013).
4379:
Petrov D, Margreitter C, Grandits M, Oostenbrink C, Zagrovic B (July 2013).
4346: 4019: 2243: 1518: 1403: 1179: 1171: 1151: 901: 847:
Knowledge of protein-protein interactions is especially useful in regard to
260: 224: 197: 5513: 5396: 5310: 5232: 5192: 5143: 5094: 5037: 4986: 4951: 4910: 4861: 4778: 4727: 4678: 4570: 4522: 4504: 4473: 4424: 4365: 4278: 4229: 4172: 4129: 4080: 4027: 3992: 3926: 3888: 3842: 3807: 3766: 3717: 3666: 3623: 3588: 3547: 3498: 3455: 3412: 3364: 3302: 3258: 3202: 3153: 3114: 3079: 3030: 3022: 2992: 2914: 2846: 2803: 2762: 2721: 2637: 2586: 2545: 2494: 2435: 2400: 2343: 2308: 2262: 2203: 2154: 2119: 2057: 2022: 1824: 1767: 1718: 1669: 1618: 1569: 769:
provides numerous tools and techniques to detect protein targets of drugs.
6446: 5174: 5125: 4487:
Maron JL, Alterovitz G, Ramoni M, Johnson KL, Bianchi DW (December 2009).
4260: 3616:
10.1002/1522-2683(20000701)21:12<2492::AID-ELPS2492>3.0.CO;2-2
2678: 2185: 1948: 1891: 1526: 6084: 6001: 5926: 5856: 5786: 5781: 5606: 5000:
Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (March 2016).
4826:"Exploring functional protein covariation across single cells using nPOP" 4455: 4151:
Hathout Y (April 2007). "Approaches to the study of the cell secretome".
3698: 1313: 1247: 1175: 1131: 755: 711: 502: 430: 423: 388: 205: 172:
post-translational modifications are critical to the protein's function.
138: 72: 65: 5076: 2830: 311:
the level of transcription of a gene gives only a rough estimate of its
6183: 6016: 5746: 5616: 5301: 4892: 4211: 4071: 2861:"SISCAPA, Stable Isotope Standard Capture with Anti-Peptide Antibodies" 1634:"The Human Genome Project: big science transforms biology and medicine" 1467: 1398: 1205: 1068: 1006:
to predict what proteins are in the sample with a degree of certainty.
1003: 467: 360:
of many more peptides than mass spectrometers can measure. This causes
357: 209: 185: 45: 5554: 4743:"Learning from natural variation across the proteomes of single cells" 3490: 3404: 3250: 3145: 2984: 2838: 2382: 2300: 1700: 1600: 192:. The addition of a phosphate to particular amino acids—most commonly 5681: 5549: 5378: 5257:. Proceedings of the UK e-Science All Hands Meeting. Nottingham, UK. 4541:"System-wide peripheral biomarker discovery using information theory" 3447: 3167:
Alinejad T, Bin KQ, Vejayan J, Othman RY, Bhassu S (September 2015).
2629: 2577: 2560: 2427: 1939: 1914: 1163: 1127: 990: 751: 707: 201: 193: 2907:
10.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6
2219:"Quantification of protein half-lives in the budding yeast proteome" 349:
protein degradation rate plays an important role in protein content.
6520:
Stable isotope labeling by/with amino acids in cell culture (SILAC)
1459:—The collaborative, 3D encyclopedia of proteins and other molecules 1150:
approaches in integrative analyses attempting to define biological
406:
to particular proteins, or their modified forms, have been used in
129:, which founded the first dedicated proteomics laboratory in 1995. 4824:
Leduc A, Huffman RG, Cantlon J, Khan S, Slavov N (December 2022).
2335: 1650: 1147: 722: 596: 426:
and then the protein of interest is identified using an antibody.
31: 25: 2217:
Belle A, Tanay A, Bitincka L, Shamir R, O'Shea EK (August 2006).
5408:
Proteomics in Practice: A Laboratory Manual of Proteome Analysis
1078:
An information-theoretic framework has also been introduced for
316: 6450: 6057: 5558: 3784:. Methods in Molecular Biology. Vol. 800. pp. 33–53. 3733:"How chemoproteomics can enable drug discovery and development" 56:, enzymatic digestion of food, or synthesis and replication of 5363:"Platelet genomics and proteomics in human health and disease" 5002:"Plasma Proteome Profiling to Assess Human Health and Disease" 4694:"Increasing the throughput of sensitive proteomics by plexDIA" 3780:
de Mol NJ (2012). "Surface Plasmon Resonance for Proteomics".
3563:"Redefining clinical trials: the age of personalized medicine" 3325:"Quantitative Mass Spectrometry-Based Proteomics: An Overview" 1962: 57: 4310: 1683:
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR (April 2013).
714:
condensations show that they are best suited for in vitro or
339:
many transcripts give rise to more than one protein, through
6535:
Isobaric tags for relative and absolute quantitation (iTRAQ)
6053: 5467:
Wilkins MR, Williams KL, Appel RD, Hochstrasser DF (1997).
4292: 462:
One of the earliest methods for protein analysis has been
5251:
Proteome Data Integration: Characteristics and Challenges
4539:
Alterovitz G, Xiang M, Liu J, Chang A, Ramoni MF (2008).
3222: 3220: 3218: 3216: 3214: 3212: 2170:"Correlation between protein and mRNA abundance in yeast" 1209:
are usually more focused on structure and function while
721:
Certain proteins can be detected via their reactivity to
4877:"TCPA: a resource for cancer functional proteomics data" 2168:
Gygi SP, Rochon Y, Franza BR, Aebersold R (March 1999).
1067:
to create a comprehensive proteomic network of the term
3938: 3936: 3054:"Antibody-based proteomics for human tissue profiling" 5328:
Introduction to proteomics: tools for the new biology
729:
can bear azide groups which react with phosphines in
1054:
Computational methods in studying protein biomarkers
976:
Bioinformatics for proteomics (proteome informatics)
6560: 6507: 6377: 6326: 6286: 6174: 6091: 6025: 4606:"Instrumentation at the Leading Edge of Proteomics" 1791:"Single-cell protein analysis by mass spectrometry" 872: 479:
matrix-assisted laser desorption/ionization (MALDI)
336:
are used to study post-translational modifications.
5405: 4534: 4532: 1969:. New South Wales, Australia: Macquarie University 1963:"APAF - The Australian Proteome Analysis Facility" 1685:"Protein analysis by shotgun/bottom-up proteomics" 695:represent new growing technologies in proteomics. 429:Modified proteins may be studied by developing an 271:Distinct proteins are made under distinct settings 4438:Margreitter C, Petrov D, Zagrovic B (July 2013). 68:that send important signals throughout the body. 3862: 3860: 2966: 2964: 601:LCQ Mass Spectrometer used in mass spectrometry. 399:Protein detection with antibodies (immunoassays) 343:or alternative post-translational modifications. 5430:Principles Of Proteomics (Advanced Text Series) 4328:Wang HW, Chu CH, Wang WC, Pai TW (April 2014). 3126: 3124: 883:Expression proteomics includes the analysis of 781:, and one goal of interaction proteomics is to 60:. In addition, other kinds of proteins include 3900: 3898: 391:(immunoassays), electrophoretic separation or 303:Limitations of genomics and proteomics studies 247:, proteins may be subjected to (among others) 6462: 6069: 5570: 1428:National Center for Biotechnology Information 800:. While the most traditional method is yeast 671:Protein Detection via Bioorthogonal Chemistry 322:as mentioned above, many proteins experience 64:that protect an organism from infection, and 8: 3004: 3002: 703:and to identify proteins secreted by cells. 