Knowledge (XXG)

Rhizobacteria

Source đź“ť

737:
maintaining root nodules for rhizobacteria can cost between 12–25% of the plant's total photosynthetic output. Legumes are often able to colonize early successional environments due to the unavailability of nutrients. Once colonized, though, the rhizobacteria make the soil surrounding the plant more nutrient rich, which in turn can lead to competition with other plants. The symbiotic relationship, in short, can lead to increased competition.
656: 105: 20: 993:
crops found that some root-colonizing bacteria were deleterious rhizobacteria (DRB). Sugar beet seeds inoculated with DRB had reduced germination rates, root lesions, reduced root elongation, root distortions, increased fungi infection, and decreased plant growth. In one trial the sugar beet yield
949:
due to increases in specific ion fluxes at the root surface in the presence of PGPRs has also been reported. PGPR strains may use one or more of these mechanisms in the rhizosphere. Molecular approaches using microbial and plant mutants altered in their ability to synthesize or respond to specific
736:
The symbiotic relationship between rhizobacteria and their host plants is not without costs. For the plant to be able to benefit from the added available nutrients provided by the rhizobacteria, it needs to provide a place and the proper conditions for the rhizobacteria to live. Creating and
748:, a limiting nutrient for plant growth, can be plentiful in soil, but is most commonly found in insoluble forms. Organic acids and phosphotases released by rhizobacteria found in plant rhizospheres facilitate the conversion of insoluble forms of phosphorus to plant-available forms such as H 715:) making it an available nutrient to the host plant which can support and enhance plant growth. The host plant provides the bacteria with amino acids so they do not need to assimilate ammonia. The amino acids are then shuttled back to the plant with newly fixed nitrogen. 1036:
The presence of PGPRs has proven to reduce and inhibit the colonization of DRB on sugar beet roots. Plots inoculated with PGPRs and DRBs had an increase in production of 39% while plots only treated with DRBs had a reduction in production of 30%.
719:
is an enzyme involved in nitrogen fixation and requires anaerobic conditions. Membranes within root nodules are able to provide these conditions. The rhizobacteria require oxygen to metabolize, so oxygen is provided by a hemoglobin protein called
33:, colonizes the roots and establishes a nitrogen-fixing symbiosis. This high-magnification image shows part of a cell with single bacteroids within their host plant. In this image, endoplasmic reticulum, dictysome, and cell wall can be seen. 1060:
bacteria are often applied to the seed coat of seeds prior to being sown. Inoculated seeds are more likely to establish large enough rhizobacterial populations within the rhizosphere to produce notable beneficial effects on the crop.
920:
PGPRs enhance plant growth by direct and indirect means, but the specific mechanisms involved have not all been well characterized. Direct mechanisms of plant growth promotion by PGPRs can be demonstrated in the absence of plant
66:. Biofertilization accounts for about 65% of the nitrogen supply to crops worldwide. PGPRs have different relationships with different species of host plants. The two major classes of relationships are rhizospheric and 1478:
Roberts, Daniel P.; Yucel, Irem; Larkin, Robert P. (1998). "Genetic approaches for analysis and manipulation of rhizosphere colonization by bacterial biocontrol agents". In Boland, Greg J.; Kuykendall, L. David (eds.).
55:). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature. 1742:
Riaz, Umair; Murtaza, Ghulam; Anum, Wajiha; Samreen, Tayyaba; Sarfraz, Muhammad; Nazir, Muhammad Zulqernain (2021), Hakeem, Khalid Rehman; Dar, Gowhar Hamid; Mehmood, Mohammad Aneesul; Bhat, Rouf Ahmad (eds.),
1076:
to varying degrees and favouring various microbes. Kyselková et al 2015 find planting forage species known to encourage native rhizobacteria retards the spread within the soil of antibiotic resistance genes of
707:) is not available to them due to the high energy required to break the triple bonds between the two atoms. Rhizobacteria, through nitrogen fixation, are able to convert gaseous nitrogen (N 933:. PGPRs have been reported to directly enhance plant growth by a variety of mechanisms: fixation of atmospheric nitrogen transferred to the plant, production of siderophores that 1145:
Antoun H, Prevost D (2005). Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (Eds.) PGPR: Biocontrol and Biofertilization, Springer, The Netherlands, pp. 2
977:
could be a novel way of increasing crop yield and decreasing disease incidence, whilst decreasing dependency on chemical pesticides and fertilisers which can often have
950:
phytohormones have increased understanding of the role of phytohormone synthesis as a direct mechanism of plant growth enhancement by PGPRs. PGPR that synthesize
70:. Rhizospheric relationships consist of the PGPRs that colonize the surface of the root, or superficial intercellular spaces of the host plant, often forming 835:. The ineffectiveness of PGPR in the field has often been attributed to their inability to colonize plant roots. A variety of bacterial traits and specific 803:
such as peas. Inoculation with PGPRs ensures efficient nitrogen fixation, and they have been employed in North American agriculture for over 100 years.
