Knowledge (XXG)

Diffusionless transformation

Source 📝

278:" was originally coined to describe the rigid and finely dispersed constituent that emerges in steels subjected to rapid cooling. Subsequent investigations revealed that materials beyond ferrous alloys, such as non-ferrous alloys and ceramics, can also undergo diffusionless transformations. Consequently, the term "martensite" has evolved to encompass the resultant product arising from such transformations in a more inclusive manner. In the context of diffusionless transformations, a cooperative and homogeneous movement occurs, leading to a modification in the crystal structure during a 409: 31: 85: 44: 187: 270:
that do not hinge on the diffusion of atoms across extensive distances. Rather, these transformations manifest as a result of synchronized shifts in atomic positions, wherein atoms undergo displacements of distances smaller than the spacing between adjacent atoms, all while preserving their relative
443:
A subclassification of lattice-distortive displacements can be made by considering the dilutional and shear components of the distortion. In transformations dominated by the shear component, it is possible to find a line in the new phase that is undistorted from the parent phase while all lines are
324:
The phenomenon in which atoms or groups of atoms coordinate to displace their neighboring counterparts resulting in structural modification is known as a displacive transformation. The scope of displacive transformations is extensive, encompassing a diverse array of structural changes. As a result,
493:
In addition to displacive transformation and diffusive transformation, a new type of phase transformation that involves a displacive sublattice transition and atomic diffusion was discovered using a high-pressure X-ray diffraction system. The new transformation mechanism has been christened pseudo
473:
steels is subtle in nature. Austenite exhibits a face-centered cubic (FCC) unit cell, whereas the transformation to martensite entails a distortion of this cube into a body-centered tetragonal shape (BCT). This transformation occurs due to a displacive process, where interstitial carbon atoms lack
422:
typically give rise to the formation of an interface delineating the transformed and parent materials. The energy requisite for establishing this new interface is contingent upon its characteristics, specifically how well the two structures interlock. An additional energy consideration arises when
439:
and strain energy terms significantly influences the kinetics of the transformation and the morphology of the resulting phase. Notably, in shuffle transformations characterized by minimal distortions, interfacial energies tend to predominate, distinguishing them from lattice-distortive
415:
Shuffles, aptly named, refer to the minute displacement of atoms within the unit cell. Notably, pure shuffles typically do not induce a modification in the shape of the unit cell; instead, they predominantly impact its symmetry and overall structural configuration.
448:
of the atoms in the lattice and hence whether the strain energies have a notable influence on the kinetics of the transformation and the morphology of the resulting phase. If the strain energy is a significant factor, then the transformations are dubbed
474:
the time to diffuse out. Consequently, the unit cell undergoes a slight elongation in one dimension and contraction in the other two. Despite differences in the symmetry of the crystal structures, the chemical bonding between them remains similar.
444:
distorted when the dilation is predominant. Shear-dominated transformations can be further classified according to the magnitude of the strain energies involved compared to the innate
388: 477:
The iron-carbon martensitic transformation generates an increase in hardness. The martensitic phase of the steel is supersaturated in carbon and thus undergoes
102: 57: 717:"Observation of Cation Reordering during the Olivine-Spinel Transition in Fayalite by In Situ Synchrotron X-Ray Diffraction at High Pressure and Temperature" 570: 312:
represents the most economically significant example of this category of phase transformations. However, an increasing number of alternatives, such as
784: 271:
arrangement. An example of such a phenomenon is the martensitic transformation, a notable occurrence observed in the context of steel materials.
308:
transformation, which is probably the most studied but is only one subset of non-diffusional transformations. The martensitic transformation in
761: 690: 663: 633: 149: 205: 197: 121: 831: 524: 241: 223: 168: 128: 71: 63: 423:
the transformation involves a change in shape. In such instances, if the new phase is constrained by the surrounding material,
135: 106: 485:
steels, defects prevent atoms from sliding past one another in an organized fashion, causing the material to become harder.
393:
This is homogeneous, as straight lines are transformed into new straight lines. Examples of such transformations include a
117: 478: 282:. These movements are small, usually less than their interatomic distances, and the neighbors of an atom remain close. 874: 95: 537: 402: 325:
additional classifications have been devised to provide a more nuanced understanding of these transformations.
294: 142: 298: 263: 776: 408: 729: 714:
Chen, Jiuhua; Weidner, Donald J.; Parise, John B.; Vaughan, Michael T.; Raterron, Paul (2001-04-30).
613: 605: 424: 394: 344: 432: 398: 313: 30: 827: 753: 745: 696: 686: 659: 629: 562: 520: 267: 849: 844: 737: 621: 585: 552: 419: 279: 612:, Book Series on Complex Metallic Alloys, vol. 1, WORLD SCIENTIFIC, pp. 119–145, 445: 436: 364: 340: 17: 733: 617: 716: 482: 868: 305: 339:
Homogeneous lattice-distortive strains, also known as Bain strains, transform one
741: 84: 625: 285:
The systematic movement of large numbers of atoms led some to refer to them as
557: 470: 275: 749: 700: 566: 515:
D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys,
466: 757: 680: 859: 685:. Pergamon materials series. Amsterdam ; Oxford: Elsevier/Pergamon. 593:. International Conference on Martensitic Transformations. pp. 1–11. 610:
Basics of Thermodynamics and Phase Transitions in Complex Intermetallics
328:
The first distinction can be drawn between transformations dominated by
428: 440:
transformations where the impact of strain energy is more pronounced.
604:
Duhamel, C.; Venkataraman, S.; Scudino, S.; Eckert, J. (May 2008),
682:
Phase transformations: examples from titanium and zirconium alloys
407: 309: 304:
The most commonly encountered transformation of this type is the
180: 78: 37: 855:
European Symposium on Martensitic Transformations (ESOMAT)
343:
into a different one. This can be represented by a strain
854: 587:
On the Classification of Displacive Phase Transformations
367: 573:
from the original on 2023-06-17 – via J-STAGE.
777:"New Phase Transition May Explain Deep Earthquakes" 397:increasing in size on all three axes (dilation) or 109:. Unsourced material may be challenged and removed. 728:(18). American Physical Society (APS): 4072–4075. 715: 584:Cohen, Morris; Olson, G. B.; Clapp, P. C. (1979). 382: 27:Shift of atomic positions in a crystal structure 822:Green, D.J.; Hannick, R.; Swain, M.V. (1989). 817:Theory of Structural Transformations in Solids 810:Theory of Transformations in Metals and Alloys 453:, if not the transformation is referred to as 845:Extensive resources from Cambridge University 8: 293:diffusion-based phase changes, initially by 34:Diffusionless transformation classifications 72:Learn how and when to remove these messages 556: 435:energy term. The interplay between these 366: 242:Learn how and when to remove this message 224:Learn how and when to remove this message 169:Learn how and when to remove this message 29: 679:Banerjee, S.; Mukhopadhyay, P. (2007). 508: 316:, are becoming more important as well. 860:PTC Lab for martensite crystallography 658:. New York: McGraw-Hill. p. 333. 461:Iron-carbon martensitic transformation 824:Transformation Toughening of Ceramics 431:deformation may occur, introducing a 7: 107:adding citations to reliable sources 850:The cubic-to-tetragonal transition 775:Leutwyler, Kristin (May 2, 2001). 196:tone or style may not reflect the 194:This Martensitic transformation's 25: 489:Pseudo martensitic transformation 53:This article has multiple issues. 764:from the original on 2023-06-17. 289:transformations, in contrast to 206:guide to writing better articles 185: 83: 42: 819:, Dover Publications, NY (1983) 787:from the original on 2014-11-17 606:"Diffusionless transformations" 94:needs additional citations for 61:or discuss these issues on the 320:Classification and definitions 118:"Diffusionless transformation" 1: 350:which transforms one vector, 494:martensitic transformation. 479:solid solution strengthening 256:diffusionless transformation 742:10.1103/physrevlett.86.4072 336:are of greater importance. 891: 626:10.1142/9789812790590_0006 330:lattice-distortive strains 18:Martensitic transformation 826:. Boca Raton: CRC Press. 656:Transformations in Metals 654:Shewmon, Paul G. (1969). 558:10.2320/materia1962.6.497 260:displacive transformation 539: 465:The distinction between 812:, Pergamon Press (1975) 722:Physical Review Letters 295:Frederick Charles Frank 200:used on Knowledge (XXG) 551:(7). 日本金属学会: 497–506. 