369:particularly on the protein level. Notably, 6349:Matrix-assisted laser desorption ionization 3686:International Journal of Molecular Sciences 773:Interaction proteomics and protein networks 6469: 6455: 6447: 6417: 6076: 6062: 6054: 5577: 5563: 5555: 5444:(covers almost all branches of proteomics) 5432:. Oxford, UK: BIOS Scientific Publishers. 3731:Moellering RE, Cravatt BF (January 2012). 2887: 2885: 188:and structural proteins in the process of 6043:Timeline of biology and organic chemistry 5503: 5386: 5300: 5182: 5133: 5084: 5027: 5017: 4941: 4900: 4851: 4841: 4768: 4758: 4717: 4668: 4512: 4463: 4414: 4404: 4355: 4345: 4268: 4219: 4119: 4070: 3982: 3756: 3707: 3697: 3578: 3537: 3344: 3282: 3240: 3192: 3069: 2793: 2752: 2668: 2576: 2535: 2525: 2484: 2474: 2390: 2290: 2252: 2242: 2193: 2109: 2012: 1938: 1814: 1757: 1708: 1659: 1649: 1608: 5539:) is being considered for deletion. See 2508:Coorssen JR, Yergey AL (December 2015). 939:, a subfield of proteomics that studies 892:that are used in expression proteomics. 674: 653: 3514:"The Future of Bioorthogonal Chemistry" 1497: 587:Mass spectrometry and protein profiling 364:differences between experiments due to 4586: 4576: 4008:Clinical Pharmacology and Therapeutics 2038:International Journal of Pharmaceutics 578:High-throughput proteomic technologies 473:More recently implemented methods use 6391:European Molecular Biology Laboratory 6038:Nobel Prize in Physiology or Medicine 5367:The Journal of Clinical Investigation 4102:Klopfleisch R, Gruber AD (May 2009). 3957:Strimbu K, Tavel JA (November 2010). 3881:10.1146/annurev-biochem-072909-100424 1154:more comprehensively. As an example, 626:Pacific Northwest National Laboratory 527:MSIA (mass spectrometric immunoassay) 7: 5424:(focused on 2D-gels, good on detail) 1915:"Government backs proteome proposal" 783:identify binary protein interactions 466:(introduced in 1967) where a single 299:dynamic complexity of the proteome. 4649:Molecular & Cellular Proteomics 4645:"Scaling Up Single-Cell Proteomics" 3659:10.1146/annurev-genet-102209-163500 3095:Current Opinion in Chemical Biology 3058:Molecular & Cellular Proteomics 1795:Current Opinion in Chemical Biology 1451:Proteomics Identifications Database 871:, is crucial towards understanding 836:, and experimental methods such as 664:laser capture microdissection (LCM) 6542:Isotope-coded affinity tags (ICAT) 3329:Quantitative Methods in Proteomics 3275:Quantitative Methods in Proteomics 2865:Broad Institute of MIT and Harvard 798:probe protein–protein interactions 650:Reverse-phased protein microarrays 14: 5543:to help reach a consensus. › 5505:10.1161/CIRCULATIONAHA.104.482570 4493:Proteomics. Clinical Applications 1481:European Bioinformatics Institute 1219:Molecular and Cellular Proteomics 955:, proteomic technologies such as 929:enzyme linked immunosorbent assay 796:Several methods are available to 513:and then, directly ionized using 485:. These methods gave rise to the 416:enzyme-linked immunosorbent assay 6547:Metal-coded affinity tag (MeCAT) 6429: 6428: 6416: 3907:Current Opinion in Biotechnology 3782:Chemical Genomics and Proteomics 3052:Uhlen M, Ponten F (April 2005). 2941:Stål (Hemiptera: Delphacidae)". 2782:Journal of Laboratory Automation 1423:Human Protein Reference Database 1287: 1273: 1048:post-translational modifications 1042:Post-translational modifications 826:dual polarisation interferometry 804:, a powerful emerging method is 325:post-translational modifications 161:Post-translational modifications 19:For the journal Proteomics, see 6369:Chromosome conformation capture 5404:Naven T, Westermeier R (2002). 4450:(Web Server issue): W422–W426. 3963:Current Opinion in HIV and AIDS 1344:List of omics topics in biology 449:Antibody-free protein detection 295: 167:Post-translational modification 5349:(electronic, on Netlibrary?), 5213:Journal of Orthopaedic Science 5029:11858/00-001M-0000-002B-A17E-4 3749:10.1016/j.chembiol.2012.01.001 3346:11858/00-001M-0000-000F-C327-D 2735:Jayasena SD (September 1999). 2174:Molecular and Cellular Biology 2073:"The major world of microRNAs" 1838:Wittmann, H. G. (1974-01-01), 1632:Hood L, Rowen L (2013-09-13). 765:A branch of proteomics called 533:Current research methodologies 1: 6397:National Institutes of Health 5450:Proteomics Sample Preparation 4924:Anderson NL (February 2010). 3869:Annual Review of Biochemistry 3561:Vaidyanathan G (March 2012). 2670:10.1016/S0014-5793(97)01062-4 2050:10.1016/j.ijpharm.2005.04.010 2005:10.1093/bioinformatics/btn553 1913:Swinbanks D (December 1995). 1562:10.1016/S0167-7799(98)01245-1 1486:Netherlands Proteomics Centre 908:National Institutes of Health 727:Non-proteinogenic amino acids 511:reversed-phase chromatography 483:electrospray ionization (ESI) 200:mediated by serine-threonine 16:Large-scale study of proteins 6578:Data-independent acquisition 5330:. Totowa, NJ: Humana Press. 4943:10.1373/clinchem.2009.126706 4760:10.1371/journal.pbio.3001512 4622:10.1021/acs.analchem.3c04497 4406:10.1371/journal.pcbi.1003154 3975:10.1097/COH.0b013e32833ed177 3919:10.1016/j.copbio.2011.11.014 3229:Journal of Proteome Research 3134:Journal of Proteome Research 2973:Journal of Proteome Research 2955:10.1016/j.cropro.2010.07.009 2714:10.1016/j.drudis.2008.04.013 2610:Journal of Mass Spectrometry 2565:Journal of Mass Spectrometry 2371:Journal of Proteome Research 2279:Journal of Proteome Research 1852:10.1016/0076-6879(74)30050-x 1445:Protein Information Resource 1339:List of biological databases 1231:Journal of Proteome Research 1016:Protein structure prediction 925:immunohistochemical staining 779:protein–protein interactions 383:Methods of studying proteins 44:is the large-scale study of 6313:Structure-based drug design 4979:10.1016/j.jprot.2014.03.005 4661:10.1016/j.mcpro.2021.100179 4153:Expert Review of Proteomics 3823:Expert Review of Proteomics 3790:10.1007/978-1-61779-349-3_4 3393:Expert Review of Proteomics 3337:10.1007/978-1-61779-885-6_7 3284:10.1007/978-1-0716-1024-4_8 3185:10.1016/j.mgene.2015.05.004 37:samples on a sample carrier 6625: 5019:10.1016/j.cels.2016.02.015 4843:10.1186/s13059-022-02817-5 4710:10.1038/s41587-022-01389-w 4553:10.1142/9789812776136_0024 4385:PLOS Computational Biology 4121:10.1354/vp.08-VP-0212-K-FL 3580:10.1016/j.cell.2012.02.041 3530:10.1021/acscentsci.8b00251 3512:Devaraj NK (August 2018). 3107:10.1016/j.cbpa.2003.12.009 3071:10.1074/mcp.R500009-MCP200 2754:10.1093/clinchem/45.9.1628 2111:10.1016/j.cell.2006.09.026 1807:10.1016/j.cbpa.2020.04.018 1789:Slavov N (February 2021). 1750:10.1038/s41592-023-01785-3 1013: 899: 863:(GRNs, where knowledge of 590: 366:data-dependent acquisition 164: 18: 6573:Targeted proteomics / SRM 6515:Label-free quantification 6489:Protein mass spectrometry 6484: 6412: 6403:Wellcome Sanger Institute 5592: 5225:10.1007/s00776-004-0878-0 5163:Molecular Systems Biology 5114:Molecular Systems Biology 4803:10.1101/2022.03.16.484655 4741:Slavov N (January 2022). 4643:Slavov N (January 2022). 3647:Annual Review of Genetics 2559:König S (February 2021). 