1556:
WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities"
1033:. Due to a large number of taxonomic species yet to be described, complete characterization has not been possible as DRB are highly variable. 1764: 1488: 1341: 1249: 1221: 687: 799:, as large-scale application techniques have yet to become economically viable. A notable exception is the use of rhizobial inoculants for 287: 1965: 1266: 1056:
strains have been genetically modified to improve plant growth and improve the disease resistance of agricultural crops. In agriculture,
1045:
Rhizobacteria are also able to control plant diseases that are caused by other bacteria and fungi. Disease is suppressed through induced
870:
Progress in the identification of new, previously uncharacterized genes is being made using nonbiased screening strategies that rely on
393: 978: 897: 1046: 388: 740:
PGPRs increase the availability of nutrients through the solubilization of unavailable forms of nutrients and by the production of
1828:
Chaitanya, K. J.; Meenu, S. (2015). "Plant growth promoting Rhizobacteria (PGPR): a review Â», , vol. 5, no 2, , p. 108–119".
1642:
strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques"
1332:
Kloepper, Joseph W. (1993). "Plant growth-promoting rhizobacteria as biological control agents". In Metting, F. Blaine Jr. (ed.).
1240:
Willey, Joanne M.; Sherwood, Linda M.; Woolverton, Christopher J. (2011). "Chapter 29: Microorganisms in Terrestrial Ecosystems".
867:
altered in expression of these traits is aiding our understanding of the precise role each one plays in the colonization process.
703:
is one of the most beneficial processes performed by rhizobacteria. Nitrogen is a vital nutrient to plants and gaseous nitrogen (N
1393: 292: 1609:
inoculants: New knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies".
859:, production of specific cell surface components, ability to use specific components of root exudates, protein secretion, and 473: 2006:
He, Ya; Yuan, Qingbin; Mathieu, Jacques; Stadler, Lauren; Senehi, Naomi; Sun, Ruonan; Alvarez, Pedro J. J. (2020-02-19).
44:
that can have a detrimental (parasitic varieties), neutral or beneficial effect on plant growth. The name comes from the
572: 823:. The following are implicit in the colonization process: ability to survive inoculation onto seed, to multiply in the 724:
which is produced within the nodules. Legumes are well-known nitrogen-fixing crops and have been used for centuries in
1357:
Benizri, E.; Baudoin, E.; Guckert, A. (2001). "Root colonization by inoculated plant growth promoting rhizobacteria".
226: 199: 2077: 1687:
UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the N isotope dilution technique"
1483:. Books in Soils, Plants, and the Environment. Vol. 63. New York, USA: Marcel Dekker Inc. pp. 415–431. 80:. Endophytic relationships involve the PGPRs residing and growing within the host plant in the apoplastic space. 1505: 1298:
Aziz, Z.F.A.; Saud, H.M.; Rahim, K.A.; Ahmed, O.H. (2012). "Variable responses on early development of shallot (
680: 639: 634: 342: 1550:
Bloemberg, Guido V.; Wijfjes, André H. M.; Lamers, Gerda E. M.; Stuurman, Nico; Lugtenberg, Ben J. J. (2000).
764: 929:, while indirect mechanisms involve the ability of PGPRs to reduce the harmful effects of plant pathogens on 856: 796: 567: 2147: 577: 378: 221: 51:, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants ( 2073:"Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity" 1907: 1280:. Angers, France: Station de Pathologie Végétale et Phytobactériologie, INRA: 879–882. Archived from 673: 660: 538: 398: 383: 240: 594: 457: 245: 190: 180: 52: 811:
Plant growth-promoting rhizobacteria (PGPR) were first defined by Kloepper and Schroth to be soil
235: 2043: 1876: 1770: 1374: 1128: 905: 758: 587: 447: 251: 2142: 2118: 2100: 2035: 1988: 1941: 1923: 1868: 1810: 1760: 1724: 1706: 1663: 1587: 1532: 1484: 1420: 1337: 1281: 1245: 1217: 1181: 1120: 997:
Six strains of rhizobacteria have been identified as being DRB. The strains are in the genera
700: 357: 172: 151: 2108: 2090: 2025: 2021: 2008:"Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment" 1980: 1931: 1915: 1860: 1802: 1752: 1714: 1698: 1653: 1618: 1577: 1567: 1524: 1458: 1412: 1366: 1173: 1112: 882: 452: 426: 317: 213: 185: 114: 1605:
Sørensen, Jan; Jensen, Linda E.; Nybroe, Ole (2001). "Soil and rhizosphere as habitats for
2152: 2086: 2012: 437: 421: 352: 146: 1896:"A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees" 1103:
Vessy, J. Kevin (August 2003). "Plant Growth Promoting Rhizobacteria as Biofertilizers".
