Knowledge (XXG)

Sulfolobus

Source 📝

2351: 2243:"The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79" 1411:
lysed after the induction of Fuselloviridae production and eventually return to the lysogenic state. They are also unique in the sense that the genes encoding the structural proteins of the virus are constantly transcribed and DNA replication appears to be induced. The viruses infecting archaea like Sulfolobus have to use a strategy to escape prolonged direct exposure to the type of environment their host lives in, which may explain some of their unique properties.
63: 33: 1848:
Kawarabayasi, Y; Hino, Y; Horikawa, H; Jin-no, K; Takahashi, M; Sekine, M; Baba, S; Ankai, A; Kosugi, H; Hosoyama, A; Fukui, S; Nagai, Y; Nishijima, K; Otsuka, R; Nakazawa, H; Takamiya, M; Kato, Y; Yoshizawa, T; Tanaka, T; Kudoh, Y; Yamazaki, J; Kushida, N; Oguchi, A; Aoki, K; Masuda, S; Yanagii, M;
1289:
to the DNA damaging agents UV-irradiation, bleomycin or mitomycin C induced cellular aggregation. Other physical stressors, such as pH or temperature shift, did not induce aggregation, suggesting that induction of aggregation is caused specifically by DNA damage. Ajon et al. showed that UV-induced
1203:
can grow either lithoautotrophically by oxidizing sulfur, or chemoheterotrophically using sulfur to oxidize simple reduced carbon compounds. Heterotrophic growth has only been observed, however, in the presence of oxygen. The principle metabolic pathways are a glycolytic pathway, a pentose phosphate
377:
were identified. It showed that both species contained two origins in their genome. This was the first time that more than a single origin of DNA replication had been shown to be used in a prokaryotic cell. The mechanism of DNA replication in archaea is evolutionary conserved, and similar to that of
1410:
as protection against the harsh elements. This relationship allows the virus to replicate inside the archaea without being destroyed by the environment. The Sulfolobus viruses are temperate or permanent lysogens. Permanent lysogens differ from lysogenic bacteriophages in that the host cells are not
1178:
has a circular chromosome as well but is slightly smaller with 2,694,756 bp. Both species lack the genes ftsZ and minD, which has been characteristic of sequenced Crenarchaeota. They also code for citrate synthase and two subunits of 2-oxoacid:ferredoxin oxidoreductase, which plays the same role as
1187:
has a TCA cycle system similar to that found in mitochondria of eukaryotes. Other genes in the respiratory chain which partake in the production of ATP were not similar to what is found in eukaryotes. Cytochrome c is one such example that plays an important role in electron transfer to oxygen in
382:
is now used as a model to study the molecular mechanisms of DNA replication in Archaea. And because the system of DNA replication in Archaea is much simpler than that in Eukaryota, it was suggested that Archaea could be used as a model to study the much more complex DNA replication in Eukaryota.
1207:
All Archaea have lipids with ether links between the head group and side chains, making the lipids more resistant to heat and acidity than bacterial and eukaryotic ester-linked lipids. The Sulfolobales are known for unusual tetraether lipids. In Sulfolobales, the ether-linked lipids are joined
1788:
She, Q; Singh, RK; Confalonieri, F; Zivanovic, Y; Allard, G; Awayez, MJ; Chan-Weiher, CC; Clausen, IG; Curtis, BA; De Moors, A; Erauso, G; Fletcher, C; Gordon, PM; Heikamp-de Jong, I; Jeffries, AC; Kozera, CJ; Medina, N; Peng, X; Thi-Ngoc, HP; Redder, P; Schenk, ME; Theriault, C; Tolstrup, N;
1269:. Sediments from ~90m below the seafloor on the Peruvian continental margin are dominated by intact archaeal tetraethers, and a significant fraction of the community is sedimentary archaea taxonomically linked to the crenarchaeal Sulfolobales (Sturt, 364:
P2, was published. In P2's genome, the genes related to chromosome replication were likewise found to be more related to those in eukaryotes. These genes include DNA polymerase, primase (including two subunits), MCM, CDC6/ORC1, RPA, RPC, and
1306:. This response may be a primitive form of sexual interaction, similar to the more well-studied bacterial transformation that is also associated with DNA transfer between cells leading to homologous recombinational repair of DNA damage. 1567: 1945: 1294:. Recombination rates exceeded those of uninduced cultures by up to three orders of magnitude. Wood et al. also showed that UV-irradiation increased the frequency of recombination due to genetic exchange in 1298:. Frols et al. and Ajon et al. hypothesized that the UV-inducible DNA transfer process and subsequent homologous recombinational repair represents an important mechanism to maintain chromosome integrity in 356:
involved in DNA replication, transcription, and translation were more related to their counterparts in eukaryotes than to those in other prokaryotes. In 2001, the first genome sequence of
1372:. It was proposed that Saci-1497 and Saci-1500 function in an homologous recombination-based DNA repair mechanism that uses transferred DNA as a template. Thus it is thought that the 2505: 1545: 462: 2479: 2518: 1571: 1520: 1508: 466: 2453: 1208:
covalently across the "bilayer," making tetraethers. Technically, therefore, the tetraethers form a monolayer, not a bilayer. The tetraethers help
2492: 1337:
encoded by this operon are employed in promoting cellular aggregation, which is necessary for subsequent DNA exchange between cells, resulting in
1449:
Dai, X; Wang, H; Zhang, Z; Li, K; Zhang, X; Mora-López, M; Jiang, C; Liu, C; Wang, L; Zhu, Y; Hernández-Ascencio, W; Dong, Z; Huang, L (2016).