2071:Buckingham S (May 2003). 1304:Activity-based proteomics 1156:The Cancer Proteome Atlas 1115:environment (biophysical) 830:microscale thermophoresis 818:surface plasmon resonance 810:protein mass spectrometry 571:Macrobrachium rosenbergii 554:adult females and males. 216:active in that instance. 180:One such modification is 133:Complexity of the problem 6359:Microfluidic-based tools 6204:Human Connectome Project 6136:Human Microbiome Project 5541:templates for discussion 5293:10.1177/0300985813502819 4165:10.1586/14789450.4.2.239 4063:10.1177/0300985813502819 3835:10.1586/14789450.5.3.425 2795:10.1177/2211068215589580 2527:10.3390/proteomes3040440 2476:10.3390/proteomes8030014 1884:10.1002/elps.11501601185 1107:cellular differentiation 1035:Cryo-electron microscopy 865:protein-DNA interactions 861:gene regulatory networks 816:. Other methods include 281:cellular differentiation 235:Additional modifications 184:, which happens to many 6478:Quantitative proteomics 6344:Electrospray ionization 6216:Human Epigenome Project 5452:. Weinheim: Wiley-VCH. 5412:. Weinheim: Wiley-VCH. 4347:10.1186/1471-2105-15-95 4020:10.1067/mcp.2001.113989 3737:Chemistry & Biology 2244:10.1073/pnas.0605420103 1550:Trends in Biotechnology 1519:10.1002/elps.1150191103 1394:Yeast two-hybrid system 1160:The Cancer Genome Atlas 959:are used for improving 844:computational methods. 834:kinetic exclusion assay 685:bioorthogonal chemistry 683:Recent advancements in 614:Quantitative proteomics 559:Arabidopsis peroxisomes 30:Robotic preparation of 6530:Tandem mass tags (TMT) 6385:DNA Data Bank of Japan 6301:Human proteome project 6104:Computational genomics 5652:Biological engineering 4505:10.1002/prca.200900109 4444:Nucleic Acids Research 3959:"What are biomarkers?" 3023:10.1002/pmic.201000681 2867:. 2015. Archived from 1329:Human proteome project 1022:biomolecular structure 997:Protein identification 741:Practical applications 680: 659: 602: 38: 6364:Isotope affinity tags 6318:Expression proteomics 5737:Developmental biology 5712:Computational biology 5692:Cellular microbiology 5486:Vasan RS (May 2006). 5175:10.15252/msb.20145728 5126:10.15252/msb.20167357 5057:Nature Communications 4967:Journal of Proteomics 4797:: 2022.03.16.484655. 4261:10.1101/gr.074344.107 3944:"What is Proteomics?" 2186:10.1128/MCB.19.3.1720 1844:Methods in Enzymology 1243:Journal of Proteomics 1186:Human plasma proteome 1027:X-ray crystallography 967:Structural proteomics 879:Expression proteomics 873:systems-level biology 806:affinity purification 716:cell surface labeling 706:Recent studies using 689:Unnatural amino acids 678: 657: 600: 557:Proteome analysis of 208:mediated by tyrosine 105:History and etymology 48:. Proteins are vital 29: 6124:Human Genome Project 6109:Comparative genomics 5957:Reproductive biology 5842:Mathematical biology 5767:Evolutionary biology 5717:Conservation biology 5471:. Berlin: Springer. 5448:von Hagen J (2008). 5281:Veterinary Pathology 4698:Nature Biotechnology 4610:Analytical Chemistry 4108:Veterinary Pathology 4051:Veterinary Pathology 3699:10.3390/ijms14023921 3479:ACS Chemical Biology 3436:Nature Biotechnology 2819:Analytical Chemistry 2702:Drug Discovery Today 2416:Nature Biotechnology 2324:Nature Biotechnology 1309:Bottom-up proteomics 1180:evolutionary biology 814:tagged protein baits 731:Staudinger ligations 491:bottom-up proteomics 341:alternative splicing 313:level of translation 229:E3 ubiquitin ligases 127:Macquarie University 95:protein purification 81:Human Genome Project 21:Proteomics (journal) 6561:Acquisition methods 6552:N-terminal labeling 6334:2-D electrophoresis 6308:Call-map proteomics 6166:Structural genomics 6153:Population genomics 6114:Functional genomics 5742:Ecological genetics 5586:Branches of biology 5326:Liebler DC (2002). 5077:10.1038/ncomms10261 5069:2016NatCo...710261M 4547:. pp. 231–42. 4397:2013PLSCB...9E3154P 3518:ACS Central Science 2831:10.1021/ac00103a003 2622:2012JMSp...47..795D 2235:2006PNAS..10313004B 2229:(35): 13004–13009. 1967:www.proteome.org.au 1931:1995Natur.378..653S 1418:Human Protein Atlas 1384:Top-down proteomics 1369:Proteomic chemistry 1319:Functional genomics 869:biological networks 849:biological networks 822:protein microarrays 802:two-hybrid analysis 632:Affinity proteomics 574:protein profiling. 521:Hybrid technologies 371:targeted proteomics 315:into a protein. An 85:functional genomics 6568:Shotgun proteomics 6288:Structural biology 6099:Cognitive genomics 6033:History of biology 5967:Structural biology 5952:Relational biology 5777:Generative biology 5772:Freshwater biology 5428:Twyman RM (2004). 4930:Clinical Chemistry 4893:10.1038/nmeth.2650 4456:10.1093/nar/gkt416 4334:BMC Bioinformatics 4315:prosite.expasy.org 4311:"ExPASy - PROSITE" 4212:10.1101/gr.6427907 2939:Nilaparvata lugens 2741:Clinical Chemistry 2708:(15–16): 695–701. 2143:Clinical Chemistry 1379:Shotgun proteomics 1359:Protein production 1324:Heat stabilization 885:protein expression 746:New drug discovery 681: 660: 603: 544:Nilaparvata lugens 497:Separation methods 39: 6586: 6585: 6525:Isobaric labeling 6499:Mass spectrometry 6444: 6443: 6339:Mass spectrometer 6148:Personal genomics 6051: 6050: 5972:Synthetic biology 5852:Molecular biology 5707:Cognitive biology 5498:(19): 2335–2362. 5478:978-3-540-62753-1 5459:978-3-527-31796-7 5439:978-1-85996-273-2 5419:978-3-527-30354-0 5373:(12): 3370–3377. 5337:978-0-89603-992-6 5264:978-1-904425-53-3 4887:(11): 1046–1047. 4616:(20): 7976–8010. 4545:Biocomputing 2008 4499:(12): 1389–1396. 3799:978-1-61779-348-6 3610:(12): 2492–2500. 3491:10.1021/cb4009292 3405:10.1586/epr.12.34 3356:978-1-61779-884-9 3294:978-1-0716-1023-7 3251:10.1021/pr0499693 3146:10.1021/pr100671c 3140:(12): 6380–6391. 2985:10.1021/pr200414g 2979:(10): 4597–4612. 2383:10.1021/pr9006365 2301:10.1021/pr025556v 1999:(24): 2894–2900. 1701:10.1021/cr3003533 1601:10.1002/stem.2298 1513:(11): 1853–1861. 1439:Protein Data Bank 1411:Protein databases 1354:Phosphoproteomics 1010:Protein structure 982:mass spectrometry 957:mass spectrometry 941:secreted proteins 933:mass spectrometry 890:mass spectrometry 855:, for example in 787:protein complexes 693:functional groups 624:and coworkers at 593:Mass spectrometry 475:mass spectrometry 464:Edman degradation 458:Detection methods 393:mass spectrometry 330:phosphoproteomics 204:, or more rarely 99:mass spectrometry 35:mass spectrometry 6616: 6471: 6464: 6457: 6448: 6432: 6431: 6420: 6419: 6263:Pharmacogenomics 6258:Pharmacogenetics 6078: 6071: 6064: 6055: 5697:Chemical biology 5579: 5572: 5565: 5556: 5517: 5507: 5482: 5463: 5443: 5423: 5411: 5400: 5390: 5379:10.1172/JCI26885 5341: 5322: 5304: 5275: 5274:on 28 June 2006. 5273: 5267:. Archived from 5256: 5244: 5197: 5196: 5186: 5154: 5148: 5147: 5137: 5105: 5099: 5098: 5088: 5048: 5042: 5041: 5031: 5021: 4997: 4991: 4990: 4962: 4956: 4955: 4945: 4921: 4915: 4914: 4904: 4872: 4866: 4865: 4855: 4845: 4821: 4815: 4814: 4789: 4783: 4782: 4772: 4762: 4738: 4732: 4731: 4721: 4689: 4683: 4682: 4672: 4640: 4634: 4633: 4601: 4595: 4594: 4588: 4584: 4582: 4574: 4536: 4527: 4526: 4516: 4484: 4478: 4477: 4467: 4435: 4429: 4428: 4418: 4408: 4376: 4370: 4369: 4359: 4349: 4325: 4319: 4318: 4307: 4301: 4300: 4289: 4283: 4282: 4272: 4255:(7): 1133–1142. 