878:
and in vitro expression technology (IVET) to detect genes expressed during colonization.
1911: 2113: 2072: 1936: 1895: 1719: 1682: 1658: 1637: 1213: 1205: 1017: 946: 938: 896:, it is possible to monitor the location of individual rhizobacteria on the root using 860: 792: 562: 442: 347: 45: 29: 1681:
Zakry, F.A.A.; Shamsuddin, Z.H.; Khairuddin, A.R.; Zakaria, Z.Z.; Anuar, A.R. (2012).
1428: 2136: 2047: 1793:
Glick, Bernard R. (1995). "The enhancement of plant growth by free-living bacteria".
1774: 1528: 1463: 1446: 1177: 1023: 970: 926: 725: 721: 614: 609: 367: 63: 1880: 1378: 1161: 1132: 1416: 1029: 999: 974: 942: 824: 820: 741: 599: 582: 502: 468: 156: 127: 76: 71: 1756: 1745:"Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides" 1622: 1572: 1551: 1334:
Soil Microbial Ecology: Applications in Agricultural and Environmental Management
1749:
Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health
1073: 1011: 955: 909: 886: 871: 848: 832: 716: 552: 281: 141: 136: 59: 1919: 1744: 839:
contribute to this process, but only a few have been identified. These include
104: 2030: 2007: 1966:"Role of Deleterious Rhizobacteria as Minor Pathogens in Reducing Crop Growth" 1864: 1370: 1116: 1053: 1005: 990: 930: 875: 844: 745: 604: 557: 518: 497: 362: 309: 256: 122: 96: 67: 2104: 2095: 2039: 1992: 1927: 1872: 1814: 1710: 1124: 1274:
Proceedings of the 4th International Conference on Plant Pathogenic Bacteria
1078: 1057: 934: 543: 413: 322: 276: 74:. The dominant species found in the rhizosphere is a microbe from the genus 2122: 1945: 1728: 1667: 1591: 1536: 1424: 1185: 1162:"Molecular basis of plant growth promotion and biocontrol by rhizobacteria" 19: 1848: 1702: 2071:
Cycoń, Mariusz; Mrozik, Agnieszka; Piotrowska-Seget, Zofia (2019-03-08).
1984: 963: 922: 893: 840: 812: 507: 327: 62:
bacteria are PGPR. They are an important group of microorganisms used in
41: 1447:"Tales from the underground: Molecular plant-rhizobacteria interactions" 2057: 959: 889: 828: 800: 513: 1582: 772:
and notable nitrogen-fixing bacteria associated with legumes includes
1069: 1065: 864: 489: 1806: 1327: 1325: 1392:
Lugtenberg, Ben J. J.; Dekkers, Linda; Bloemberg, Guido V. (2001).
912:
and showed that bacteria located at the root tip were most active.
2054: 951: 852: 18: 1638:"Simultaneous detection of the establishment of seed-inoculated 901: 836: 831:, to attach to the root surface, and to colonize the developing 816: 1204:
Cain, Michael L.; Bowman, William D.; Hacker, Sally D. (2011).
1751:, Cham: Springer International Publishing, pp. 181–196, 815:
that colonize the roots of plants following inoculation onto
1445:
Persello-Cartieaux, F.; Nussaume, L.; Robaglia, C. (2003).
1160:
Bloemberg, Guido V.; Lugtenberg, Ben J. J. (August 2001).
1636:
Lübeck, Peter S.; Hansen, Michael; Sørensen, Jan (2000).
795:
can be beneficial for crops, they are not widely used in
1849:"Plant growth promoting rhizobacteria as biofertilizers" 1394:"Molecular determinants of rhizosphere colonization by 1964:
Suslow, Trevor V.; Schroth, Milton N. (January 1982).