2338: 2219: 2323:
Stetter, KO (1989). "Order III. Sulfolobales ord. nov. Family Sulfolobaceae fam. nov.". In JT Staley; MP Bryant; N Pfennig; JG Holt (eds.).
326:
volcano. Other species can be found throughout the world in areas of volcanic or geothermal activity, such as geological formations called
1739:
Chen, L; Brügger, K; Skovgaard, M; Redder, P; She, Q; Torarinsson, E; Greve, B; Awayez, M; Zibat, A; Klenk, HP; Garrett, RA (July 2005).
2345: 476: 2342: 1685: 1180: 2279:; Brock KM; Belly RT; Weiss RL (1972). "Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature". 1251:. They thrive in environments where the temperature is about 80 °C with a pH at about 3 and sulfur present. Another species, 2544: 1425: 1455:
sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various
1789:
Charlebois, RL; Doolittle, WF; Duguet, M; Gaasterland, T; Garrett, RA; Ragan, MA; Sensen, CW; Van der Oost, J (3 July 2001).
2497: 1946:"UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation" 1634: 2037:
Fröls S; White MF; Schleper C (February 2009). "Reactions to UV damage in the model archaeon Sulfolobus solfataricus".
62: 1613: 2523: 1511: 1420: 1224: 879: 686: 400: 220: 211: 185: 165: 1188:
eukaryotes. This was also found in A. pernix K1. Since this step is important for an aerobic microorganism like
1717: 1690: 1663: 1377: 1365: 1338: 483: 229: 238: 2577: 2572: 202: 2367: 1430: 1990:"Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light" 193: 2549: 2427: 1802: 435: 1851:"Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7" 931: 798: 646: 629: 1253: 1021: 951: 598: 539: 323: 2304: 2140: 1369: 57: 1896: 2531: 2484: 2414: 2296: 2264: 2215: 2194: 2105: 2054: 2019: 1970: 1921: 1872: 1830: 1770: 1490: 1248: 1041: 2288: 2254: 2184: 2176: 2132: 2095: 2085: 2046: 2009: 2001: 1960: 1911: 1862: 1820: 1810: 1760: 1752: 1480: 1470: 1228: 446: 2536: 2405: 1402:
for protection. The viruses cannot survive in the extremely acidic and hot conditions that
2276: 2123:
Bernstein, H; Bernstein, C (2010). "Evolutionary Origin of Recombination during Meiosis".
1192:, it probably uses a different molecule for the same function or has a different pathway. 84: 2241:
Judicial Commission of the International Committee on Systematics of Prokaryotes (2005).
1806: 2189: 2164: 2100: 2073: 1765: 1740: 1485: 1450: 987: 832: 729: 556: 104: 2014: 1989: 352:, had been sequenced completely in 1996, it was found that the genes in the genome of 2566: 2005: 1965: 1916: 1825: 1790: 1756: 1361: 270: 266: 134: 2327:. Vol. 3 (1st ed.). Baltimore: The Williams & Wilkins Co. p. 169. 2165:"DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales" 2144: 1174:
has a circular chromosome that consists of 2,992,245 bp. Another sequenced species,
2308: 1353: 395: 347: 300: 157: 124: 114: 2419: 1897:"UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili" 1290:
cellular aggregation mediates chromosomal marker exchange with high frequency in
318:
are generally named after the location from which they were first isolated, e.g.
2466: 2399: 1741:"The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota" 1330: 1258: 1151: 859: 703: 419: 292: 2390: 1795:
Proceedings of the National Academy of Sciences of the United States of America
296: 284: 1867: 1850: 1712: 1475: 2440: 2136: 1395: 1070: 515: 427: 423: 2268: 2198: 2109: 2090: 2058: 1974: 1925: 1876: 1834: 1815: 1774: 1494: 394:
proteins are of interest for biotechnology and industrial use due to their
2300: 2259: 2242: 2023: 1592: 410:. Intracellular proteins are not necessarily stable at low pH however, as 2384: 1658: 308: 2510: 2180: 1541: 1516: 1183:
in the TCA (tricarboxylic/Krebs/citric acid) cycle. This indicates that
2458: 2292: 2050: 1232: 450: 443: 406: 398:
nature. One application is the creation of artificial derivatives from
327: 274: 74: 2471: 414:
species maintain a significant pH gradient across the outer membrane.