4240: 4234: 4233: 4223: 4206:(9): 1362–1377. 4191: 4185: 4184: 4148: 4142: 4141: 4123: 4099: 4093: 4092: 4074: 4046: 4040: 4039: 4003: 3997: 3996: 3986: 3954: 3948: 3947: 3946:. ProteoConsult. 3940: 3931: 3930: 3902: 3893: 3892: 3864: 3855: 3854: 3818: 3812: 3811: 3777: 3771: 3770: 3760: 3728: 3722: 3721: 3711: 3701: 3692:(2): 3921–3945. 3677: 3671: 3670: 3642: 3636: 3635: 3599: 3593: 3592: 3582: 3573:(6): 1079–1080. 3558: 3552: 3551: 3541: 3509: 3503: 3502: 3474: 3468: 3467: 3448:10.1038/nbt.2356 3431: 3425: 3424: 3388: 3382: 3381: 3380: 3379: 3348: 3320: 3314: 3313: 3286: 3269: 3263: 3262: 3244: 3224: 3207: 3206: 3196: 3164: 3158: 3157: 3128: 3119: 3118: 3090: 3084: 3083: 3073: 3049: 3043: 3042: 3017:(9): 1764–1779. 3006: 2997: 2996: 2968: 2959: 2958: 2933: 2927: 2926: 2889: 2880: 2879: 2877: 2876: 2857: 2851: 2850: 2825:(7): 1153–1158. 2814: 2808: 2807: 2797: 2773: 2767: 2766: 2756: 2747:(9): 1628–1650. 2732: 2726: 2725: 2697: 2691: 2690: 2672: 2648: 2642: 2641: 2630:10.1002/jms.3038 2605: 2599: 2598: 2580: 2578:10.1002/jms.4616 2556: 2550: 2549: 2539: 2529: 2505: 2499: 2498: 2488: 2478: 2454: 2448: 2447: 2428:10.1038/nbt.1661 2411: 2405: 2404: 2394: 2362: 2356: 2355: 2319: 2313: 2312: 2294: 2273: 2267: 2266: 2256: 2246: 2214: 2208: 2207: 2197: 2180:(3): 1720–1730. 2165: 2159: 2158: 2149:(8): 1160–1169. 2138: 2132: 2131: 2113: 2089: 2083: 2082: 2080: 2079: 2068: 2062: 2061: 2033: 2027: 2026: 2016: 1984: 1978: 1977: 1975: 1974: 1959: 1953: 1952: 1942: 1940:10.1038/378653a0 1910: 1904: 1903: 1878:(7): 1090–1094. 1867: 1861: 1860: 1859: 1858: 1835: 1829: 1828: 1818: 1786: 1780: 1779: 1761: 1729: 1723: 1722: 1712: 1695:(4): 2343–2394. 1689:Chemical Reviews 1680: 1674: 1673: 1663: 1653: 1629: 1623: 1622: 1612: 1580: 1574: 1573: 1545: 1539: 1538: 1502: 1475:Research centers 1334:Immunoproteomics 1297: 1292: 1291: 1290: 1283: 1278: 1277: 1031:NMR spectroscopy 961:gene annotations 622:Richard D. Smith 112:Escherichia coli 6624: 6623: 6619: 6618: 6617: 6615: 6614: 6613: 6589: 6588: 6587: 6582: 6556: 6503: 6480: 6475: 6445: 6440: 6408: 6373: 6322: 6282: 6278:Transcriptomics 6268:Systems biology 6253:Paleopolyploidy 6189:Cheminformatics 6170: 6087: 6082: 6052: 6047: 6021: 5982:Systems biology 5947:Quantum biology 5588: 5583: 5544: 5525: 5520: 5485: 5479: 5466: 5460: 5447: 5440: 5427: 5420: 5403: 5360: 5338: 5325: 5278: 5271: 5265: 5254: 5247: 5209: 5205: 5200: 5156: 5155: 5151: 5107: 5106: 5102: 5050: 5049: 5045: 4999: 4998: 4994: 4964: 4963: 4959: 4923: 4922: 4918: 4874: 4873: 4869: 4823: 4822: 4818: 4791: 4790: 4786: 4753:(1): e3001512. 4740: 4739: 4735: 4691: 4690: 4686: 4642: 4641: 4637: 4603: 4602: 4598: 4585: 4575: 4563: 4538: 4537: 4530: 4486: 4485: 4481: 4437: 4436: 4432: 4391:(7): e1003154. 4378: 4377: 4373: 4327: 4326: 4322: 4309: 4308: 4304: 4297:www.uniprot.org 4291: 4290: 4286: 4249:Genome Research 4242: 4241: 4237: 4200:Genome Research 4193: 4192: 4188: 4150: 4149: 4145: 4101: 4100: 4096: 4048: 4047: 4043: 4005: 4004: 4000: 3956: 3955: 3951: 3942: 3941: 3934: 3904: 3903: 3896: 3866: 3865: 3858: 3820: 3819: 3815: 3800: 3779: 3778: 3774: 3730: 3729: 3725: 3679: 3678: 3674: 3644: 3643: 3639: 3604:Electrophoresis 3601: 3600: 3596: 3560: 3559: 3555: 3511: 3510: 3506: 3476: 3475: 3471: 3442:(10): 984–990. 3433: 3432: 3428: 3390: 3389: 3385: 3377: 3375: 3357: 3322: 3321: 3317: 3295: 3271: 3270: 3266: 3242:10.1.1.603.4384 3226: 3225: 3210: 3166: 3165: 3161: 3130: 3129: 3122: 3092: 3091: 3087: 3051: 3050: 3046: 3008: 3007: 3000: 2970: 2969: 2962: 2943:Crop Protection 2935: 2934: 2930: 2891: 2890: 2883: 2874: 2872: 2859: 2858: 2854: 2816: 2815: 2811: 2775: 2774: 2770: 2734: 2733: 2729: 2699: 2698: 2694: 2650: 2649: 2645: 2607: 2606: 2602: 2558: 2557: 2553: 2507: 2506: 2502: 2456: 2455: 2451: 2413: 2412: 2408: 2364: 2363: 2359: 2321: 2320: 2316: 2275: 2274: 2270: 2216: 2215: 2211: 2167: 2166: 2162: 2140: 2139: 2135: 2091: 2090: 2086: 2077: 2075: 2070: 2069: 2065: 2035: 2034: 2030: 1986: 1985: 1981: 1972: 1970: 1961: 1960: 1956: 1912: 1911: 1907: 1872:Electrophoresis 1869: 1868: 1864: 1856: 1854: 1837: 1836: 1832: 1788: 1787: 1783: 1731: 1730: 1726: 1682: 1681: 1677: 1638:Genome Medicine 1631: 1630: 1626: 1582: 1581: 1577: 1547: 1546: 1542: 1507:Electrophoresis 1504: 1503: 1499: 1495: 1477: 1472: 1413: 1408: 1389:Systems biology 1295:Medicine portal 1293: 1288: 1286: 1279: 1272: 1269: 1201: 1188: 1136:transcriptomics 1119:Transcriptional 1098: 1096:Systems biology 1089: 1087:Emerging trends 1056: 1044: 1018: 1012: 999: 978: 969: 949: 904: 898: 881: 853:systems biology 775: 767:chemoproteomics 748: 743: 673: 652: 643: 634: 595: 589: 580: 535: 523: 507:two-dimensional 503:one-dimensional 499: 460: 451: 401: 385: 354:Reproducibility 334:glycoproteomics 305: 273: 241:phosphorylation 239:In addition to 237: 222: 182:phosphorylation 178: 176:Phosphorylation 169: 163: 143:transcriptomics 135: 107: 24: 17: 12: 11: 5: 6622: 6620: 6612: 6611: 6606: 6601: 6591: 6590: 6584: 6583: 6581: 6580: 6575: 6570: 6564: 6562: 6558: 6557: 6555: 6554: 6549: 6544: 6539: 6538: 6537: 6532: 6522: 6517: 6511: 6509: 6508:Quantification 6505: 6504: 6502: 6501: 6496: 6491: 6485: 6482: 6481: 6476: 6474: 6473: 6466: 6459: 6451: 6442: 6441: 6439: 6438: 6426: 6413: 6410: 6409: 6407: 6406: 6400: 6394: 6388: 6381: 6379: 6375: 6374: 6372: 6371: 6366: 6361: 6356: 6351: 6346: 6341: 6336: 6330: 6328: 6327:Research tools 6324: 6323: 6321: 6320: 6315: 6310: 6305: 6304: 6303: 6292: 6290: 6284: 6283: 6281: 6280: 6275: 6273:Toxicogenomics 6270: 6265: 6260: 6255: 6250: 6245: 6240: 6235: 6230: 6225: 6220: 6219: 6218: 6208: 6207: 6206: 6196: 6191: 6186: 6180: 6178: 6176:Bioinformatics 6172: 6171: 6169: 6168: 6163: 6155: 6150: 6145: 6140: 6139: 6138: 6128: 6127: 6126: 6119:Genome project 6116: 6111: 6106: 6101: 6095: 6093: 6089: 6088: 6083: 6081: 6080: 6073: 6066: 6058: 6049: 6048: 6046: 6045: 6040: 6035: 6029: 6027: 6023: 6022: 6020: 6019: 6014: 6009: 6004: 5999: 5994: 5989: 5984: 5979: 5974: 5969: 5964: 5959: 5954: 5949: 5944: 5939: 5934: 5929: 5924: 5919: 5914: 5909: 5904: 5899: 5894: 5889: 5884: 5879: 5874: 5869: 5864: 5859: 5854: 5849: 5844: 5839: 5837:Marine biology 5834: 5829: 5824: 5819: 5814: 5809: 5804: 5799: 5794: 5789: 5784: 5779: 5774: 5769: 5764: 5759: 5754: 5749: 5744: 5739: 5734: 5729: 5724: 5719: 5714: 5709: 5704: 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5654: 5649: 5647:Bioinformatics 5644: 5639: 5634: 5629: 5624: 5619: 5614: 5609: 5604: 5599: 5593: 5590: 5589: 5584: 5582: 5581: 5574: 5567: 5559: 5553: 5552: 5528: 5524: 5523:External links 5521: 5519: 5518: 5483: 5477: 5464: 5458: 5445: 5438: 5425: 5418: 5401: 5358: 5336: 5323: 5276: 5263: 5245: 5219:(2): 160–166. 5206: 5204: 5201: 5199: 5198: 5149: 5100: 5043: 5012:(3): 185–195. 