Knowledge (XXG)

Martin curve

Source 📝

1262:(depths greater than 1000 metres). Cael and Bisson reported in 2018 that the exponential model (power law model) tends to underestimate the POC flux in the upper layer, and overestimate it in the deep layer. However, the abilities of both models to describe POC fluxes were comparable statistically when they were applied to the POC flux dataset from the eastern Pacific that was used to propose the "Martin curve". In a long-term study in the northeastern Pacific, Smith et al. observed in 2018 a sudden increase of the POC flux accompanied by an unusually high transfer efficiency; they have suggested that because the Martin curve cannot express such a sudden increase, it may sometimes underestimate BCP strength. In addition, contrary to previous findings, some studies have reported a significantly higher transfer efficiency, especially to the deep sea, in subtropical regions than in subarctic regions. This pattern may be attributable to small temperature and DO concentration differences in the deep sea between high-latitude and low-latitude regions, as well as to a higher sinking velocity in subtropical regions, where CaCO 1242:) eastern Pacific equatorial zone than in other areas; that is, vertical attenuation of the POC flux was smaller in the hypoxic area. They pointed out that a more hypoxic ocean in the future would lead to a lower attenuation of the POC flux and therefore increased BCP efficiency and could thereby be a negative feedback on global warming. McDonnell et al. reported in 2015 that vertical transport of POC is more effective in the Antarctic, where the sinking velocity is higher and the biological respiration rate is lower than in the subtropical Atlantic. Henson et al. also reported in 2019 a high export ratio during the early bloom period, when primary productivity is low, and a low export ratio during the late bloom period, when primary productivity is high. They attributed the low export ratio during the late bloom to grazing pressure by microzooplankton and bacteria. 1213:(DO) concentration: the lower the water temperature and the DO concentration, the slower the biological respiration rate and, consequently, the POC flux decomposition rate. For example, in 2015 Marsay with other analysed POC flux data from neutrally buoyant sediment traps in the upper 500 m of the water column and found a significant positive correlation between the exponent b in equation (1) above and water temperature (i.e., the POC flux was attenuated more rapidly when the water was warmer). In addition, Bach 1140: 109: 1339:. Oceanic overturning and turbulent mixing return resource-rich deep waters back to the sunlit surface layer, sustaining global ocean productivity. The biological pump maintains this vertical gradient in nutrients through uptake, vertical transport, and remineralisation of organic matter, storing carbon in the deep ocean that is isolated from the atmosphere on centennial and millennial timescales, lowering atmospheric CO 83: 686: 1197: 2400: 1604: 1427: 1119:-rich particles are high. Numerical simulations that take into account these findings have indicated that future ocean acidification will reduce the efficiency of the BCP by decreasing ocean calcification. In addition, the POC export ratio (the ratio of the POC flux from an upper layer (a fixed depth such as 100 metres, or the 20: 1188:
experiment to study how the plankton community structure affected sinking velocities and reported that during more productive periods the sinking velocity of aggregated particles was not necessarily higher, because the aggregated particles produced then were very fluffy; rather, the settling velocity
2929:
Buesseler, K. O.; Lamborg, C. H.; Boyd, P. W.; Lam, P. J.; Trull, T. W.; Bidigare, R. R.; Bishop, J. K. B.; Casciotti, K. L.; Dehairs, F.; Elskens, M.; Honda, M.; Karl, D. M.; Siegel, D. A.; Silver, M. W.; Steinberg, D. K.; Valdes, J.; Van Mooy, B.; Wilson, S. (2007). "Revisiting Carbon Flux Through
1343:
levels by several hundred microatmospheres. The biological pump resists simple mechanistic characterisation due to the complex suite of biological, chemical, and physical processes involved, so the fate of exported organic carbon is typically described using a depth-dependent profile to evaluate the
1407:
Kharbush, J.J., Close, H.G., Van Mooy, B.A., Arnosti, C., Smittenberg, R.H., Le Moigne, F.A., Mollenhauer, G., Scholz-Böttcher, B., Obreht, I., Koch, B.P. and Becker, K. (2020) "Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean".