1322: 1262: 1240: 1143: 431: 49: 2361: 1849:
Nishimura, M; Yamagishi, A; Oshima, T; Kikuchi, H (31 August 2001).
1791:"The complete genome of the crenarchaeon Sulfolobus solfataricus P2" 2445: 1334: 1266: 1236: 438:
in which sulfur acts as the final electron acceptor. For example,
262: 2074:"Uniting sex and eukaryote origins in an emerging oxygenic world" 366: 94: 32: 2365: 2355: 1356:
III that nicks UV-damaged DNA; and another gene of the operon,
341:
as a model to study the molecular mechanisms of DNA replication
2432: 1895:
Ajon M; Fröls S; van Wolferen M; et al. (November 2011).
288: 1212:
species survive extreme acid as well as high temperature.
1944:
Fröls S; Ajon M; Wagner M; et al. (November 2008).
1546:
List of Prokaryotic names with Standing in Nomenclature
463:
List of Prokaryotic names with Standing in Nomenclature
2374: 1348:operon showed that one of the genes of the operon, 461:The currently accepted taxonomy is based on the 1988:Wood ER; Ghané F; Grogan DW (September 1997). 1572:National Center for Biotechnology Information 1521:National Center for Biotechnology Information 1046:Servín-Garcidueñas & Martínez-Romero 2014 467:National Center for Biotechnology Information 369:. In 2004, the origins of DNA replication of 8: 1380:provide a DNA damage response which rescues 1223:has been found in different areas including 2158: 2156: 2154: 2362: 2339:Comparative Analysis of Sulfolobus Genomes 2325:Bergey's Manual of Systematic Bacteriology 31: 20: 2258: 2188: 2099: 2089: 2013: 1964: 1915: 1890: 1888: 1886: 1866: 1824: 1814: 1764: 1484: 1474: 2163:van Wolferen M, Ma X, Albers SV (2015). 1939: 1937: 1935: 471: 1441: 1257:, has been located in an acidic spa in 418:are metabolically dependent on sulfur: 7: 2210:Madigan M; Martinko J, eds. (2005). 1247:is located almost wherever there is 151:Brock, Brock, Belly & Weiss 1972 1013: 1006: 979: 923: 916: 851: 824: 817: 790: 782: 678: 671: 621: 614: 590: 531: 507: 500: 492: 14: 1406:lives in, and so the viruses use 1181:alpha-ketoglutarate dehydrogenase 307:cells are irregularly shaped and 287:with optimal growth occurring at 2214:(11th ed.). Prentice Hall. 2072:Gross J; Bhattacharya D (2010). 2006:10.1128/jb.179.18.5693-5698.1997 1966:10.1111/j.1365-2958.2008.06459.x 1917:10.1111/j.1365-2958.2011.07861.x 1757:10.1128/JB.187.14.4992-4999.2005 1426:Evolution of sexual reproduction 1162:str. 7 (2,694,756 nucleotides). 1158:P2 (2,992,245 nucleotides), and 345:When the first Archaeal genome, 61: 2212:Brock Biology of Microorganisms 1614:"LTP_all tree in newick format" 426:, their energy comes from the 295:of 75–80 °C, making them 1: 2247:Int. J. Syst. Evol. Microbiol 1329:species is highly induced by 1196:Cell structure and metabolism 1204:pathway, and the TCA cycle. 1635:"LTP_06_2022 Release Notes" 1514:. Data extracted from the 1384:from DNA damaging threats. 1376:system in combination with 1343:Sulfolobales acidocaldarius 2596: 2352:Sulfolobus Genome Projects 330:, which are also known as 322:was first isolated in the 1517:"NCBI taxonomy resources" 1463:Frontiers in Microbiology 1421:Transformation (genetics) 1287:Sulfolobus acidocaldarius 1225:Yellowstone National Park 1067: 1035: 1018: 1011: 1004: 984: 977: 956:Sakai & Kurosawa 2018 948: 928: 921: 914: 880:Sulfolobus acidocaldarius 876: 856: 849: 829: 822: 815: 803:Sakai & Kurosawa 2017 795: 788: 726: 700: 687:Sulfolobus