4992: 4957: 4936:(2): 177–185. 4916: 4881:Nature Methods 4867: 4830:Genome Biology 4816: 4784: 4733: 4684: 4635: 4596: 4587:|journal= 4561: 4528: 4479: 4430: 4371: 4320: 4302: 4284: 4235: 4186: 4159:(2): 239–248. 4143: 4114:(3): 416–422. 4094: 4057:(2): 351–362. 4041: 3998: 3969:(6): 463–466. 3949: 3932: 3913:(4): 591–597. 3894: 3875:(1): 379–405. 3856: 3829:(3): 425–433. 3813: 3798: 3772: 3723: 3672: 3637: 3594: 3553: 3524:(8): 952–959. 3504: 3469: 3426: 3399:(4): 401–414. 3383: 3355: 3315: 3293: 3264: 3235:(2): 179–196. 3208: 3159: 3120: 3085: 3064:(4): 384–393. 3044: 2998: 2960: 2949:(11): 1280–5. 2928: 2901:(3): 377–396. 2881: 2852: 2809: 2788:(4): 533–547. 2768: 2727: 2692: 2663:(3): 521–526. 2643: 2616:(6): 795–809. 2600: 2551: 2520:(4): 440–453. 2500: 2449: 2422:(7): 710–721. 2406: 2377:(2): 761–776. 2357: 2330:(3): 242–247. 2314: 2292:10.1.1.460.237 2268: 2209: 2160: 2133: 2104:(3): 635–648. 2084: 2063: 2028: 1993:Bioinformatics 1979: 1954: 1905: 1862: 1830: 1781: 1744:(3): 375–386. 1738:Nature Methods 1724: 1675: 1624: 1595:(3): 601–613. 1575: 1556:(3): 121–127. 1540: 1496: 1494: 1491: 1490: 1489: 1483: 1476: 1473: 1471: 1470: 1465: 1460: 1454: 1448: 1442: 1436: 1431: 1425: 1420: 1414: 1412: 1409: 1407: 1406: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1364:Proteogenomics 1361: 1356: 1351: 1346: 1341: 1336: 1331: 1326: 1321: 1316: 1311: 1306: 1300: 1299: 1298: 1284: 1281:Biology portal 1268: 1265: 1264: 1263: 1251: 1239: 1227: 1200: 1197: 1187: 1184: 1164:cancer biology 1111:carcinogenesis 1097: 1094: 1088: 1085: 1061:fetal proteins 1055: 1052: 1043: 1040: 1033:. As of 2017, 1014:Main article: 1011: 1008: 998: 995: 987:bioinformatics 977: 974: 968: 965: 953:proteogenomics 948: 947:Proteogenomics 945: 900:Main article: 897: 894: 880: 877: 857:cell signaling 774: 771: 747: 744: 742: 739: 672: 669: 651: 648: 642: 639: 633: 630: 591:Main article: 588: 585: 579: 576: 534: 531: 522: 519: 498: 495: 459: 456: 450: 447: 435:phosphorylated 400: 397: 384: 381: 351: 350: 347: 344: 337: 320: 304: 301: 289:carcinogenesis 272: 269: 245:ubiquitination 236: 233: 221: 220:Ubiquitination 218: 190:cell signaling 177: 174: 165:Main article: 162: 159: 134: 131: 106: 103: 50:macromolecules 15: 13: 10: 9: 6: 4: 3: 2: 6621: 6610: 6607: 6605: 6602: 6600: 6597: 6596: 6594: 6579: 6576: 6574: 6571: 6569: 6566: 6565: 6563: 6559: 6553: 6550: 6548: 6545: 6543: 6540: 6536: 6533: 6531: 6528: 6527: 6526: 6523: 6521: 6518: 6516: 6513: 6512: 6510: 6506: 6500: 6497: 6495: 6492: 6490: 6487: 6486: 6483: 6479: 6472: 6467: 6465: 6460: 6458: 6453: 6452: 6449: 6437: 6436: 6427: 6425: 6424: 6415: 6414: 6411: 6404: 6401: 6398: 6395: 6392: 6389: 6386: 6383: 6382: 6380: 6378:Organizations 6376: 6370: 6367: 6365: 6362: 6360: 6357: 6355: 6352: 6350: 6347: 6345: 6342: 6340: 6337: 6335: 6332: 6331: 6329: 6325: 6319: 6316: 6314: 6311: 6309: 6306: 6302: 6299: 6298: 6297: 6294: 6293: 6291: 6289: 6285: 6279: 6276: 6274: 6271: 6269: 6266: 6264: 6261: 6259: 6256: 6254: 6251: 6249: 6248:Nutrigenomics 6246: 6244: 6241: 6239: 6236: 6234: 6231: 6229: 6226: 6224: 6221: 6217: 6214: 6213: 6212: 6209: 6205: 6202: 6201: 6200: 6197: 6195: 6194:Chemogenomics 6192: 6190: 6187: 6185: 6182: 6181: 6179: 6177: 6173: 6167: 6164: 6162: 6160: 6156: 6154: 6151: 6149: 6146: 6144: 6141: 6137: 6134: 6133: 6132: 6129: 6125: 6122: 6121: 6120: 6117: 6115: 6112: 6110: 6107: 6105: 6102: 6100: 6097: 6096: 6094: 6090: 6086: 6079: 6074: 6072: 6067: 6065: 6060: 6059: 6056: 6044: 6041: 6039: 6036: 6034: 6031: 6030: 6028: 6024: 6018: 6015: 6013: 6010: 6008: 6005: 6003: 6000: 5998: 5995: 5993: 5990: 5988: 5985: 5983: 5980: 5978: 5975: 5973: 5970: 5968: 5965: 5963: 5960: 5958: 5955: 5953: 5950: 5948: 5945: 5943: 5940: 5938: 5935: 5933: 5930: 5928: 5925: 5923: 5920: 5918: 5917:Phylogenetics 5915: 5913: 5910: 5908: 5905: 5903: 5900: 5898: 5895: 5893: 5890: 5888: 5885: 5883: 5880: 5878: 5875: 5873: 5870: 5868: 5865: 5863: 5860: 5858: 5855: 5853: 5850: 5848: 5845: 5843: 5840: 5838: 5835: 5833: 5830: 5828: 5825: 5823: 5820: 5818: 5815: 5813: 5812:Human biology 5810: 5808: 5805: 5803: 5800: 5798: 5795: 5793: 5790: 5788: 5785: 5783: 5780: 5778: 5775: 5773: 5770: 5768: 5765: 5763: 5760: 5758: 5755: 5753: 5750: 5748: 5745: 5743: 5740: 5738: 5735: 5733: 5730: 5728: 5725: 5723: 5720: 5718: 5715: 5713: 5710: 5708: 5705: 5703: 5702:Chronobiology 5700: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5677:Biotechnology 5675: 5673: 5672:Biostatistics 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5648: 5645: 5643: 5640: 5638: 5635: 5633: 5630: 5628: 5625: 5623: 5620: 5618: 5615: 5613: 5610: 5608: 5605: 5603: 5600: 5598: 5595: 5594: 5591: 5587: 5580: 5575: 5573: 5568: 5566: 5561: 5560: 5557: 5551: 5547: 5542: 5538: 5537: 5532: 5527: 5526: 5522: 5515: 5511: 5506: 5501: 5497: 5493: 5489: 5484: 5480: 5474: 5470: 5465: 5461: 5455: 5451: 5446: 5441: 5435: 5431: 5426: 5421: 5415: 5410: 5409: 5402: 5398: 5394: 5389: 5384: 5380: 5376: 5372: 5368: 5364: 5359: 5356: 5355:0-89603-991-9 5352: 5348: 5347:0-585-41879-9 5344: 5339: 5333: 5329: 5324: 5320: 5316: 5312: 5308: 5303: 5298: 5294: 5290: 5287:(2): 351–62. 5286: 5282: 5277: 5270: 5266: 5260: 5253: 5252: 5246: 5242: 5238: 5234: 5230: 5226: 5222: 5218: 5214: 5208: 5207: 5202: 5194: 5190: 5185: 5180: 5176: 5172: 5168: 5164: 5160: 5153: 5150: 5145: 5141: 5136: 5131: 5127: 5123: 5119: 5115: 5111: 5104: 5101: 5096: 5092: 5087: 5082: 5078: 5074: 5070: 5066: 5062: 5058: 5054: 5047: 5044: 5039: 5035: 5030: 5025: 5020: 5015: 5011: 5007: 5003: 4996: 4993: 4988: 4984: 4980: 4976: 4972: 4968: 4961: 4958: 4953: 4949: 4944: 4939: 4935: 4931: 4927: 4920: 4917: 4912: 4908: 4903: 4898: 4894: 4890: 4886: 4882: 4878: 4871: 4868: 4863: 4859: 4854: 4849: 4844: 4839: 4835: 4831: 4827: 4820: 4817: 4812: 4808: 4804: 4800: 4796: 4788: 4785: 4780: 4776: 4771: 4766: 4761: 4756: 4752: 4748: 4744: 4737: 4734: 4729: 4725: 4720: 4715: 4711: 4707: 4703: 4699: 4695: 4688: 4685: 4680: 4676: 4671: 4666: 4662: 4658: 4655:(1): 100179. 4654: 4650: 4646: 4639: 4636: 4631: 4627: 4623: 4619: 4615: 4611: 4607: 4600: 4597: 4592: 4580: 4572: 4568: 4564: 4562:9789812776082 4558: 4554: 4550: 4546: 4542: 4535: 4533: 4529: 4524: 4520: 4515: 4510: 4506: 4502: 4498: 4494: 4490: 4483: 4480: 4475: 4471: 4466: 4461: 4457: 4453: 4449: 4445: 4441: 4434: 4431: 4426: 4422: 4417: 4412: 4407: 4402: 4398: 4394: 4390: 4386: 4382: 4375: 4372: 4367: 4363: 4358: 4353: 4348: 4343: 4339: 4335: 4331: 4324: 4321: 4316: 4312: 4306: 4303: 4298: 4294: 4288: 4285: 4280: 4276: 4271: 4266: 4262: 4258: 4254: 4250: 4246: 4239: 4236: 4231: 4227: 4222: 4217: 4213: 4209: 4205: 4201: 4197: 4190: 4187: 4182: 4178: 4174: 4170: 4166: 4162: 4158: 4154: 4147: 4144: 4139: 4135: 4131: 4127: 4122: 4117: 4113: 4109: 4105: 4098: 4095: 4090: 4086: 4082: 4078: 4073: 4068: 4064: 4060: 4056: 4052: 4045: 4042: 4037: 4033: 4029: 4025: 4021: 4017: 4013: 4009: 4002: 3999: 3994: 3990: 3985: 3980: 3976: 3972: 3968: 3964: 3960: 3953: 3950: 3945: 3939: 3937: 3933: 3928: 3924: 3920: 3916: 3912: 3908: 3901: 3899: 3895: 3890: 3886: 3882: 3878: 