1336:. New York, USA: Marcel Dekker Inc. pp. 255–274. 1049:
and through the production of antifungal metabolites.
744:
which aids in the facilitating of nutrient transport.
1267:"Plant growth-promoting rhizobacteria on radishes" 827:(region surrounding the seed) in response to seed 1481:Plant-Microbe interactions and Biological Control 941:of minerals such as phosphorus, and synthesis of 1265:Kloepper, Joseph W.; Schroth, Milton N. (1978). 1155: 1153: 1151: 900:. This approach has also been combined with an 874:technologies. These strategies employ reporter 1959: 1957: 1955: 937:iron and make it available to the plant root, 1235: 1233: 681: 8: 1098: 1096: 1094: 1064:They can also combat pathogenic microbes in 1199: 1197: 1195: 688: 674: 87: 2112: 2094: 2029: 1935: 1718: 1657: 1581: 1571: 1462: 27:'Essex') root nodule: The rhizobacteria, 16:Group of bacteria affecting plant growth 1894:Muth, F.; Leonard, A. S. (2019-03-18). 1090: 95: 981:on the local ecology and environment. 7: 1560:Molecular Plant-Microbe Interactions 807:Plant growth-promoting rhizobacteria 728:to maintain the health of the soil. 1206:"Chapter 16: Change in Communities" 1659:10.1111/j.1574-6941.2000.tb00721.x 908:of a rhizobacterial strain in the 898:confocal laser scanning microscopy 14: 1359:Biocontrol Science and Technology 1312:Malaysian Journal of Microbiology 1244:. McGraw-Hill. pp. 703–706. 1795:Canadian Journal of Microbiology 1529:10.1046/j.1462-2920.1999.00040.x 1464:10.1046/j.1365-3040.2003.00956.x 1166:Current Opinion in Plant Biology 966:synthesis have been identified. 904:-targeting probe to monitor the 655: 654: 103: 23:Cross section though a soybean ( 1847:Vessey, J. Kevin (2003-08-01). 1405:Annual Review of Phytopathology 1212:. Sinauer Associates. pp.  1417:10.1146/annurev.phyto.39.1.461 1: 1451:Plant, Cell & Environment 962:or that interfere with plant 1757:10.1007/978-3-030-48771-3_11 1623:10.1007/978-94-010-0566-1_10 1573:10.1094/MPMI.2000.13.11.1170 1178:10.1016/S1369-5266(00)0183-7 573:Microbial population biology 2169: 1920:10.1038/s41598-019-39701-5 1517:Environmental Microbiology 969:Development of PGPRs into 200:Marine microbial symbiosis 2078:Frontiers in Microbiology 2031:10.1038/s41545-020-0051-0 1691:Microbes and Environments 1646:FEMS Microbiology Ecology 1552:"Simultaneous imaging of 1510:to the plant rhizosphere" 1371:10.1080/09583150120076120 58:Generally, about 2–5% of 2096:10.3389/fmicb.2019.00338 1830:E3 J. Agric.Res. Develop 1504:Rainey, Paul B. (1999). 945:. Direct enhancement of 765:Azospirillum fluorescens 756:. PGPR bacteria include 640:Earth Microbiome Project 635:Human Microbiome Project 394:Accessible carbohydrates 30:Bradyrhizobium japonicum 1865:10.1023/A:1026037216893 1640:Pseudomonas fluorescens 1554:Pseudomonas fluorescens 1508:Pseudomonas fluorescens 1242:Prescott's Microbiology 1117:10.1023/A:1026037216893 732:Symbiotic relationships 797:industrial agriculture 770:Azospirillum lipoferum 568:Biological dark matter 34: 1703:10.1264/jsme2.ME11309 989:Studies conducted on 925:or other rhizosphere 578:Microbial cooperation 22: 1985:10.1094/phyto-77-111 994:was reduced by 48%. 