Knowledge

Multiply transitive group action

Source 📝

126: 228: 868: 824: 779: 531: 359: 743: 280: 254: 396: 306: 695: 472: 443: 166: 146: 60: 37: 895: 903: 1080: 949: 1054: 966:
Hering, Christoph (1985), "Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II",
1106: 69: 1009: 919: 171: 831: 405:
is a group such that there exists a group action that's 2-transitive and faithful. Similarly we can define
792: 841: 797: 755: 477: 907: 1049:, Grundlehren der Mathematischen Wissenschaften, vol. 243, Berlin-New York: Springer-Verlag, 311: 704: 1076: 1050: 1026: 985: 945: 259: 233: 1018: 975: 883: 835: 375: 285: 1090: 1064: 1038: 997: 959: 834:. In other words, the n-dimensional projective transforms act transitively on the space of 673: 1086: 1060: 1034: 1004: 993: 955: 941: 891: 879: 698: 448: 419: 934: 887: 667:
Every group is trivially 1-transitive, by its action on itself by left-multiplication.
151: 131: 45: 22: 1100: 980: 656: 1075:, Pure and Applied Mathematics, vol. 289, Boca Raton: Chapman & Hall/CRC, 63: 785: 1030: 989: 749: 1022: 940:, Graduate Texts in Mathematics, vol. 163, Berlin, New York: 1007:(1957), "Zweifach transitive, auflösbare Permutationsgruppen", 128:. That is, assuming (without a real loss of generality) that 474:, since the induced action on the distinct set of pairs is 1071:
Johnson, Norman L.; Jha, Vikram; Biliotti, Mauro (2007),
544:
permutation groups can be defined for any natural number
844: 800: 791:
acts sharply (n+2)-transitively on the n-dimensional
758: 707: 676: 480: 451: 422: 378: 314: 288: 262: 236: 174: 154: 134: 72: 48: 25: 933: 862: 818: 773: 737: 689: 525: 466: 437: 390: 353: 300: 274: 248: 222: 160: 140: 120: 66:transitively on the set of distinct ordered pairs 54: 31: 121:{\displaystyle \{(x,y)\in S\times S:x\neq y\}} 8: 1045:Huppert, Bertram; Blackburn, Norman (1982), 898:. The insoluble groups were classified by ( 732: 708: 115: 73: 745:, then the action is sharply n-transitive. 886:is 2-transitive, but not conversely. The 979: 854: 850: 847: 846: 843: 810: 806: 803: 802: 799: 765: 761: 760: 757: 706: 681: 675: 479: 450: 421: 377: 313: 287: 261: 235: 173: 153: 133: 71: 47: 24: 932:Dixon, John D.; Mortimer, Brian (1996), 223:{\displaystyle (x,y),(w,z)\in S\times S} 896:list of transitive finite linear groups 890:2-transitive groups were classified by 830:is because the (n+2) points must be in 904:classification of finite simple groups 899: 874:Classifications of 2-transitive groups 1073:Handbook of finite translation planes 536:The definition works in general with 7: 548:. Specifically, a permutation group 14: 863:{\displaystyle \mathbb {RP} ^{n}} 819:{\displaystyle \mathbb {RP} ^{n}} 774:{\displaystyle \mathbb {R} ^{n}} 595:with the property that all the 878:Every 2-transitive group is a 526:{\displaystyle g(x,y)=(gx,gy)} 520: 502: 496: 484: 348: 336: 330: 318: 205: 193: 187: 175: 88: 76: 1: 563:if, given two sets of points 981:10.1016/0021-8693(85)90179-6 882:, but not conversely. Every 354:{\displaystyle g(x,y)=(w,z)} 784:The group of n-dimensional 748:The group of n-dimensional 738:{\displaystyle \{1,...,n\}} 621:, there is a group element 1123: 1010:Mathematische Zeitschrift 920:Multiply transitive group 894:and are described in the 168:, for each pair of pairs 659:are important examples. 