3874: 3870: 3863: 3861: 3857: 3852: 3848: 3844: 3840: 3836: 3832: 3828: 3824: 3817: 3814: 3809: 3805: 3801: 3795: 3791: 3787: 3783: 3776: 3773: 3768: 3764: 3759: 3754: 3750: 3746: 3742: 3738: 3734: 3727: 3724: 3719: 3715: 3710: 3705: 3700: 3695: 3691: 3687: 3683: 3676: 3673: 3668: 3664: 3660: 3656: 3652: 3648: 3641: 3638: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3605: 3598: 3595: 3590: 3586: 3581: 3576: 3572: 3568: 3564: 3557: 3554: 3549: 3545: 3540: 3535: 3531: 3527: 3523: 3519: 3515: 3508: 3505: 3500: 3496: 3492: 3488: 3484: 3480: 3473: 3470: 3465: 3461: 3457: 3453: 3449: 3445: 3441: 3437: 3430: 3427: 3422: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3387: 3384: 3374: 3370: 3366: 3362: 3358: 3352: 3347: 3342: 3338: 3334: 3330: 3326: 3319: 3316: 3312: 3308: 3304: 3300: 3296: 3290: 3285: 3280: 3276: 3268: 3265: 3260: 3256: 3252: 3248: 3243: 3238: 3234: 3230: 3223: 3221: 3219: 3217: 3215: 3213: 3209: 3204: 3200: 3195: 3190: 3186: 3182: 3178: 3174: 3170: 3163: 3160: 3155: 3151: 3147: 3143: 3139: 3135: 3127: 3125: 3121: 3116: 3112: 3108: 3104: 3100: 3096: 3089: 3086: 3081: 3077: 3072: 3067: 3063: 3059: 3055: 3048: 3045: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3005: 3003: 2999: 2994: 2990: 2986: 2982: 2978: 2974: 2967: 2965: 2961: 2956: 2952: 2948: 2944: 2940: 2932: 2929: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2888: 2886: 2882: 2871:on 2015-07-15 2870: 2866: 2862: 2856: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2813: 2810: 2805: 2801: 2796: 2791: 2787: 2783: 2779: 2772: 2769: 2764: 2760: 2755: 2750: 2746: 2742: 2738: 2731: 2728: 2723: 2719: 2715: 2711: 2707: 2703: 2696: 2693: 2688: 2684: 2680: 2676: 2671: 2666: 2662: 2658: 2654: 2647: 2644: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2604: 2601: 2596: 2592: 2588: 2584: 2579: 2574: 2570: 2566: 2562: 2555: 2552: 2547: 2543: 2538: 2533: 2528: 2523: 2519: 2515: 2511: 2504: 2501: 2496: 2492: 2487: 2482: 2477: 2472: 2468: 2464: 2460: 2453: 2450: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2410: 2407: 2402: 2398: 2393: 2388: 2384: 2380: 2376: 2372: 2368: 2361: 2358: 2353: 2349: 2345: 2341: 2337: 2336:10.1038/85686 2333: 2329: 2325: 2318: 2315: 2310: 2306: 2302: 2298: 2293: 2288: 2284: 2280: 2272: 2269: 2264: 2260: 2255: 2250: 2245: 2240: 2236: 2232: 2228: 2224: 2220: 2213: 2210: 2205: 2201: 2196: 2191: 2187: 2183: 2179: 2175: 2171: 2164: 2161: 2156: 2152: 2148: 2144: 2137: 2134: 2129: 2125: 2121: 2117: 2112: 2107: 2103: 2099: 2095: 2088: 2085: 2074: 2067: 2064: 2059: 2055: 2051: 2047: 2044:(1–2): 1–18. 2043: 2039: 2032: 2029: 2024: 2020: 2015: 2010: 2006: 2002: 1998: 1994: 1990: 1983: 1980: 1968: 1964: 1958: 1955: 1950: 1946: 1941: 1936: 1932: 1928: 1925:(6558): 653. 1924: 1920: 1916: 1909: 1906: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1863: 1853: 1849: 1845: 1841: 1834: 1831: 1826: 1822: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1785: 1782: 1777: 1773: 1769: 1765: 1760: 1755: 1751: 1747: 1743: 1739: 1735: 1728: 1725: 1720: 1716: 1711: 1706: 1702: 1698: 1694: 1690: 1686: 1679: 1676: 1671: 1667: 1662: 1657: 1652: 1651:10.1186/gm483 1647: 1643: 1639: 1635: 1628: 1625: 1620: 1616: 1611: 1606: 1602: 1598: 1594: 1590: 1586: 1579: 1576: 1571: 1567: 1563: 1559: 1555: 1551: 1544: 1541: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1501: 1498: 1492: 1487: 1484: 1482: 1479: 1478: 1474: 1469: 1466: 1464: 1461: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1435: 1432: 1429: 1426: 1424: 1421: 1419: 1416: 1415: 1410: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1301: 1296: 1285: 1282: 1276: 1271: 1266: 1261: 1257: 1256: 1252: 1249: 1245: 1244: 1240: 1237: 1233: 1232: 1228: 1225: 1221: 1220: 1216: 1215: 1214: 1212: 1208: 1207: 1198: 1196: 1192: 1185: 1183: 1181: 1177: 1173: 1169: 1168:developmental 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1124: 1123:translational 1120: 1116: 1112: 1108: 1104: 1095: 1093: 1086: 1084: 1081: 1076: 1074: 1070: 1066: 1062: 1053: 1051: 1049: 1041: 1039: 1036: 1032: 1028: 1023: 1017: 1009: 1007: 1005: 996: 994: 992: 988: 983: 975: 973: 966: 964: 962: 958: 954: 946: 944: 942: 938: 934: 930: 926: 922: 916: 912: 909: 903: 895: 893: 891: 886: 878: 876: 874: 870: 866: 862: 859:cascades and 858: 854: 850: 845: 843: 839: 838:phage display 835: 831: 827: 823: 819: 815: 811: 807: 803: 799: 794: 792: 788: 784: 780: 772: 770: 768: 763: 760: 757: 753: 745: 740: 738: 734: 732: 728: 724: 719: 717: 713: 709: 704: 702: 701:perturbations 696: 694: 690: 686: 677: 670: 668: 665: 656: 649: 647: 641:Protein chips 640: 638: 631: 629: 627: 623: 618: 615: 611: 607: 599: 594: 586: 584: 577: 575: 573: 572: 566: 562: 560: 555: 553: 549: 545: 539: 532: 530: 528: 520: 518: 516: 512: 508: 504: 496: 494: 492: 488: 484: 480: 476: 471: 469: 465: 457: 455: 448: 446: 442: 438: 436: 432: 427: 425: 421: 417: 413: 409: 405: 398: 396: 394: 390: 382: 380: 378: 374: 372: 367: 363: 359: 355: 348: 345: 342: 338: 335: 331: 327: 326: 321: 318: 314: 310: 309: 308: 302: 300: 297: 292: 290: 286: 282: 278: 270: 268: 266: 265:nitrosylation 262: 258: 257:glycosylation 254: 250: 246: 242: 234: 232: 230: 226: 219: 217: 213: 211: 207: 203: 199: 195: 191: 187: 183: 175: 173: 168: 160: 158: 155: 150: 148: 144: 140: 132: 130: 128: 124: 120: 116: 114: 113: 104: 102: 100: 96: 92: 88: 86: 82: 77: 74: 69: 67: 63: 59: 55: 54:muscle tissue 51: 47: 43: 36: 33: 28: 22: 6493: 6433: 6421: 6295: 6243:Microbiomics 6238:Metabolomics 6199:Connectomics 6158: 6131:Metagenomics 5962:Sociobiology 5942:Protistology 5936: 5907:Photobiology 5902:Pharmacology 5892:Parasitology 5887:Paleontology 5867:Neuroscience 5847:Microbiology 5757:Epidemiology 5727:Cytogenetics 5687:Cell biology 5667:Biosemiotics 5657:Biomechanics 5637:Biogeography 5632:Biochemistry 5627:Bacteriology 5622:Astrobiology 5534: 5495: 5491: 5468: 5449: 5429: 5407: 5370: 5366: 5327: 5284: 5280: 5269:the original 5250: 5216: 5212: 5203:Bibliography 5166: 5162: 5152: 5117: 5113: 5103: 5060: 5056: 5046: 5009: 5006:Cell Systems 5005: 4995: 4970: 4966: 4960: 4933: 4929: 4919: 4884: 4880: 4870: 4833: 4829: 4819: 4794: 4787: 4750: 4747:PLOS Biology 4746: 4736: 4704:(1): 50–59. 4701: 4697: 4687: 4652: 4648: 4638: 4613: 4609: 4599: 4544: 4496: 4492: 4482: 4447: 4443: 4433: 4388: 4384: 4374: 4337: 4333: 4323: 4314: 4305: 4296: 4287: 4252: 4248: 4238: 4203: 4199: 4189: 4156: 4152: 4146: 4111: 4107: 4097: 4054: 4050: 4044: 4014:(3): 89–95. 4011: 4007: 4001: 3966: 3962: 3952: 3910: 3906: 3872: 3868: 3826: 3822: 3816: 3781: 3775: 3743:(1): 11–22. 3740: 3736: 3726: 3689: 3685: 3675: 3650: 3646: 3640: 3607: 3603: 3597: 3570: 3566: 3556: 3521: 3517: 3507: 3485:(1): 16–20. 3482: 3478: 3472: 3439: 3435: 3429: 3396: 3392: 3386: 3376:, retrieved 3328: 3318: 3274: 3267: 3232: 3228: 3176: 3172: 3162: 3137: 3133: 3101:(1): 33–41. 3098: 3094: 3088: 3061: 3057: 3047: 3014: 3010: 2976: 2972: 2946: 2942: 2938: 2931: 2898: 2894: 2873:. Retrieved 2869:the original 2864: 2855: 2822: 2818: 2812: 2785: 2781: 2771: 2744: 2740: 2730: 2705: 2701: 2695: 2660: 2657:FEBS Letters 2656: 2646: 2613: 2609: 2603: 2571:(2): e4616. 