910:
b in this equation has been used as an index of BCP efficiency: the larger the exponent b, the higher the vertical attenuation rate of the POC flux and the lower the BCP efficiency. Moreover, numerical simulations have shown that a change in the value of b would significantly change the atmospheric
1250:
and a depth of 1000 m it is relatively high. Marsay et al. therefore proposed in 2015 that the Martin curve does not appropriately express the vertical attenuation of POC flux in all regions and that a different equation should instead be developed for each region. Gloege et al. discussed in 2017
922:
profiles from assumptions about particle degradability and sinking speed. However, the Martin curve has become ubiquitous as the model that assumes slower-sinking and/or labile organic matter is preferentially depleted near the surface causing increasing sinking speed and/or remineralization
1245:
Despite these many investigations of the BCP, the factors governing the vertical attenuation of POC flux are still under debate. Observations in subarctic regions have shown that the transfer efficiency between depths of 1000 and 2000 m is relatively low and that between the bottom of the
777:(POC) flux from the surface layer of the ocean to the ocean interior has been estimated to be 4–13 Pg-C year. To evaluate the efficiency of the BCP, it is necessary to quantify the vertical attenuation of the POC flux with depth because the deeper that POC is transported, the longer the CO 1702:
Berger, W. H., Fischer, K., Lai, C., and Wu, G. (1987). "Ocean carbon flux: global maps of primary production and export production,". In: Biogeochemical Cycling and Fluxes between the Deep Euphotic Zone and Other Oceanic Realms", Vol. 3, ed. C. Agegian (Silver Spring, MD: NOAA), pages
2653:
Sukigara, Chiho; Mino, Yoshihisa; Kawakami, Hajime; Honda, Makio C.; Fujiki, Tetsuichi; Matsumoto, Kazuhiko; Wakita, Masahide; Saino, Toshiro (2019). "Sinking dynamics of particulate matter in the subarctic and subtropical regions of the western North Pacific".
1100:, which has the largest density among possible ballast minerals, is globally the most important and effective facilitator of vertical POC transport, because the transfer efficiency (the ratio of the POC flux in the deep sea to that at the bottom of the surface 1055:
The vertical attenuation rate of the POC flux is very dependent on the sinking velocity and decomposition rate of POC in the water column. Because POC is labile and has little negative buoyancy, it must be aggregated with relatively heavy materials called
2981:
Buesseler, K.O.; Trull, T.W.; Steinberg, D.K.; Silver, M.W.; Siegel, D.A.; Saitoh, S.-I.; Lamborg, C.H.; Lam, P.J.; Karl, D.M.; Jiao, N.Z.; Honda, M.C.; Elskens, M.; Dehairs, F.; Brown, S.L.; Boyd, P.W.; Bishop, J.K.B.; Bidigare, R.R. (2008).
1189:
was higher when the phytoplankton were dominated by small cells. In 2012, Henson et al. revisited the global sediment trap data and reported the POC flux is negatively correlated with the opal export flux and uncorrelated with the CaCO
1444:
Villa-Alfageme, M.; De Soto, F. C.; Ceballos, E.; Giering, S. L. C.; Le Moigne, F. A. C.; Henson, S.; Mas, J. L.; Sanders, R. J. (2016). "Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic".
1667:
Betzer, Peter R.; Showers, William J.; Laws, Edward A.; Winn, Christopher D.; Ditullio, Giacomo R.; Kroopnick, Peter M. (1984). "Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean".
3021:
Honda, Makio C.; Watanabe, Shuichi (2010). "Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre".
2050:
Armstrong, Robert A.; Lee, Cindy; Hedges, John I.; Honjo, Susumu; Wakeham, Stuart G. (2001). "A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals".
1131:) in subtropical and tropical areas is low because high temperatures in the upper layer increase POC decomposition rates. The result might be a higher transfer efficiency and a strong positive correlation between POC and CaCO 1135:
in these low-latitude areas: labile POC, which is fresher and easier for microbes to break down, decomposes in the upper layer, and relatively refractory POC is transported to the ocean interior in low-latitude areas.