acidocaldarius 683: 676: 669: 643: 626: 619: 612: 595: 588: 553: 536: 529: 512: 505: 498: 482:53 marker proteins based 481: 474: 375:Sulfolobus acidocaldarius 181: 176: 166:Sulfolobus acidocaldarius 163: 156: 58:Scientific classification 56: 39: 30: 23: 1718:Genome Taxonomy Database 1691:Genome Taxonomy Database 1664:Genome Taxonomy Database 1574:(NCBI) taxonomy database 1476:10.3389/fmicb.2016.01902 1378:homologous recombination 1366:homologous recombination 1339:homologous recombination 1146:have been sequenced for 354:Methanococcus jannaschii 2356:Genomes OnLine Database 2137:10.1525/bio.2010.60.7.5 1745:Journal of Bacteriology 1659:"GTDB release 08-RS214" 1364:that is able to unwind 1283:Sulfolobus solfataricus 1172:Sulfolobus solfataricus 371:Sulfolobus solfataricus 362:Sulfolobus solfataricus 334:(plural of solfatara). 320:Sulfolobus solfataricus 40:Electron micrograph of 2091:10.1186/1745-6150-5-53 1868:10.1093/dnares/8.4.123 1816:10.1073/pnas.141222098 1451:"Genome Sequencing of 1431:List of Archaea genera 1368:intermediates such as 2260:10.1099/ijs.0.63548-0 1512:webpage on Sulfolobus 387:Role in biotechnology 1686:"ar53_r214.sp_label" 1566:Sayers; et al. 837:Kurosawa et al. 1998 436:cellular respiration 273:. It belongs to the 2235:Scientific journals 2181:10.1128/JB.00344-15 2039:Biochem. Soc. Trans 1807:2001PNAS...98.7835S 1277:DNA damage response 1150:DSM 639 (2,225,959 1075:Segerer et al. 1986 1022:Acidianus brierleyi 864:Segerer et al. 1991 540:Acidianus brierleyi 2293:10.1007/BF00408082 2051:10.1042/BST0370036 1370:Holliday junctions 1362:RecQ-like helicase 1341:. A study of the 2560: 2559: 2532:Open Tree of Life 2368:Taxon identifiers 2253:(Pt 1): 517–518. 2221:978-0-13-144329-7 1300:S. acidocaldarius 1296:S. acidocaldarius 1292:S. acidocaldarius 1259:Beppu Hot Springs 1249:volcanic activity 1148:S. acidocaldarius 1135: 1134: 1130: 1129: 1121: 1120: 1112: 1111: 1103: 1102: 1094: 1093: 1085: 1084: 1076: 1056: 1055: 1047: 993: 992:Huber et al. 1989 966: 965: 957: 937: 903: 902: 894: 893: 885: 884:Brock et al. 1972 865: 838: 804: 777: 776: 768: 767: 759: 758: 750: 749: 741: 740: 715: 714: 658: 657: 577: 576: 568: 567: 453:intracellularly. 401:S. acidocaldarius 254: 253: 221:S. tengchongensis 212:S. neozealandicus 186:S. acidocaldarius 171:Brock et al. 1972 152: 2585: 2553: 2552: 2540: 2539: 2527: 2526: 2514: 2513: 2501: 2500: 2488: 2487: 2475: 2474: 2462: 2461: 2449: 2448: 2436: 2435: 2423: 2422: 2410: 2409: 2408: 2395: 2394: 2393: 2363: 2328: 2317:Scientific books 2312: 2272: 2262: 2225: 2203: 2202: 2192: 2160: 2149: 2148: 2120: 2114: 2113: 2103: 2093: 2069: 2063: 2062: 2034: 2028: 2027: 2017: 1985: 1979: 1978: 1968: 1950: 1941: 1930: 1929: 1919: 1901: 1892: 1881: 1880: 1870: 1845: 1839: 1838: 1828: 1818: 1785: 1779: 1778: 1768: 1736: 1730: 1729: 1727: 1725: 1709: 1703: 1702: 1700: 1698: 1682: 1676: 1675: 1673: 1671: 1655: 1649: 1648: 1646: 1644: 1639: 1631: 1625: 1624: 1622: 1620: 1610: 1604: 1603: 1601: 1599: 1589: 1583: 1582: 1580: 1579: 1563: 1557: 1556: 1554: 1553: 1537: 1531: 1530: 1528: 1527: 1505: 1499: 1498: 1488: 1478: 1446: 1229:Mount St. Helens 1166:Genome structure 1074: 1045: 1014: 1007: 991: 980: 955: 936:Itoh et al. 2020 935: 924: 917: 883: 863: 852: 836: 825: 818: 802: 791: 783: 679: 672: 622: 615: 591: 532: 508: 501: 493: 472: 447:hydrogen sulfide 404:proteins, named 285:volcanic springs 283:species grow in 239:S. vallisabyssus 230:S. thuringiensis 150: 66: 65: 35: 21: 16:Genus of archaea 2595: 2594: 2588: 2587: 2586: 2584: 2583: 2582: 2563: 2562: 2561: 2556: 2548: 2543: 2535: 2530: 2522: 2517: 2509: 2504: 2496: 2491: 2483: 2478: 2470: 2465: 2457: 2452: 2444: 2439: 2431: 2426: 2418: 2413: 2404: 2403: 2398: 2389: 2388: 2383: 2370: 2335: 2322: 2319: 2281:Arch. Mikrobiol 2275: 2240: 2237: 2232: 2230:Further reading 2222: 2209: 2206: 2175:(18): 2941–51. 