2568: 2564: 2554: 2517: 2513: 2503: 2466: 2462: 2452: 2419: 2415: 2409: 2374: 2370: 2360: 2327: 2323: 2317: 2285:(1): 43–50. 2282: 2278: 2271: 2226: 2222: 2212: 2177: 2173: 2163: 2146: 2142: 2136: 2101: 2097: 2087: 2076:. Retrieved 2066: 2041: 2037: 2031: 1996: 1992: 1982: 1971:. Retrieved 1966: 1957: 1922: 1918: 1908: 1875: 1871: 1865: 1855:, retrieved 1843: 1833: 1798: 1794: 1784: 1741: 1737: 1727: 1692: 1688: 1678: 1641: 1637: 1627: 1592: 1588: 1578: 1553: 1549: 1543: 1510: 1506: 1500: 1434:PeptideAtlas 1253: 1241: 1229: 1217: 1210: 1204: 1202: 1193: 1189: 1155: 1146:, and other 1144:metabolomics 1128:holistically 1099: 1090: 1077: 1057: 1045: 1019: 1000: 979: 970: 950: 921:western blot 917: 913: 905: 882: 846: 841: 808:followed by 795: 791:interactomes 776: 764: 761: 749: 735: 723:azide groups 720: 705: 697: 691:and various 682: 661: 644: 635: 619: 612: 608: 604: 581: 569: 567: 563: 558: 556: 551: 547: 543: 540: 536: 524: 500: 472: 461: 452: 443: 439: 428: 420:western blot 412:cell biology 408:biochemistry 402: 386: 377:Data quality 376: 375: 353: 352: 323: 312: 306: 293: 274: 238: 223: 214: 179: 170: 151: 136: 123:Marc Wilkins 118: 117: 110: 108: 90: 89: 78: 70: 41: 40: 6211:Epigenomics 6143:Pangenomics 6012:Xenobiology 6007:Virophysics 5977:Systematics 5932:Primatology 5877:Ornithology 5817:Ichthyology 5802:Herpetology 5797:Gerontology 5762:Epigenetics 5722:Cryobiology 5612:Agrostology 5602:Aerobiology 5597:Abiogenesis 5529:‹ The 5492:Circulation 5302:2434/226049 5120:(12): 901. 4072:2434/226049 1457:Proteopedia 1374:Secretomics 1140:epigenomics 1065:whole blood 937:Secretomics 931:(ELISA) or 277:development 253:acetylation 249:methylation 6599:Proteomics 6593:Categories 6494:Proteomics 6296:Proteomics 6233:Lipidomics 6228:Immunomics 5997:Toxicology 5992:Teratology 5937:Proteomics 5922:Physiology 5862:Neontology 5827:Lipidology 5822:Immunology 5792:Geobiology 5752:Embryology 5732:Dendrology 5662:Biophysics 5642:Biogeology 5546:Proteomics 5169:(1): 786. 4836:(1): 261. 4340:(95): 95. 3378:2023-04-14 3011:Proteomics 2895:Proteomics 2875:2015-07-15 2078:2009-01-14 1973:2017-02-06 1857:2024-08-28 1589:Stem Cells 1493:References 1463:Swiss-Prot 1349:PEGylation 1255:Proteomics 1211:proteomics 1152:phenotypes 1103:cell cycle 1073:biomarkers 896:Biomarkers 583:proteins. 441:aptamers. 404:Antibodies 389:antibodies 362:stochastic 285:cell cycle 91:Proteomics 62:antibodies 42:Proteomics 6223:Glycomics 5912:Phycology 5897:Pathology 5882:Osteology 5872:Nutrition 5832:Mammalogy 5807:Histology 5063:: 10261. 4973:: 24–30. 4811:247599981 4630:0003-2700 4589:ignored ( 4579:cite book 4293:"UniProt" 3311:233740602 3237:CiteSeerX 3179:: 55–67. 3173:Meta Gene 2595:221827335 2514:Proteomes 2469:(3): 14. 2463:Proteomes 2287:CiteSeerX 1797:. Omics. 1776:251018292 1644:(9): 79. 1404:Glycomics 1174:biology, 1172:stem cell 1117:, etc.). 1080:biomarker 902:Biomarker 842:in silico 712:aldehydes 552:N. lugens 548:N. lugens 296:biomarker 261:oxidation 225:Ubiquitin 198:threonine 147:expressed 6604:Genomics 6435:Category 6161:genomics 6085:Genomics 6026:See also 6002:Virology 5987:Taxonomy 5927:Pomology 5857:Mycology 5787:Genomics 5782:Genetics 5607:Agronomy 5531:template 5514:16702488 5397:16322782 5319:25693263 5311:24045891 5241:45193214 5233:15815863 5193:25652787 5144:28007936 5095:26732734 5038:27135364 4987:24642211 4952:19884488 4911:24037243 4862:36527135 4779:34986167 4728:35835881 4679:34808355 4571:18229689 4523:20186258 4474:23703210 4425:23874192 4366:24694083 4279:18426904 4230:17690205 4181:26169223 4173:17425459 4138:11583190 4130:19176491 4089:25693263 4081:24045891 4028:11240971 3993:20978388 3927:22169889 3889:22439968 3851:11772983 3843:18532910 3808:21964781 3767:22284350 3718:23434671 3667:20649414 3653:: 1–24. 3632:24979515 3624:10939463 3589:22424218 3548:30159392 3499:24432752 3456:23000932 3421:19727645 3413:22967077 3373:33009117 3365:22665296 3303:33950486 3259:15113093 3203:26106581 3154:20932060 3115:15036154 3080:15695805 3039:20337179 3031:21472859 2993:21800909 2923:22432028 2915:11680884 2847:15134097 2804:26077162 2763:10471678 2722:18621567 2638:22707172 2587:32955142 2546:28248279 2495:32640657 2444:12367142 2436:20622845 2401:19921851 2352:16796135 2344:11231557 2309:12643542 2263:16916930 2204:10022859 2155:12142368 2120:17081983 2058:15979831 2023:18974169 1825:32599342 1768:36864200 1759:10130941 1719:23438204 1670:24040834 1619:26782178 1570:10189717 1535:28933890 1314:Cytomics 1267:See also 1248:Elsevier 1206:proteins 1199:Journals 1176:medicine 1132:genomics 756:proteome 489:and the 487:top-down 431:antibody 424:SDS-PAGE 206:tyrosine 139:genomics 119:Proteome 73:proteome 66:hormones 46:proteins 6184:Biochip 6017:Zoology 5747:Ecology 5617:Anatomy 5533:below ( 5388:1297260 5184:4358658 5135:5199119 5086:4729823 5065:Bibcode 4902:4076789 4853:9756690 4795:bioRxiv 4770:8765665 4719:9839897 4670:8683604 4514:2825712 4465:3692090 4416:3715417 4393:Bibcode 4357:3992163 4270:2493402 4221:1950905 3984:3078627 3758:3312051 3709:3588078 3539:6107859 3464:2651429 3194:4473098 2839:1175578 2687:5988844 2679:9323027 2618:Bibcode 2537:5217385 2486:7564415 2392:2818771 2254:1550773 2231:Bibcode 2128:7827573 2014:4141638 1949:7501000 1927:Bibcode 1900:9269742 1892:7498152 1816:7767890 1801:: 1–9. 1710:3751594 1661:4066586 1610:5785927 1527:9740045 1468:UniProt 1453:(PRIDE) 1399:TCP-seq 1069:neonate 1004:PROSITE 820:(SPR), 708:ketones 468:peptide 358:elution 210:kinases 202:kinases 186:enzymes 6092:Fields 5682:Botany 5550:Curlie 5536:Curlie 5512:  5475:  5456:  5436:  5416:  5395:  5385:  5353:  5345:  5334:  5317:  5309:  5261:  5239:  5231:  5191:  5181:  5142:  5132:  5093:  5083:  5036:  4985:  4950:  4909:  4899:  4860:  4850:  4809:  4777:  4767:  4726:  4716:  4677:  4667:  4628:  4569:  4559:  4521:  4511:  4472:  4462:  4423:  4413:  4364:  4354:  4277:  4267:  4228:  4218:  4179:  4171:  4136:  4128:  4087:  4079:  4036:288484 4034:  4026:  3991:  3981:  3925:  3887:  3849:  3841:  3806:  3796:  3765:  3755:  3716:  3706:  3665:  3630:  3622:  3587:  3546:  3536:  3497:  3462:  3454:  3419:  3411:  3371:  3363:  3353:  3309:  3301:  3291:  3257:  3239:  3201:  3191:  3152:  3113:  3078:  3037:  3029:  2991:  2921:  2913:  2845:  2837:  2802:  2761:  2720:  2685:  2677:  2636:  2593:  2585:  2544:  2534:  2493:  2483:  2442:  2434:  2399:  2389:  2350:  2342:  2307:  2289:  2261:  2251:  2202:  2192:  2153:  2126:  2118:  2056:  2021:  2011:  1947:  1919:Nature 1898:  1890:  1823:  1813:  1774:  1766:  1756:  1717:  1707:  1668:  1658:  1617:  1607:  1568:  1533:  1525:  1430:(NCBI) 1178:, and 1148:-omics 991:ExPASy 812:using 789:, and 752:genome 263:, and 194:serine 137:After 6609:Omics 6399:(USA) 6159:Socio 5315:S2CID 5272:(PDF) 5255:(PDF) 5237:S2CID 4807:S2CID 4177:S2CID 4134:S2CID 4085:S2CID 4032:S2CID 3847:S2CID 3628:S2CID 3460:S2CID 3417:S2CID 3369:S2CID 3307:S2CID 3035:S2CID 2919:S2CID 2683:S2CID 2591:S2CID 