1911:
Yamanaka, Yasuhiro; Tajika, Eiichi (1996). "The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model".
865: 1176:
fraction of plankton as well as higher transfer efficiencies in high-latitude areas, where large phytoplankton such as diatoms predominate. They also calculated that the fraction of vertically transported
3400:
McDonnell, A. M. P.; Boyd, P. W.; Buesseler, K. O. (2015). "Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone".
1335:, leading to a downward flux of organic matter. This "marine snow" is transformed, respired, and degraded by heterotrophic organisms in deeper waters, ultimately releasing those constituents back into 1328:
terms, to the total uncertainty of the biological pump, highlighting the importance of improving biological pump characterisation from observations and its mechanistic inclusion in climate models.
991: 1255:(from the base of the euphotic zone to 1000 m) can be parameterised well not only by a power law model (Martin curve) but also by an exponential model  and a ballast model. 3341:
Pavia, Frank J.; Anderson, Robert F.; Lam, Phoebe J.; Cael, B. B.; Vivancos, Sebastian M.; Fleisher, Martin Q.; Lu, Yanbin; Zhang, Pu; Cheng, Hai; Edwards, R. Lawrence (2019).
3571: 3246:
Devries, Tim; Weber, Thomas (2017). "The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations".
1156:
On the basis of observations that revealed a large increase of POC fluxes in high-latitude areas during diatom blooms and on the fact that diatoms are much bigger than
1713:
Pace, Michael L.; Knauer, George A.; Karl, David M.; Martin, John H. (1987). "Primary production, new production and vertical flux in the eastern Pacific Ocean".
27: 789:
that would result in a negative feedback on global warming. Different researchers have investigated the vertical attenuation of the POC flux since the 1980s.
3652: 1181:
that has been sequestered in the ocean interior for at least 100 years is higher in high-latitude (polar and subpolar) regions than in low-latitude regions.
2249:
Schwinger, Jörg; Goris, Nadine; Tjiputra, Jerry F.; Kriest, Iris; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Assmann, Karen M.; Heinze, Christoph (2016).
1172:
for effective POC vertical transport in subarctic regions. Weber et al. reported in 2016 a strong negative correlation between transfer efficiency and the
196: 3618:
Volk, Tyler; Hoffert, Martin I. (2013). "Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes".
481: 154: 654: 181: 1308:
relationship of sinking particle concentration with depth. Uncertainty in biological pump strength can be related to different variable values (
717: 535: 2251:"Evaluation of NorESM-OC (Versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)" 1009:) is the fraction of the flux of particulate organic matter from a productive layer near the surface  sinking through the depth horizon 2837:"Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean" 2476:
Ittekkot, Venugopalan (1993). "The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO2 contents".
1893:
Berelson, W. M. (2001). "The flux of particulate organic carbon into the ocean interior.: a comparison of four U.S. JGOFS regional studies".
659: 2298:
Kriest, I.; Oschlies, A. (2011). "Numerical effects on organic-matter sedimentation and remineralization in biogeochemical ocean models".
2606:"Sinking rates and ballast composition of particles in the Atlantic Ocean: Implications for the organic carbon fluxes to the deep ocean" 2089:
Banse, Karl (1990). "New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea".
1324:
profiles fit to a reference power-law curve. Structural uncertainty makes a substantial contribution, about one-third in atmospheric pCO
1238:
POC flux observations), Pavia et al. found in 2019 that the exponent b of the Martin curve was significantly smaller in the low-oxygen (
124: 3182:
Marsay, Chris M.; Sanders, Richard J.; Henson, Stephanie A.; Pabortsava, Katsiaryna; Achterberg, Eric P.; Lampitt, Richard S. (2015).
802: 781:
will be isolated from the atmosphere. Thus, an increase in the efficiency of the BCP has the potential to cause an increase of ocean
3635: 1761:
Martin, John H.; Knauer, George A.; Karl, David M.; Broenkow, William W. (1987). "VERTEX: Carbon cycling in the northeast Pacific".