412: 384: 204:See Knowledge (XXG)'s 35: 420:Phase transformations 411: 385: 354:, into a new vector, 299:John Wyrill Christian 33: 815:Khachaturyan, A.G., 383:{\displaystyle y=Sx} 365: 258:, commonly known as 103:improve this article 781:Scientific American 734:2001PhRvL..86.4072C 618:2008btpt.book..119D 314:shape memory alloys 517:Chapman & Hall 413: 380: 268:crystal structures 36: 875:Phase transitions 808:Christian, J.W., 692:978-0-08-042145-2 665:978-0-07-056694-1 635:978-981-279-058-3 455:quasi-martensitic 252: 251: 244: 234: 233: 226: 198:encyclopedic tone 179: 178: 171: 153: 76: 16:(Redirected from 882: 796: 795: 793: 792: 772: 766: 765: 719: 711: 705: 704: 676: 670: 669: 651: 645: 644: 643: 642: 601: 595: 594: 592: 581: 575: 574: 560: 533: 527: 513: 389: 387: 386: 381: 332:and those where 247: 240: 229: 222: 218: 215: 209: 208:for suggestions. 189: 188: 181: 174: 167: 163: 160: 154: 152: 111: 87: 79: 68: 46: 45: 38: 21: 890: 889: 885: 884: 883: 881: 880: 879: 865: 864: 841: 805: 800: 799: 790: 788: 774: 773: 769: 713: 712: 708: 693: 678: 677: 673: 666: 653: 652: 648: 640: 638: 636: 603: 602: 598: 590: 583: 582: 578: 547:(in Japanese). 541: 538:"マルテンサイトの格子欠陥" 535: 534: 530: 514: 510: 505: 500: 491: 463: 363: 362: 341:Bravais lattice 322: 266:alterations in 248: 237: 236: 235: 230: 219: 213: 210: 203: 190: 186: 175: 164: 158: 155: 112: 110: 100: 88: 47: 43: 28: 23: 22: 15: 12: 11: 5: 888: 886: 878: 877: 867: 866: 863: 862: 857: 852: 847: 840: 839:External links 837: 836: 835: 820: 813: 804: 801: 798: 797: 767: 706: 691: 671: 664: 646: 634: 596: 576: 536:西山 善次 (1967). 528: 519:, 1992, p.172 507: 506: 504: 501: 499: 496: 490: 487: 462: 459: 391: 390: 379: 376: 373: 370: 321: 318: 250: 249: 232: 231: 193: 191: 184: 177: 176: 91: 89: 82: 77: 51: 50: 48: 41: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 887: 876: 873: 872: 870: 861: 858: 856: 853: 851: 848: 846: 843: 842: 838: 833: 832:0-8493-6594-5 829: 825: 821: 818: 814: 811: 807: 806: 802: 786: 782: 778: 771: 768: 763: 759: 755: 751: 747: 743: 739: 735: 731: 727: 723: 718: 710: 707: 702: 698: 694: 688: 684: 683: 675: 672: 667: 661: 657: 650: 647: 637: 631: 627: 623: 619: 615: 611: 607: 600: 597: 589: 588: 580: 577: 572: 568: 564: 559: 554: 550: 546: 542: 532: 529: 526: 525:0-412-45030-5 522: 518: 512: 509: 502: 497: 495: 488: 486: 484: 483:work-hardened 481:. Similar to 480: 475: 472: 468: 460: 458: 456: 452: 447: 441: 438: 434: 430: 426: 421: 417: 410: 406: 404: 400: 396: 395:cubic lattice 377: 374: 371: 368: 361: 360: 359: 357: 353: 349: 346: 342: 337: 335: 331: 326: 319: 317: 315: 311: 307: 302: 300: 296: 292: 288: 283: 281: 277: 272: 269: 265: 261: 257: 246: 243: 228: 225: 217: 214:November 2010 207: 201: 199: 192: 183: 182: 173: 170: 162: 151: 148: 144: 141: 137: 134: 130: 127: 123: 120: –  119: 115: 114:Find sources: 108: 104: 98: 97: 92:This article 90: 86: 81: 80: 75: 73: 66: 65: 60: 59: 54: 49: 40: 39: 32: 19: 823: 816: 809: 803:Bibliography 789:. Retrieved 780: 770: 725: 721: 709: 681: 674: 655: 649: 639:, retrieved 609: 599: 586: 579: 548: 544: 531: 516: 511: 492: 476: 464: 454: 450: 442: 418: 414: 392: 355: 351: 347: 338: 333: 329: 327: 323: 303: 290: 286: 284: 280:phase change 273: 259: 255: 253: 238: 220: 211: 195: 165: 156: 146: 139: 132: 125: 113: 101:Please help 96:verification 93: 69: 62: 56: 55:Please help 52: 471:martensitic 451:martensitic 437:interfacial 405:structure. 306:martensitic 264:solid-state 791:2023-06-17 641:2023-08-11 498:References 467:austenitic 446:vibrations 403:monoclinic 276:martensite 274:The term " 262:, denotes 129:newspapers 58:improve it 750:0031-9007 701:156890507 567:1884-5835 159:July 2008 64:talk page 869:Category 785:Archived 762:Archived 758:11328098 571:Archived 545:日本金属学会会報 399:shearing 334:shuffles 291:civilian 287:military 730:Bibcode 614:Bibcode 429:plastic 425:elastic 401:into a 143:scholar 830:  756:  748:  699:  689:  662:  632:  565:  523:  433:strain 345:matrix 145:  138:  131:  124:  116:  591:(PDF) 503:Notes 310:steel 150:JSTOR 136:books 828:ISBN 754:PMID 746:ISSN 697:OCLC 687:ISBN 660:ISBN 630:ISBN 563:ISSN 521:ISBN 469:and 297:and 122:news 738:doi 622:doi 553:doi 540:... 427:or 105:by 871:: 783:. 779:. 760:. 752:. 744:. 736:. 726:86 724:. 720:. 695:. 628:, 620:, 608:, 569:. 561:. 543:. 457:. 358:: 301:. 254:A 67:. 834:. 794:. 740:: 732:: 703:. 668:. 624:: 616:: 555:: 549:6 378:x 375:S 372:= 369:y 356:x 352:y 348:S 245:) 239:( 227:) 221:( 216:) 212:( 202:. 172:) 166:( 161:) 157:( 147:· 140:· 133:· 126:· 99:. 74:) 70:( 20:)

Index

Martensitic transformation

improve it
talk page
Learn how and when to remove these messages

verification
improve this article
adding citations to reliable sources
"Diffusionless transformation"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
encyclopedic tone
guide to writing better articles
Learn how and when to remove this message
Learn how and when to remove this message
solid-state
crystal structures
martensite
phase change
Frederick Charles Frank
John Wyrill Christian
martensitic
steel
shape memory alloys
Bravais lattice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.