2162: 2161: 2152: 2122: 2121: 2117: 2071: 2070: 2066: 2045:(Pt 1): 36–41. 2036: 2035: 2031: 1987: 1986: 1982: 1948: 1943: 1942: 1933: 1899: 1894: 1893: 1884: 1847: 1846: 1842: 1801:(14): 7835–40. 1787: 1786: 1782: 1738: 1737: 1733: 1723: 1721: 1713:"Taxon History" 1711: 1710: 1706: 1696: 1694: 1684: 1683: 1679: 1669: 1667: 1657: 1656: 1652: 1642: 1640: 1637: 1633: 1632: 1628: 1618: 1616: 1612: 1611: 1607: 1597: 1595: 1591: 1590: 1586: 1577: 1575: 1565: 1564: 1560: 1551: 1549: 1539: 1538: 1534: 1525: 1523: 1515: 1506: 1502: 1448: 1447: 1443: 1439: 1417: 1398:viruses infect 1393: 1391:as a viral host 1316: 1304:S. solfataricus 1279: 1243:to name a few. 1221:S. solfataricus 1218: 1198: 1168: 1156:S. solfataricus 1140: 1131: 1122: 1113: 1104: 1095: 1086: 1057: 967: 904: 895: 778: 769: 760: 751: 742: 716: 659: 578: 569: 475:16S rRNA based 459: 389: 343: 303:respectively. 172: 169: 149: 85:Proteoarchaeota 60: 17: 12: 11: 5: 2593: 2592: 2589: 2581: 2580: 2578:Thermoproteota 2575: 2573:Archaea genera 2565: 2564: 2558: 2557: 2555: 2554: 2541: 2528: 2515: 2502: 2489: 2476: 2463: 2450: 2437: 2424: 2411: 2396: 2380: 2378: 2372: 2371: 2366: 2360: 2359: 2349: 2334: 2333:External links 2331: 2330: 2329: 2318: 2315: 2314: 2313: 2273: 2236: 2233: 2231: 2228: 2227: 2226: 2220: 2205: 2204: 2150: 2131:(7): 498–505. 2115: 2064: 2029: 2000:(18): 5693–8. 1980: 1953:Mol. Microbiol 1931: 1904:Mol. Microbiol 1882: 1840: 1780: 1751:(14): 4992–9. 1731: 1704: 1677: 1650: 1626: 1605: 1584: 1558: 1532: 1500: 1440: 1438: 1435: 1434: 1433: 1428: 1423: 1416: 1413: 1392: 1386: 1331:UV irradiation 1315: 1308: 1278: 1275: 1217: 1214: 1197: 1194: 1167: 1164: 1139: 1136: 1133: 1132: 1128: 1127: 1124: 1123: 1119: 1118: 1115: 1114: 1110: 1109: 1106: 1105: 1101: 1100: 1097: 1096: 1092: 1091: 1088: 1087: 1083: 1082: 1079: 1078: 1066: 1063: 1062: 1059: 1058: 1054: 1053: 1050: 1049: 1034: 1031: 1030: 1027: 1026: 1017: 1012: 1010: 1005: 1003: 1000: 999: 996: 995: 988:Metallosphaera 983: 978: 976: 973: 972: 969: 968: 964: 963: 960: 959: 947: 944: 943: 940: 939: 932:Sulfuracidifex 927: 922: 920: 915: 913: 910: 909: 906: 905: 901: 900: 897: 896: 892: 891: 888: 887: 875: 872: 871: 868: 867: 855: 850: 848: 845: 844: 841: 840: 833:Sulfurisphaera 828: 823: 821: 816: 814: 811: 810: 807: 806: 799:Sulfodiicoccus 794: 789: 787: 786:Sulfolobaceae 781: 779: 775: 774: 771: 770: 766: 765: 762: 761: 757: 756: 753: 752: 748: 747: 744: 743: 739: 738: 735: 734: 730:Sulfurisphaera 725: 722: 721: 718: 717: 713: 712: 709: 708: 699: 696: 695: 692: 691: 682: 677: 675: 670: 668: 665: 664: 661: 660: 656: 655: 652: 651: 647:Sulfuracidifex 642: 639: 638: 635: 634: 630:Sulfodiicoccus 625: 620: 618: 613: 611: 608: 607: 604: 603: 594: 589: 587: 584: 583: 580: 579: 575: 574: 571: 570: 566: 565: 562: 561: 557:Metallosphaera 552: 549: 548: 545: 544: 535: 530: 528: 525: 524: 521: 520: 511: 506: 504: 499: 497: 496:Sulfolobaceae 491: 488: 487: 480: 