832:general linear position 752:acts 2-transitively on 275:{\displaystyle w\neq z} 249:{\displaystyle x\neq y} 16:Concept in group theory 864: 820: 775: 750:homothety-translations 739: 691: 527: 468: 439: 392: 391:{\displaystyle g\in G} 355: 302: 301:{\displaystyle g\in G} 276: 250: 224: 162: 142: 122: 56: 33: 865: 821: 793:real projective space 786:projective transforms 776: 740: 692: 690:{\displaystyle S_{n}} 528: 469: 440: 393: 356: 303: 277: 251: 225: 163: 143: 123: 57: 34: 908:almost simple groups 842: 798: 756: 705: 674: 478: 467:{\displaystyle gy=z} 449: 438:{\displaystyle gx=w} 420: 376: 364:The group action is 312: 286: 260: 234: 172: 152: 148:acts on the left of 132: 70: 46: 23: 1047:Finite groups. III. 542:multiply transitive 40:acts 2-transitively 1107:Permutation groups 1023:10.1007/BF01160336 968:Journal of Algebra 936:Permutation groups 860: 816: 771: 735: 687: 540:replacing 2. Such 523: 464: 435: 403:2-transitive group 388: 351: 298: 272: 246: 220: 158: 138: 118: 52: 29: 1082:978-1-58488-605-1 951:978-0-387-94599-6 836:projective frames 411:-transitive group 282:, there exists a 161:{\displaystyle S} 141:{\displaystyle G} 55:{\displaystyle S} 32:{\displaystyle G} 1114: 1093: 1067: 1041: 1005:Huppert, Bertram 1000: 983: 962: 939: 884:Zassenhaus group 869: 867: 866: 861: 859: 858: 853: 825: 823: 822: 817: 815: 814: 809: 780: 778: 777: 772: 770: 769: 764: 744: 742: 741: 736: 696: 694: 693: 688: 686: 685: 532: 530: 529: 524: 473: 471: 470: 465: 444: 442: 441: 436: 397: 395: 394: 389: 360: 358: 357: 352: 307: 305: 304: 299: 281: 279: 278: 273: 255: 253: 252: 247: 229: 227: 226: 221: 167: 165: 164: 159: 147: 145: 144: 139: 127: 125: 124: 119: 61: 59: 58: 53: 38: 36: 35: 30: 1122: 1121: 1117: 1116: 1115: 1113: 1112: 1111: 1097: 1096: 1083: 1070: 1057: 1044: 1003: 965: 952: 942:Springer-Verlag 931: 928: 916: 892:Bertram Huppert 880:primitive group 876: 845: 840: 839: 801: 796: 795: 759: 754: 753: 703: 702: 699:symmetric group 677: 672: 671: 665: 646: 637: 616: 603: 594: 585: 578: 569: 476: 475: 447: 446: 418: 417: 374: 373: 310: 309: 284: 283: 258: 257: 232: 231: 170: 169: 150: 149: 130: 129: 68: 67: 44: 43: 21: 20: 17: 12: 11: 5: 1120: 1118: 1110: 1109: 1099: 1098: 1095: 1094: 1081: 1068: 1055: 1042: 1001: 974:(1): 151–164, 963: 950: 927: 924: 923: 922: 915: 912: 875: 872: 857: 852: 849: 813: 808: 805: 768: 763: 734: 731: 728: 725: 722: 719: 716: 713: 710: 684: 680: 664: 661: 657:Mathieu groups 651:between 1 and 642: 633: 612: 599: 590: 583: 574: 567: 522: 519: 516: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 463: 460: 457: 454: 434: 431: 428: 425: 416:Equivalently, 387: 384: 381: 350: 347: 344: 341: 338: 335: 332: 329: 326: 323: 320: 317: 297: 294: 291: 271: 268: 265: 245: 242: 239: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 186: 183: 180: 177: 157: 137: 117: 114: 111: 108: 105: 102: 99: 96: 93: 90: 87: 84: 81: 78: 75: 51: 28: 15: 13: 10: 9: 6: 4: 3: 2: 1119: 1108: 1105: 1104: 1102: 1092: 1088: 1084: 1078: 1074: 1069: 1066: 1062: 1058: 1056:3-540-10633-2 1052: 1048: 1043: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1011: 1006: 1002: 999: 995: 991: 987: 982: 977: 973: 969: 964: 961: 957: 