916:Mechanisms of action 863:. The generation of 793:microbial inoculants 539:Biomass partitioning 474:hologenome evolution 399:Flora (microbiology) 40:are root-associated 2058:0000-0002-6725-7199 1912:2019NatSR...9.4764M 1685:Bacillus sphaericus 1072:regulate their own 1047:systemic resistance 595:Metatranscriptomics 389:Initial acquisition 384:Microbial community 91:Part of a series on 1900:Scientific Reports 1300:Allium ascalonicum 906:metabolic activity 759:Pseudomonas putida 173:Marine microbiomes 35: 1766:978-3-030-48771-3 1566:(11): 1170–1176. 1490:978-0-8247-0043-0 1343:978-0-8247-8737-0 1251:978-0-07-131367-4 1223:978-0-87893-445-4 883:molecular markers 819:and that enhance 701:Nitrogen fixation 698: 697: 288:Built environment 270:Other microbiomes 214:Human microbiomes 115:Plant microbiomes 84:Nitrogen fixation 2160: 2127: 2126: 2116: 2098: 2068: 2062: 2061: 2051: 2033: 2022:Nature Portfolio 2003: 1997: 1996: 1970: 1961: 1950: 1949: 1939: 1891: 1885: 1884: 1844: 1838: 1837: 1825: 1819: 1818: 1790: 1784: 1783: 1782: 1781: 1739: 1733: 1732: 1722: 1683:"Inoculation of 1678: 1672: 1671: 1661: 1633: 1627: 1626: 1602: 1596: 1595: 1585: 1575: 1547: 1541: 1540: 1514: 1501: 1495: 1494: 1475: 1469: 1468: 1466: 1442: 1436: 1435: 1433: 1427:. Archived from 1402: 1389: 1383: 1382: 1354: 1348: 1347: 1329: 1320: 1319: 1295: 1289: 1288: 1286: 1271: 1262: 1256: 1255: 1237: 1228: 1227: 1201: 1190: 1189: 1157: 1146: 1143: 1137: 1136: 1100: 985:Pathogenic roles 851:, production of 711:) to ammonia (NH 690: 683: 676: 663: 658: 657: 427:Marine holobiont 227:Fecal transplant 107: 88: 2168: 2167: 2163: 2162: 2161: 2159: 2158: 2157: 2133: 2132: 2131: 2130: 2070: 2069: 2065: 2052: 2013:npj Clean Water 2005: 2004: 2000: 1968: 1963: 1962: 1953: 1893: 1892: 1888: 1846: 1845: 1841: 1827: 1826: 1822: 1807:10.1139/m95-015 1792: 1791: 1787: 1779: 1777: 1767: 1741: 1740: 1736: 1680: 1679: 1675: 1635: 1634: 1630: 1617:(1–2): 97–108. 1604: 1603: 1599: 1549: 1548: 1544: 1512: 1506:"Adaptation of 1503: 1502: 1498: 1491: 1477: 1476: 1472: 1444: 1443: 1439: 1431: 1400: 1391: 1390: 1386: 1356: 1355: 1351: 1344: 1331: 1330: 1323: 1308:Bacillus cereus 1304:Brassica juncea 1302:) and mustard ( 1297: 1296: 1292: 1284: 1269: 1264: 1263: 1259: 1252: 1239: 1238: 1231: 1224: 1203: 1202: 1193: 1159: 1158: 1149: 1144: 1140: 1102: 1101: 1092: 1087: 1043: 987: 979:harmful effects 918: 892:or fluorescent 809: 755: 751: 734: 714: 710: 706: 694: 653: 646: 645: 644: 629: 621: 620: 619: 548: 533: 525: 524: 523: 510: 492: 482: 481: 480: 464: 431: 422:Plant holobiont 416: 406: 405: 404: 403: 374: 312: 302: 301: 300: 284: 271: 263: 262: 261: 248: 231: 216: 206: 205: 204: 195: 175: 165: 164: 163: 152:soil microbiome 147:root microbiome 132: 117: 86: 17: 12: 11: 5: 2166: 2164: 2156: 2155: 2150: 2145: 2135: 2134: 2129: 2128: 2063: 1998: 1979:(1): 111–115. 1973:Phytopathology 1951: 1886: 1859:(2): 571–586. 1853:Plant and Soil 1839: 1820: 1801:(2): 109–117. 1785: 1765: 1734: 1697:(3): 257–262. 1673: 1628: 1611:Plant and Soil 1597: 1542: 1523:(3): 243–257. 1496: 1489: 1470: 1457:(2): 189–199. 1437: 1434:on 2014-07-14. 1384: 1365:(5): 557–574. 1349: 1342: 1321: 1310:inoculation". 1290: 1287:on 2014-07-14. 1257: 1250: 1229: 1222: 1191: 1172:(4): 343–350. 1147: 1138: 1111:(2): 571–586. 