2513:"Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio" 1209:
Key factors affecting the rate of biological decomposition of sinking POC in the water column are water temperature and the
3122:
Bach, L. T.; Stange, P.; Taucher, J.; Achterberg, E. P.; Algueró-Muñiz, M.; Horn, H.; Esposito, M.; Riebesell, U. (2019).
2984:"VERTIGO (VERtical Transport in the Global Ocean): A study of particle sources and flux attenuation in the North Pacific" 584: 1353: 1251:
parameterization of the vertical attenuation of POC flux, and reported that vertical attenuation of the POC flux in the
589: 574: 254: 1316:
uncertainty) that describe organic matter export. In 2021, Lauderdale evaluated structural uncertainty using an ocean
60: 1088:(aluminosilicate ballast) to the ocean, which strengthened the BCP. In 2002, Klaas and Archer , as well as Francois 1336: 774: 731: 644: 542: 248: 242: 44: 3572:
New Research Reveals Uncertainty in How Much Carbon the Ocean Absorbs Over Time – Climate Projections Could Be Off
3124:"The Influence of Plankton Community Structure on Sinking Velocity and Remineralization Rate of Marine Aggregates" 1624:
Suess, Erwin (1980). "Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization".
769:
is taken up by the ocean and transported to the ocean interior. Without the BCP, the pre-industrial atmospheric CO
1332: 739: 649: 269: 710: 3515:"Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific" 1128: 624: 552: 547: 530: 375: 236: 134: 2126:"On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles" 1801:"Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2" 906:
function, commonly known as the "Martin curve", has been used very frequently in discussions of the BCP. The
1239: 932: 634: 149: 1572:"Effective Vertical Transport of Particulate Organic Carbon in the Western North Pacific Subarctic Region" 1373:
Olli, Kalle (2015). "Unraveling the uncertainty and error propagation in the vertical flux Martin curve".
1139: 762: 454: 230: 191: 159: 3715: 2214:
Middelburg, Jack J. (1989). "A simple rate model for organic matter decomposition in marine sediments".
1309: 1301: 703: 690: 639: 370: 2894:
Buesseler, Ken O. (1998). "The decoupling of production and particulate export in the surface ocean".
3667: 3587:
Ito, Takamitsu; Follows, Michael J. (2005). "Preformed phosphate, soft tissue pump and atmospheric CO
3526: 3469: 3409: 3354: 3302: 3255: 3195: 3135: 3073: 3031: 2995: 2939: 2903: 2848: 2807: 2751: 2710: 2663: 2617: 2568: 2524: 2485: 2430: 2353: 2307: 2262: 2223: 2186: 2137: 2098: 2060: 2011: 1960: 1921: 1812: 1770: 1722: 1677: 1633: 1583: 1511: 1454: 1382: 782: 566: 468: 224: 129: 67: 2796:"Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean" 735: 515: 331: 186: 3691: 3435: 3318: 3271: 3153: 2963: 2876: 2769: 2738:
Laws, Edward A.; Falkowski, Paul G.; Smith, Walker O.; Ducklow, Hugh; McCarthy, James J. (2000).
2679: 2635: 2586: 2280: 2155: 2029: 1976: 1828: 1738: 1649: 1480: 594: 362: 346: 341: 264: 868:                 3513:
Smith, Kenneth L.; Ruhl, Henry A.; Huffard, Christine L.; Messié, Monique; Kahru, Mati (2018).
2175:"Regional variability in the vertical flux of particulate organic carbon in the ocean interior" 1994:
Wilson, Jamie D.; Barker, Stephen; Edwards, Neil R.; Holden, Philip B.; Ridgwell, Andy (2019).
3683: 3631: 3554: 3495: 3382: 3223: 3101: 2955: 2835:
Maerz, Joeran; Six, Katharina D.; Stemmler, Irene; Ahmerkamp, Soeren; Ilyina, Tatiana (2020).