953: 947: 943: 938: 937: 930: 929: 925: 921: 918: 917: 913: 911: 909: 905: 901: 897: 893: 889: 885: 881: 873: 871: 855: 837: 833: 829: 811: 794: 790: 787: 782: 766: 751: 746: 729: 726: 723: 720: 717: 714: 711: 700: 682: 678: 668: 662: 660: 658: 654: 650: 645: 641: 636: 632: 628: 624: 620: 615: 611: 607: 602: 598: 593: 589: 582: 577: 573: 566: 562: 560: 555: 551: 547: 543: 539: 534: 517: 514: 511: 508: 505: 499: 493: 490: 487: 481: 461: 458: 455: 452: 432: 429: 426: 423: 414: 412: 408: 404: 399: 385: 382: 379: 371: 367: 362: 345: 342: 339: 333: 327: 324: 321: 315: 295: 292: 289: 269: 266: 263: 243: 240: 237: 217: 214: 211: 208: 202: 199: 196: 190: 184: 181: 178: 155: 135: 112: 109: 106: 103: 100: 97: 94: 91: 85: 82: 79: 65: 49: 41: 26: 1072: 1046: 1014: 1008: 971: 967: 935: 906:and are all 902:) using the 877: 827: 788: 783: 747: 669: 666: 652: 648: 643: 639: 634: 630: 626: 622: 618: 613: 609: 608:and all the 605: 600: 596: 591: 587: 580: 575: 571: 564: 558: 557: 553: 549: 545: 541: 537: 535: 415: 410: 406: 402: 400: 369: 365: 363: 39: 18: 1017:: 126–150, 900:Hering 1985 629:which maps 561:-transitive 398:is unique. 370:-transitive 926:References 701:acting on 556:points is 552:acting on 308:such that 1031:0025-5874 990:0021-8693 647:for each 383:∈ 293:∈ 267:≠ 241:≠ 215:× 209:∈ 110:≠ 98:× 92:∈ 42:on a set 1101:Category 914:See also 888:solvable 663:Examples 619:distinct 606:distinct 372:if such 19:A group 1091:2290291 1065:0650245 1039:0094386 998:0780488 960:1409812 697:be the 407:sharply 366:sharply 1089:  1079:  1063:  1053:  1037:  1029:  996:  988:  958:  948:  828:almost 826:. The 789:almost 655:. The 586:, ... 570:, ... 62:if it 230:with 1077:ISBN 1051:ISBN 1027:ISSN 986:ISSN 946:ISBN 670:Let 617:are 604:are 579:and 445:and 256:and 64:acts 1019:doi 976:doi 838:of 638:to 625:in 361:. 1103:: 1087:MR 1085:, 1061:MR 1059:, 1035:MR 1033:, 1025:, 1015:68 1013:, 994:MR 992:, 984:, 972:93 970:, 956:MR 954:, 944:, 910:. 870:. 781:. 533:. 413:. 401:A 1021:: 978:: 856:n 851:P 848:R 812:n 807:P 804:R 767:n 762:R 733:} 730:n 727:, 724:. 721:. 718:. 715:, 712:1 709:{ 683:n 679:S 653:k 649:i 644:i 640:b 635:i 631:a 627:G 623:g 614:i 610:b 601:i 597:a 592:k 588:b 584:1 581:b 576:k 572:a 568:1 565:a 559:k 554:n 550:G 546:k 538:k 521:) 518:y 515:g 512:, 509:x 506:g 503:( 500:= 497:) 494:y 491:, 488:x 485:( 482:g 462:z 459:= 456:y 453:g 433:w 430:= 427:x 424:g 409:2 386:G 380:g 368:2 349:) 346:z 343:, 340:w 337:( 334:= 331:) 328:y 325:, 322:x 319:( 316:g 296:G 290:g 270:z 264:w 244:y 238:x 218:S 212:S 206:) 203:z 200:, 197:w 194:( 191:, 188:) 185:y 182:, 179:x 176:( 156:S 136:G 116:} 113:y 107:x 104:: 101:S 95:S 89:) 86:y 83:, 80:x 77:( 74:{ 50:S 27:G

Index

acts
Mathieu groups
symmetric group
homothety-translations
projective transforms
real projective space
general linear position
projective frames
primitive group
Zassenhaus group
solvable
Bertram Huppert
list of transitive finite linear groups
Hering 1985
classification of finite simple groups
almost simple groups
Multiply transitive group
Permutation groups
Springer-Verlag
ISBN
978-0-387-94599-6
MR
1409812
doi
10.1016/0021-8693(85)90179-6
ISSN
0021-8693
MR
0780488
Huppert, Bertram

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.