1105:Plant and Soil 1089: 1088: 1086: 1083: 1070:forage species 1042: 1039: 1018:Flavobacterium 986: 983: 971:biofertilisers 947:mineral uptake 939:solubilization 927:microorganisms 917: 914: 885:such as green 861:quorum sensing 808: 805: 782:Bradyrhizobium 753: 749: 733: 730: 712: 708: 704: 696: 695: 693: 692: 685: 678: 670: 667: 666: 665: 664: 648: 647: 643: 642: 637: 631: 630: 627: 626: 623: 622: 618: 617: 612: 607: 602: 597: 592: 591: 590: 580: 575: 570: 565: 563:Quorum sensing 560: 555: 549: 547: 546: 541: 535: 534: 531: 530: 527: 526: 522: 521: 516: 511: 505: 500: 494: 493: 488: 487: 484: 483: 479: 478: 477: 476: 465: 463: 462: 461: 460: 455: 450: 445: 440: 432: 430: 429: 424: 418: 417: 412: 411: 408: 407: 402: 401: 396: 391: 386: 381: 375: 373: 372: 371: 370: 365: 360: 355: 350: 339: 338: 337: 336: 335: 330: 325: 314: 313: 308: 307: 304: 303: 299: 298: 290: 285: 279: 273: 272: 269: 268: 265: 264: 260: 259: 254: 249: 243: 238: 236:Gut–brain axis 232: 230: 229: 224: 218: 217: 212: 211: 208: 207: 203: 202: 196: 194: 193: 188: 183: 177: 176: 171: 170: 167: 166: 162: 161: 160: 159: 154: 149: 144: 133: 131: 130: 125: 119: 118: 113: 112: 109: 108: 100: 99: 93: 92: 85: 82: 15: 13: 10: 9: 6: 4: 3: 2: 2165: 2154: 2151: 2149: 2146: 2144: 2141: 2140: 2138: 2124: 2120: 2115: 2110: 2106: 2102: 2097: 2092: 2088: 2084: 2080: 2079: 2074: 2067: 2064: 2059: 2056: 2049: 2045: 2041: 2037: 2032: 2027: 2023: 2019: 2015: 2014: 2009: 2002: 1999: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1960: 1958: 1956: 1952: 1947: 1943: 1938: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1890: 1887: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1843: 1840: 1835: 1831: 1824: 1821: 1816: 1812: 1808: 1804: 1800: 1796: 1789: 1786: 1776: 1772: 1768: 1762: 1758: 1754: 1750: 1746: 1738: 1735: 1730: 1726: 1721: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1686: 1677: 1674: 1669: 1665: 1660: 1655: 1651: 1647: 1643: 1641: 1632: 1629: 1624: 1620: 1616: 1612: 1608: 1601: 1598: 1593: 1589: 1584: 1579: 1574: 1569: 1565: 1561: 1557: 1555: 1546: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1511: 1509: 1500: 1497: 1492: 1486: 1482: 1474: 1471: 1465: 1460: 1456: 1452: 1448: 1441: 1438: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1399: 1397: 1388: 1385: 1380: 1376: 1372: 1368: 1364: 1360: 1353: 1350: 1345: 1339: 1335: 1328: 1326: 1322: 1317: 1313: 1309: 1305: 1301: 1294: 1291: 1283: 1279: 1275: 1268: 1261: 1258: 1253: 1247: 1243: 1236: 1234: 1230: 1225: 1219: 1215: 1211: 1207: 1200: 1198: 1196: 1192: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1156: 1154: 1152: 1148: 1142: 1139: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1099: 1097: 1095: 1091: 1084: 1082: 1080: 1075: 1071: 1067: 1062: 1059: 1055: 1052: 1048: 1040: 1038: 1034: 1032: 1031: 1026: 1025: 1024:Achromobacter 1020: 1019: 1014: 1013: 1008: 1007: 1002: 1001: 995: 992: 984: 982: 980: 976: 975:biopesticides 972: 967: 965: 961: 957: 953: 948: 944: 943:phytohormones 940: 936: 932: 928: 924: 915: 913: 911: 907: 903: 899: 895: 891: 888: 884: 879: 877: 873: 868: 866: 862: 858: 854: 850: 849:root exudates 846: 842: 838: 834: 830: 826: 822: 818: 814: 806: 804: 802: 798: 794: 789: 787: 783: 779: 