458: 455: 388: 385: 342: 336: 269:in the family 252: 251: 250: 249: 243: 234: 225: 216: 207: 198: 189: 179: 178: 174: 173: 170: 161: 160: 154: 153: 142: 138: 137: 132: 128: 127: 122: 118: 117: 112: 108: 107: 105:Thermoproteota 102: 98: 97: 92: 88: 87: 82: 78: 77: 72: 68: 67: 54: 53: 52:. Bar = 1 μm. 44:infected with 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 2591: 2590: 2579: 2576: 2574: 2571: 2570: 2568: 2551: 2546: 2542: 2538: 2533: 2529: 2525: 2520: 2516: 2512: 2507: 2503: 2499: 2494: 2490: 2486: 2481: 2477: 2473: 2468: 2464: 2460: 2455: 2451: 2447: 2442: 2438: 2434: 2429: 2425: 2421: 2416: 2412: 2407: 2401: 2397: 2392: 2386: 2382: 2381: 2379: 2377: 2373: 2369: 2364: 2357: 2353: 2350: 2347: 2344: 2340: 2337: 2336: 2332: 2326: 2321: 2320: 2316: 2310: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2261: 2256: 2252: 2248: 2244: 2239: 2238: 2234: 2229: 2223: 2217: 2213: 2208: 2207: 2200: 2196: 2191: 2186: 2182: 2178: 2174: 2170: 2166: 2159: 2157: 2155: 2151: 2146: 2142: 2138: 2134: 2130: 2126: 2119: 2116: 2111: 2107: 2102: 2097: 2092: 2087: 2083: 2079: 2075: 2068: 2065: 2060: 2056: 2052: 2048: 2044: 2040: 2033: 2030: 2025: 2021: 2016: 2011: 2007: 2003: 1999: 1995: 1991: 1984: 1981: 1976: 1972: 1967: 1962: 1959:(4): 938–52. 1958: 1954: 1947: 1940: 1938: 1936: 1932: 1927: 1923: 1918: 1913: 1910:(4): 807–17. 1909: 1905: 1898: 1891: 1889: 1887: 1883: 1878: 1874: 1869: 1864: 1861:(4): 123–40. 1860: 1856: 1852: 1844: 1841: 1836: 1832: 1827: 1822: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1784: 1781: 1776: 1772: 1767: 1762: 1758: 1754: 1750: 1746: 1742: 1735: 1732: 1720: 1719: 1714: 1708: 1705: 1693: 1692: 1687: 1681: 1678: 1666: 1665: 1660: 1654: 1651: 1636: 1630: 1627: 1615: 1609: 1606: 1594: 1588: 1585: 1573: 1569: 1562: 1559: 1547: 1543: 1540:J.P. Euzéby. 1536: 1533: 1522: 1518: 1513: 1510: 1504: 1501: 1496: 1492: 1487: 1482: 1477: 1472: 1468: 1464: 1460: 1458: 1454: 1445: 1442: 1436: 1432: 1429: 1427: 1424: 1422: 1419: 1418: 1414: 1412: 1409: 1405: 1401: 1397: 1390: 1387: 1385: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1352:, encodes an 1351: 1347: 1344: 1340: 1336: 1332: 1328: 1324: 1321: 1313: 1309: 1307: 1305: 1301: 1297: 1293: 1288: 1284: 1276: 1274: 1272: 1268: 1264: 1260: 1256: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1213: 1211: 1205: 1202: 1195: 1193: 1191: 1186: 1182: 1177: 1173: 1170:The archaeon 1165: 1163: 1161: 1157: 1153: 1149: 1145: 1142:The complete 1138:Genome status 1137: 1126: 1125: 1117: 1116: 1108: 1107: 1099: 1098: 1090: 1089: 1081: 1080: 1077: 1073: 1072: 1065: 1064: 1061: 1060: 1052: 1051: 1048: 1043: 1040: 1033: 1032: 1029: 1028: 1025: 1024: 1023: 1016: 1015: 1009: 1008: 1002: 1001: 998: 997: 994: 990: 989: 982: 981: 975: 974: 971: 970: 962: 961: 958: 954: 953: 952:Saccharolobus 946: 945: 942: 941: 938: 934: 933: 926: 925: 919: 918: 912: 911: 908: 907: 899: 898: 890: 889: 886: 882: 881: 874: 873: 870: 869: 866: 862: 861: 854: 853: 847: 846: 843: 842: 839: 835: 834: 827: 826: 820: 819: 813: 812: 809: 808: 805: 801: 800: 793: 792: 785: 784: 780: 773: 772: 764: 763: 755: 754: 746: 745: 737: 736: 733: 732: 731: 724: 723: 720: 719: 711: 710: 707: 706: 705: 698: 697: 694: 693: 690: 689: 688: 681: 680: 674: 673: 667: 666: 663: 662: 654: 653: 650: 649: 648: 641: 640: 637: 636: 633: 632: 631: 624: 623: 617: 616: 610: 609: 606: 605: 602: 601: 600: 599:Saccharolobus 