2440:S2CID 2348:S2CID 2195:83965 2124:S2CID 1896:S2CID 1772:S2CID 1531:S2CID 1488:(NPC) 1447:(PIR) 1441:(PDB) 1260:Wiley 1224:ASBMB 287:, or 32:MALDI 6423:List 6405:(UK) 6393:(EU) 6387:(JP) 5510:PMID 5473:ISBN 5454:ISBN 5434:ISBN 5414:ISBN 5393:PMID 5351:ISBN 5343:ISBN 5332:ISBN 5307:PMID 5259:ISBN 5229:PMID 5189:PMID 5140:PMID 5091:PMID 5034:PMID 4983:PMID 4948:PMID 4907:PMID 4858:PMID 4775:PMID 4724:PMID 4675:PMID 4626:ISSN 4591:help 4567:PMID 4557:ISBN 4519:PMID 4470:PMID 4421:PMID 4362:PMID 4275:PMID 4226:PMID 4169:PMID 4126:PMID 4077:PMID 4024:PMID 3989:PMID 3923:PMID 3885:PMID 3839:PMID 3804:PMID 3794:ISBN 3763:PMID 3714:PMID 3663:PMID 3620:PMID 3585:PMID 3567:Cell 3544:PMID 3495:PMID 3452:PMID 3409:PMID 3361:PMID 3351:ISBN 3299:PMID 3289:ISBN 3255:PMID 3199:PMID 3150:PMID 3111:PMID 3076:PMID 3027:PMID 2989:PMID 2911:PMID 2843:PMID 2835:OSTI 2800:PMID 2759:PMID 2718:PMID 2675:PMID 2634:PMID 2583:PMID 2542:PMID 2491:PMID 2432:PMID 2397:PMID 2340:PMID 2305:PMID 2259:PMID 2200:PMID 2151:PMID 2116:PMID 2098:Cell 2054:PMID 2019:PMID 1945:PMID 1888:PMID 1821:PMID 1764:PMID 1715:PMID 1666:PMID 1615:PMID 1566:PMID 1523:PMID 1170:and 1121:and 1029:and 1020:The 906:The 851:and 840:and 754:and 710:and 481:and 410:and 332:and 317:mRNA 243:and 196:and 154:mRNA 141:and 97:and 71:The 5548:at 5500:doi 5496:113 5383:PMC 5375:doi 5371:115 5357:hbk 5297:hdl 5289:doi 5221:doi 5179:PMC 5171:doi 5130:PMC 5122:doi 5081:PMC 5073:doi 5024:hdl 5014:doi 4975:doi 4971:107 4938:doi 4897:PMC 4889:doi 4848:PMC 4838:doi 4799:doi 4765:PMC 4755:doi 4714:PMC 4706:doi 4665:PMC 4657:doi 4618:doi 4549:doi 4509:PMC 4501:doi 4460:PMC 4452:doi 4411:PMC 4401:doi 4352:PMC 4342:doi 4265:PMC 4257:doi 4216:PMC 4208:doi 4161:doi 4116:doi 4067:hdl 4059:doi 4016:doi 3979:PMC 3971:doi 3915:doi 3877:doi 3831:doi 3786:doi 3753:PMC 3745:doi 3704:PMC 3694:doi 3655:doi 3612:doi 3575:doi 3571:148 3534:PMC 3526:doi 3487:doi 3444:doi 3401:doi 3341:hdl 3333:doi 3279:doi 3247:doi 3189:PMC 3181:doi 3142:doi 3103:doi 3066:doi 3019:doi 2981:doi 2951:doi 2903:doi 2827:doi 2790:doi 2749:doi 2710:doi 2665:doi 2661:414 2626:doi 2573:doi 2532:PMC 2522:doi 2481:PMC 2471:doi 2424:doi 2387:PMC 2379:doi 2332:doi 2297:doi 2249:PMC 2239:doi 2227:103 2190:PMC 2182:doi 2106:doi 2102:127 2046:doi 2042:299 2009:PMC 2001:doi 1935:doi 1923:378 1880:doi 1848:doi 1811:PMC 1803:doi 1754:PMC 1746:doi 1705:PMC 1697:doi 1693:113 1656:PMC 1646:doi 1605:PMC 1597:doi 1558:doi 1515:doi 1236:ACS 951:In 515:ESI 505:or 125:at 58:DNA 6595:: 5508:. 5494:. 5490:. 5391:. 5381:. 5369:. 5365:. 5313:. 5305:. 5295:. 5285:51 5283:. 5235:. 5227:. 5217:10 5215:. 5187:. 5177:. 5167:11 5165:. 5161:. 5138:. 5128:. 5118:12 5116:. 5112:. 5089:. 5079:. 5071:. 5059:. 5055:. 5032:. 5022:. 5008:. 5004:. 4981:. 4969:. 4946:. 4934:56 4932:. 4928:. 4905:. 4895:. 4885:10 4883:. 4879:. 4856:. 4846:. 4834:23 4832:. 4828:. 4805:. 4773:. 4763:. 4751:20 4749:. 4745:. 4722:. 4712:. 4702:41 4700:. 4696:. 4673:. 4663:. 4653:21 4651:. 4647:. 4624:. 4614:96 4612:. 4608:. 4583:: 4581:}} 4577:{{ 4565:. 4555:. 4543:. 4531:^ 4517:. 4507:. 4495:. 4491:. 4468:. 4458:. 4448:41 4446:. 4442:. 4419:. 4409:. 4399:. 4387:. 4383:. 4360:. 4350:. 4338:15 4336:. 4332:. 4313:. 4295:. 4273:. 4263:. 4253:18 4251:. 4247:. 4224:. 4214:. 4204:17 4202:. 4198:. 4175:. 4167:. 4155:. 4132:. 4124:. 4112:46 4110:. 4106:. 4083:. 4075:. 4065:. 4055:51 4053:. 4030:. 4022:. 4012:69 4010:. 3987:. 3977:. 3965:. 3961:. 3935:^ 3921:. 3911:23 3909:. 3897:^ 3883:. 3873:81 3871:. 3859:^ 3845:. 3837:. 3825:. 3802:. 3792:. 3761:. 3751:. 3741:19 3739:. 3735:. 3712:. 3702:. 3690:14 3688:. 3684:. 3661:. 3651:44 3649:. 3626:. 3618:. 3608:21 3606:. 3583:. 3569:. 3565:. 3542:. 3532:. 3520:. 3516:. 3493:. 3481:. 3458:. 3450:. 3440:30 3438:. 3415:. 3407:. 3395:. 3367:, 3359:, 3349:, 3339:, 3327:, 3305:, 3297:, 3287:, 3253:. 3245:. 3231:. 3211:^ 3197:. 3187:. 3175:. 3171:. 3148:. 3136:. 3123:^ 3109:. 3097:. 3074:. 3060:. 3056:. 3033:. 3025:. 3015:11 3013:. 3001:^ 2987:. 2977:10 2975:. 2963:^ 2947:29 2945:. 2917:. 2909:. 2897:. 2884:^ 2863:. 2841:. 2833:. 2823:67 2821:. 2798:. 2786:21 2784:. 2780:. 2757:. 2745:45 2743:. 2739:. 2716:. 2706:13 2704:. 2681:. 2673:. 2659:. 2655:. 2632:. 2624:. 2614:47 2612:. 2589:. 2581:. 2569:56 2567:. 2563:. 2540:. 2530:. 2516:. 2512:. 2489:. 2479:. 2465:. 2461:. 2438:. 2430:. 2420:28 2418:. 2395:. 2385:. 2373:. 2369:. 2346:. 2338:. 2328:19 2326:. 2303:. 2295:. 2281:. 2257:. 2247:. 2237:. 2225:. 2221:. 2198:. 2188:. 2178:19 2176:. 2172:. 2147:48 2145:. 2122:. 2114:. 2100:. 2096:. 2052:. 2040:. 2017:. 2007:. 1997:24 1995:. 1991:. 1965:. 1943:. 1933:. 1921:. 1917:. 1894:. 1886:. 1876:16 1874:. 1842:, 1819:. 1809:. 1799:60 1793:. 1770:. 1762:. 1752:. 1742:20 1740:. 1736:. 1713:. 1703:. 1691:. 1687:. 1664:. 1654:. 1640:. 1636:. 1613:. 1603:. 1593:34 1591:. 1587:. 1564:. 1554:17 1552:. 1529:. 1521:. 1511:19 1509:. 1182:. 1166:, 1142:, 1138:, 1134:, 1113:, 1109:, 1105:, 935:. 927:, 923:, 875:. 832:, 828:, 824:, 793:. 785:, 725:. 283:, 279:, 259:, 255:, 251:, 115:. 87:. 6470:e 6463:t 6456:v 6077:e 6070:t 6063:v 5578:e 5571:t 5564:v 5516:. 5502:: 5481:. 5462:. 5442:. 5422:. 5399:. 5377:: 5340:. 5321:. 5299:: 5291:: 5243:. 5223:: 5195:. 5173:: 5146:. 5124:: 5097:. 5075:: 5067:: 5061:7 5040:. 5026:: 5016:: 5010:2 4989:. 4977:: 4954:. 4940:: 4913:. 4891:: 4864:. 4840:: 4813:. 4801:: 4781:. 4757:: 4730:. 4708:: 4681:. 4659:: 4632:. 4620:: 4593:) 4573:. 4551:: 4525:. 4503:: 4497:3 4476:. 4454:: 4427:. 4403:: 4395:: 4389:9 4368:. 4344:: 4317:. 4299:. 4281:. 4259:: 4232:. 4210:: 4183:. 4163:: 4157:4 4140:. 4118:: 4091:. 4069:: 4061:: 4038:. 4018:: 3995:. 3973:: 3967:5 3929:. 3917:: 3891:. 3879:: 3853:. 3833:: 3827:5 3810:. 3788:: 3769:. 3747:: 3720:. 3696:: 3669:. 3657:: 3634:. 3614:: 3591:. 3577:: 3550:. 3528:: 3522:4 3501:. 3489:: 3483:9 3466:. 3446:: 3423:. 3403:: 3397:9 3343:: 3335:: 3281:: 3261:. 3249:: 3233:3 3205:. 3183:: 3177:5 3156:. 3144:: 3138:9 3117:. 3105:: 3099:8 3082:. 3068:: 3062:4 3041:. 3021:: 2995:. 2983:: 2957:. 2953:: 2925:. 2905:: 2899:1 2878:. 2849:. 2829:: 2806:. 2792:: 2765:. 2751:: 2724:. 2712:: 2689:. 2667:: 2640:. 2628:: 2620:: 2597:. 2575:: 2548:. 2524:: 2518:3 2497:. 2473:: 2467:8 2446:. 2426:: 2403:. 2381:: 2375:9 2354:. 2334:: 2311:. 2299:: 2283:2 2265:. 2241:: 2233:: 2206:. 2184:: 2157:. 2130:. 2108:: 2081:. 2060:. 2048:: 2025:. 2003:: 1976:. 1951:. 1937:: 1929:: 1902:. 1882:: 1850:: 1827:. 1805:: 1778:. 1748:: 1721:. 1699:: 1672:. 1648:: 1642:5 1621:. 1599:: 1572:. 1560:: 1537:. 1517:: 1262:) 1258:( 1250:) 1246:( 1238:) 1234:( 1226:) 1222:( 542:( 23:.

Index

Proteomics (journal)

MALDI
mass spectrometry
proteins
macromolecules
muscle tissue
DNA
antibodies
hormones
proteome
Human Genome Project
functional genomics
protein purification
mass spectrometry
Escherichia coli
Marc Wilkins
Macquarie University
genomics
transcriptomics
expressed
mRNA
Post-translational modification
phosphorylation
enzymes
cell signaling
serine
threonine
kinases
tyrosine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.