775: 774:Allorhizobium 771: 767: 766: 761: 760: 747: 743: 738: 731: 729: 727: 726:crop rotation 723: 722:leghemoglobin 718: 702: 691: 686: 684: 679: 677: 672: 671: 669: 668: 662: 652: 651: 650: 649: 641: 638: 636: 633: 632: 625: 624: 616: 615:Symbiogenesis 613: 611: 610:Superorganism 608: 606: 603: 601: 598: 596: 593: 589: 586: 585: 584: 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 550: 545: 542: 540: 537: 536: 529: 528: 520: 517: 515: 512: 509: 506: 504: 501: 499: 496: 495: 491: 486: 485: 475: 472: 471: 470: 467: 466: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 435: 434: 433: 428: 425: 423: 420: 419: 415: 410: 409: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 376: 369: 366: 364: 361: 359: 356: 354: 351: 349: 346: 345: 344: 341: 340: 334: 333:rhizobacteria 331: 329: 326: 324: 321: 320: 319: 316: 315: 311: 306: 305: 297: 295: 291: 289: 286: 283: 280: 278: 275: 274: 267: 266: 258: 255: 253: 250: 247: 244: 242: 239: 237: 234: 233: 228: 225: 223: 220: 219: 215: 210: 209: 201: 198: 197: 192: 189: 187: 184: 182: 179: 178: 174: 169: 168: 158: 155: 153: 150: 148: 145: 143: 140: 139: 138: 135: 134: 129: 126: 124: 121: 120: 116: 111: 110: 106: 102: 101: 98: 94: 90: 89: 83: 81: 79: 78: 73: 69: 65: 64:biofertilizer 61: 56: 54: 50: 47: 43: 39: 38:Rhizobacteria 32: 31: 26: 21: 2148:Soil biology 2082: 2076: 2066: 2017: 2011: 2001: 1976: 1972: 1903: 1899: 1889: 1856: 1852: 1842: 1833: 1829: 1823: 1798: 1794: 1788: 1778:, retrieved 1748: 1737: 1694: 1690: 1684: 1676: 1652:(1): 11–19. 1649: 1645: 1639: 1631: 1614: 1610: 1606: 1600: 1563: 1559: 1553: 1545: 1520: 1516: 1507: 1499: 1480: 1473: 1454: 1450: 1440: 1429:the original 1408: 1404: 1395: 1387: 1362: 1358: 1352: 1333: 1315: 1311: 1307: 1306:) plants to 1303: 1299: 1293: 1282:the original 1277: 1273: 1260: 1241: 1209: 1169: 1165: 1141: 1108: 1104: 1068:. Different 1063: 1050: 1044: 1035: 1030:Arthrobacter 1028: 1022: 1016: 1010: 1004: 1000:Enterobacter 998: 996: 988: 968: 956:gibberellins 919: 880: 869: 847:to seed and 825:spermosphere 821:plant growth 810: 790: 785: 781: 778:Azorhizobium 777: 773: 769: 763: 757: 742:siderophores 739: 735: 699: 600:Metabolomics 583:Metagenomics 469:Hologenomics 332: 293: 157:spermosphere 128:Phyllosphere 77:Azospirillum 75: 72:root nodules 57: 48: 37: 36: 28: 24: 1906:(1): 4764. 1607:Pseudomonas 1411:: 461–490. 1396:Pseudomonas 1318:(1): 47–50. 1074:rhizosphere 1051:Pseudomonas 1012:Citrobacter 910:rhizosphere 887:fluorescent 876:transposons 872:gene fusion 833:root system 717:Nitrogenase 553:Gnotobiosis 282:Phycosphere 142:laimosphere 137:Rhizosphere 97:Microbiomes 60:rhizosphere 25:Glycine max 2137:Categories 1780:2022-03-23 1583:1887/62882 1085:References 1081:bacteria. 1079:cow faeces 1054:biocontrol 1041:Biocontrol 1006:Klebsiella 991:sugar beet 931:crop yield 894:antibodies 845:chemotaxis 746:Phosphorus 605:Pan-genome 558:Phytobiome 519:Virosphere 414:Holobionts 310:Microbiota 294:Drosophila 257:Necrobiome 222:Human milk 123:Endosphere 68:endophytic 2105:1664-302X 2087:Frontiers 2048:211169969 2040:2059-7037 1993:0031-949X 1928:2045-2322 1873:1573-5036 1836:(2): 108. 