593: 592: 586: 585: 582: 581: 573: 572: 564: 563: 560: 559: 558: 551: 550: 547: 546: 543: 542: 541: 534: 533: 527: 526: 523: 522: 519: 518: 517: 510: 509: 503: 502: 495: 494: 490: 489: 485: 478: 473: 470: 468: 464: 456: 454: 452: 448: 445: 441: 437: 433: 429: 425: 421: 420:heterotrophic 417: 413: 409: 408: 403: 402: 397: 393: 386: 384: 381: 376: 372: 368: 363: 359: 355: 351: 349: 348:Methanococcus 340: 337: 335: 333: 329: 325: 321: 317: 312: 310: 306: 302: 298: 294: 290: 286: 282: 278: 276: 272: 271:Sulfolobaceae 268: 267:microorganism 264: 260: 259: 247: 244: 241: 240: 235: 232: 231: 226: 223: 222: 217: 214: 213: 208: 205: 204: 203:S. mongibelli 199: 196: 195: 190: 188: 187: 183: 182: 180: 175: 168: 167: 162: 159: 155: 148: 147: 143: 140: 139: 136: 135:Sulfolobaceae 133: 130: 129: 126: 123: 120: 119: 116: 113: 110: 109: 106: 103: 100: 99: 96: 93: 91:Superphylum: 90: 89: 86: 83: 80: 79: 76: 73: 70: 69: 64: 59: 55: 51: 47: 43: 38: 34: 29: 26: 22: 19: 2375: 2324: 2287:(1): 54–68. 2284: 2280: 2250: 2246: 2211: 2172: 2169:J. Bacteriol 2168: 2128: 2124: 2118: 2081: 2078:Biol. Direct 2077: 2067: 2042: 2038: 2032: 1997: 1994:J. Bacteriol 1993: 1983: 1956: 1952: 1907: 1903: 1858: 1855:DNA Research 1854: 1843: 1798: 1794: 1783: 1748: 1744: 1734: 1722:. Retrieved 1716: 1707: 1695:. Retrieved 1689: 1680: 1668:. Retrieved 1662: 1653: 1641:. Retrieved 1629: 1617:. Retrieved 1608: 1596:. Retrieved 1587: 1576:. Retrieved 1568:"Sulfolobus" 1561: 1550:. Retrieved 1542:"Sulfolobus" 1535: 1524:. Retrieved 1503: 1466: 1462: 1456: 1452: 1444: 1407: 1403: 1399: 1394: 1388: 1382:Sulfolobales 1381: 1373: 1360:, encodes a 1357: 1354:endonuclease 1349: 1345: 1342: 1326: 1319: 1317: 1311: 1303: 1299: 1295: 1291: 1286: 1282: 1281:Exposure of 1280: 1270: 1252: 1244: 1220: 1219: 1209: 1206: 1200: 1199: 1189: 1184: 1175: 1171: 1169: 1159: 1155: 1147: 1141: 1069: 1068: 1038: 1036: 1020: 1019: 986: 985: 950: 949: 930: 929: 878: 877: 858: 857: 831: 830: 797: 796: 728: 727: 702: 701: 685: 684: 645: 644: 628: 627: 597: 596: 555: 554: 538: 537: 514: 513: 465:(LPSN) and 460: 442:is known to 439: 416:Sulfolobales 415: 411: 405: 399: 396:thermostable 391: 390: 379: 378:eukaryotes. 374: 370: 361: 357: 353: 346: 344: 338: 331: 319: 315: 313: 304: 301:thermophiles 293:temperatures 280: 279: 257: 256: 255: 245: 237: 228: 219: 210: 201: 192: 184: 164: 158:Type species 145: 144: 125:Sulfolobales 115:Thermoprotei 45: 41: 24: 18: 2467:iNaturalist 2400:Wikispecies 1254:S. tokodaii 1176:S. tokodaii 1160:S. tokodaii 1152:nucleotides 860:Stygiolobus 704:Stygiolobus 440:S. tokodaii 424:autotrophic 314:Species of 297:acidophiles 2567:Categories 2511:sulfolobus 2406:Sulfolobus 2376:Sulfolobus 2346:IMG system 2125:BioScience 1578:2021-05-15 1552:2021-05-15 1526:2007-03-19 1457:Sulfolobus 1453:Sulfolobus 1437:References 1408:Sulfolobus 1404:Sulfolobus 1400:Sulfolobus 1389:Sulfolobus 1327:Sulfolobus 1245:Sulfolobus 1210:Sulfolobus 1201:Sulfolobus 1190:Sulfolobus 1185:Sulfolobus 412:Sulfolobus 392:Sulfolobus 380:Sulfolobus 358:Sulfolobus 350:jannaschii 339:Sulfolobus 316:Sulfolobus 305:Sulfolobus 281:Sulfolobus 258:Sulfolobus 246:Sulfolobus 146:Sulfolobus 95:TACK group 46:Sulfolobus 42:Sulfolobus 25:Sulfolobus 1593:"The LTP" 1396:Lysogenic 1358:saci-1500 1350:saci-1497 1273:, 2004). 