1815:0008-4166 1775:230587254 1711:1342-6311 1125:0032-079X 1058:inoculant 923:pathogens 786:Rhizobium 544:Dysbiosis 458:rhodolith 323:endophyte 277:Mycobiome 241:Placental 53:mutualism 2143:Bacteria 2123:30906284 2024:: 1–11. 1946:30886154 1881:37031212 1729:22446306 1668:10922498 1592:11059483 1537:11207743 1425:11701873 1379:83702938 1186:11418345 1133:37031212 964:ethylene 960:kinetins 857:fimbriae 841:motility 829:exudates 813:bacteria 661:Category 628:Projects 508:Mangrove 448:seagrass 328:epiphyte 246:Salivary 191:Cetacean 181:Seagrass 42:bacteria 2114:6418018 2089:: 338. 1937:6423345 1908:Bibcode 1720:4036051 1214:359–362 1210:Ecology 935:chelate 890:protein 865:mutants 801:legumes 791:Though 532:Related 514:Viriome 490:Viromes 368:vaginal 252:Uterine 2153:Botany 2121:  2111:  2103:  2053:(PJJA 2046:  2038:  1991:  1944:  1934:  1926:  1879:  1871:  1813:  1773:  1763:  1727:  1717:  1709:  1666:  1590:  1535:  1487:  1423:  1377:  1340:  1248:  1220:  1184:  1131:  1123:  1066:cattle 1027:, and 952:auxins 881:Using 784:, and 768:, and 659:  453:sponge 379:Marine 2055:ORCID 2044:S2CID 2020:(1). 1969:(PDF) 1877:S2CID 1771:S2CID 1513:(PDF) 1432:(PDF) 1401:(PDF) 1375:S2CID 1285:(PDF) 1270:(PDF) 1129:S2CID 837:genes 588:viral 503:Human 438:coral 343:Human 318:Plant 186:Coral 49:rhiza 46:Greek 2119:PMID 2101:ISSN 2036:ISSN 1989:ISSN 1942:PMID 1924:ISSN 1869:ISSN 1811:ISSN 1761:ISBN 1725:PMID 1707:ISSN 1664:PMID 1588:PMID 1533:PMID 1485:ISBN 1421:PMID 1338:ISBN 1246:ISBN 1218:ISBN 1182:PMID 1121:ISSN 973:and 958:and 902:rRNA 853:pili 817:seed 443:crab 363:skin 358:oral 353:lung 2109:PMC 2091:doi 2026:doi 1981:doi 1932:PMC 1916:doi 1861:doi 1857:255 1803:doi 1753:doi 1715:PMC 1699:doi 1654:doi 1619:doi 1615:232 1578:hdl 1568:doi 1525:doi 1459:doi 1413:doi 1367:doi 1174:doi 1113:doi 1109:255 855:or 498:Bat 348:gut 296:gut 2139:: 2117:. 2107:. 2099:. 2085:. 2083:10 2081:. 2075:. 2042:. 2034:. 2016:. 2010:. 1987:. 1977:72 1975:. 1971:. 1954:^ 1940:. 1930:. 1922:. 1914:. 1902:. 1898:. 1875:. 1867:. 1855:. 1851:. 1832:. 1809:. 1799:41 1797:. 1769:, 1759:, 1747:, 1723:. 1713:. 1705:. 1695:27 1693:. 1689:. 1662:. 1650:33 1648:. 1644:. 1613:. 1586:. 1576:. 1564:13 1562:. 1558:. 1531:. 1519:. 1515:. 1455:26 1453:. 1449:. 1419:. 1409:39 1407:. 1403:. 1373:. 1363:11 1361:. 1324:^ 1314:. 1276:. 1272:. 1232:^ 1216:. 1208:. 1194:^ 1180:. 1168:. 1164:. 1150:^ 1127:. 1119:. 1107:. 1093:^ 1021:, 1015:, 1009:, 1003:, 954:, 843:, 788:. 780:, 776:, 762:, 752:PO 2125:. 2093:: 2060:) 2050:. 2028:: 2018:3 1995:. 1983:: 1948:. 1918:: 1910:: 1904:9 1883:. 1863:: 1834:5 1817:. 1805:: 1755:: 1731:. 1701:: 1670:. 1656:: 1625:. 1621:: 1594:. 1580:: 1570:: 1539:. 1527:: 1521:1 1493:. 1467:. 1461:: 1415:: 1398:" 1381:. 1369:: 1346:. 1316:8 1278:2 1254:. 1226:. 1188:. 1176:: 1170:4 1135:. 1115:: 754:4 750:2 713:3 709:2 705:2 689:e 682:t 675:v

Index


Bradyrhizobium japonicum
bacteria
Greek
mutualism
rhizosphere
biofertilizer
endophytic
root nodules
Azospirillum
Microbiomes

Plant microbiomes
Endosphere
Phyllosphere
Rhizosphere
laimosphere
root microbiome
soil microbiome
spermosphere
Marine microbiomes
Seagrass
Coral
Cetacean
Marine microbial symbiosis
Human microbiomes
Human milk
Fecal transplant
Gut–brain axis
Placental

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