1071:Acidianus 516:Acidianus 486:08-RS214 479:_06_2022 457:Phylogeny 428:oxidation 332:solfatare 324:Solfatara 309:flagellar 194:S. beitou 81:Kingdom: 2391:Q1209791 2385:Wikidata 2277:Brock TD 2269:15653928 2199:26148716 2145:86663600 2110:20731852 2059:19143598 1975:18990182 1926:21999488 1877:11572479 1835:11427726 1775:15995215 1507:See the 1495:27965637 1469:: 1902. 1459:Strains" 1415:See also 1042:Aramenus 407:affitins 328:mud pots 291:2–3 and 277:domain. 177:Species 131:Family: 101:Phylum: 71:Domain: 2485:1022934 2459:1000050 2309:9204044 2301:4559703 2190:4542170 2101:2933680 2024:9294423 1803:Bibcode 1766:1169522 1486:5127849 1333:. The 1233:Iceland 1216:Ecology 1144:genomes 469:(NCBI) 451:sulfate 444:oxidize 434:and/or 275:archaea 248:sp. A20 141:Genus: 121:Order: 111:Class: 75:Archaea 2550:559458 2498:951581 2472:196672 2446:1SULFG 2354:(from 2307:  2299:  2267:  2218:  2197:  2187:  2143:  2108:  2098:  2084:: 53. 2057:  2022:  2015:179455 2012:  1973:  1924:  1875:  1833:  1823:  1773:  1763:  1724:10 May 1697:10 May 1670:10 May 1643:10 May 1619:10 May 1598:10 May 1548:(LPSN) 1493:  1483:  1323:operon 1314:operon 1271:et al. 1263:Kyushu 1241:Russia 1239:, and 432:sulfur 48:virus 2545:WoRMS 2537:98116 2480:IRMNG 2433:97597 2343:DOE's 2305:S2CID 2141:S2CID 1949:(PDF) 1900:(PDF) 1826:35428 1638:(PDF) 1267:Japan 1237:Italy 263:genus 261:is a 50:STSV1 2524:2284 2519:NCBI 2506:LPSN 2493:ITIS 2454:GBIF 2441:EPPO 2420:7Q94 2341:(at 2297:PMID 2265:PMID 2216:ISBN 2195:PMID 2106:PMID 2055:PMID 2020:PMID 1971:PMID 1922:PMID 1873:PMID 1831:PMID 1771:PMID 1726:2023 1699:2023 1672:2023 1645:2023 1621:2023 1600:2023 1509:NCBI 1491:PMID 1335:pili 1318:The 1310:The 1302:and 484:GTDB 373:and 367:PCNA 299:and 2428:EoL 2415:CoL 2289:doi 2255:doi 2185:PMC 2177:doi 2173:197 2133:doi 2096:PMC 2086:doi 2047:doi 2010:PMC 2002:doi 1998:179 1961:doi 1912:doi 1863:doi 1821:PMC 1811:doi 1761:PMC 1753:doi 1749:187 1481:PMC 1471:doi 1374:ups 1346:ups 1325:of 1320:ups 1312:ups 1285:or 1154:), 1039:Ca. 477:LTP 449:to 430:of 422:or 265:of 2569:: 2547:: 2534:: 2521:: 2508:: 2495:: 2482:: 2469:: 2456:: 2443:: 2430:: 2417:: 2402:: 2387:: 2303:. 2295:. 2285:84 2283:. 2263:. 2251:55 2249:. 2245:. 2193:. 2183:. 2171:. 2167:. 2153:^ 2139:. 2129:60 2127:. 2104:. 2094:. 2080:. 2076:. 2053:. 2043:37 2041:. 2018:. 2008:. 1996:. 1992:. 1969:. 1957:70 1955:. 1951:. 1934:^ 1920:. 1908:82 1906:. 1902:. 1885:^ 1871:. 1857:. 1853:. 1829:. 1819:. 1809:. 1799:98 1797:. 1793:. 1769:. 1759:. 1747:. 1743:. 1715:. 1688:. 1661:. 1570:. 1544:. 1519:. 1489:. 1479:. 1465:. 1461:. 1265:, 1261:, 1235:, 1231:, 1227:, 1044:" 360:, 311:. 289:pH 2358:) 2348:) 2311:. 2291:: 2271:. 2257:: 2224:. 2201:. 2179:: 2147:. 2135:: 2112:. 2088:: 2082:5 2061:. 2049:: 2026:. 2004:: 1977:. 1963:: 1928:. 1914:: 1879:. 1865:: 1859:8 1837:. 1813:: 1805:: 1777:. 1755:: 1728:. 1701:. 1674:. 1647:. 1623:. 1602:. 1581:. 1555:. 1529:. 1497:. 1473:: 1467:7 1037:" 242:" 236:" 233:" 227:" 224:" 218:" 215:" 209:" 206:" 200:" 197:" 191:"

Index


STSV1
Scientific classification
Edit this classification
Archaea
Proteoarchaeota
TACK group
Thermoproteota
Thermoprotei
Sulfolobales
Sulfolobaceae
Sulfolobus
Type species
Sulfolobus acidocaldarius
S. acidocaldarius
S. beitou
S. mongibelli
S. neozealandicus
S. tengchongensis
S. thuringiensis
S. vallisabyssus
genus
microorganism
Sulfolobaceae
archaea
volcanic springs
pH
temperatures
acidophiles
thermophiles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.