2458: 2389: 1077: 899: 525: 304: 139: 1266:
is a major component of deep-sea marine snow. Moreover, it is also possible that POC is more
3675: 3623: 3600: 3544: 3534: 3485: 3477: 3425: 3417: 3372: 3362: 3310: 3263: 3213: 3203: 3143: 3091: 3081: 3060:
Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; Devries, Timothy; Deutsch, Curtis (2016).
3039: 3003: 2947: 2911: 2866: 2856: 2815: 2759: 2718: 2671: 2625: 2576: 2532: 2493: 2448: 2438: 2379: 2369: 2361: 2315: 2270: 2231: 2194: 2145: 2106: 2068: 2019: 1968: 1929: 1874: 1864: 1853:"Particle Flux Parameterizations: Quantitative and Mechanistic Similarities and Differences" 1820: 1778: 1730: 1685: 1641: 1591: 1529: 1519: 1470: 1462: 1417: 1390: 1321: 1252: 1228: 1210: 919: 491: 385: 380: 52: 2983: 108: 3720: 1317: 1285: 1279: 1169: 1157: 1073: 1057: 747: 619: 486: 419: 407: 336: 210: 3671: 3651:
Boyd, Philip W.; Claustre, Hervé; Levy, Marina; Siegel, David A.; Weber, Thomas (2019).
3530: 3473: 3413: 3358: 3306: 3259: 3199: 3139: 3077: 3062:"Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency" 3035: 2999: 2943: 2907: 2852: 2811: 2755: 2714: 2667: 2621: 2572: 2528: 2489: 2434: 2357: 2311: 2266: 2227: 2190: 2141: 2102: 2064: 2015: 1964: 1925: 1816: 1774: 1726: 1681: 1637: 1587: 1515: 1458: 1386: 1084:
that occurred during the last glacial maximum was caused by an increase of the input of
3549: 3514: 3490: 3457: 3377: 3342: 3218: 3183: 3096: 3061: 2453: 2418: 2384: 2341: 1289: 629: 599: 579: 520: 434: 317: 312: 173: 82: 70:
and has contributed to understanding the role of the ocean in regulating atmospheric CO
40: 3184:"Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean" 2557:"Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean" 2072: 3709: 3695: 3322: 3275: 3157: 2880: 2871: 2683: 2590: 2497: 2235: 2110: 2033: 1832: 1782: 1689: 1293: 1259: 1247: 1219: 1120: 1093: 1061: 3439: 2773: 2639: 2284: 1980: 1060:
to settle gravitationally in the ocean. Materials that may serve as ballast include
2967: 2159: 1742: 1653: 1484: 1202: 1173: 1085: 326: 280: 218: 100: 48: 1799:
Gloege, Lucas; McKinley, Galen A.; Mouw, Colleen B.; Ciochetto, Audrey B. (2017).
796:. proposed the following power law function to describe the POC flux attenuation: 3620:
The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present
2319: 1394: 2739: 1800: 1297: 1235: 1224: 1223:(harmful algae) are the dominant phytoplankton because of increased (decreased) 1124: 1109: 1101: 476: 449: 444: 439: 429: 399: 285: 144: 3007: 2404: 1608: 1431: 1331:
Carbon and nutrients are consumed by phytoplankton in the surface ocean during
47:(POC). The curve is controlled with two parameters: the reference depth in the 16:
Mathematical representation of particulate organic carbon export to ocean floor
3679: 2675: 2555:
Francois, Roger; Honjo, Susumu; Krishfield, Richard; Manganini, Steve (2002).
2000:
to regional variability in particulate organic matter remineralization depths"
1313: 1267: 751: 743: 424: 3604: 3291:"Temperature and oxygen dependence of the remineralization of organic matter" 2417:
Buesseler, Ken O.; Boyd, Philip W.; Black, Erin E.; Siegel, David A. (2020).
1869: 1852: 1596: 1571: 1421: 1076:. In 1993, Ittekkot hypothesized that the drastic decrease from ~280 to ~200 3539: 3367: 3343:"Shallow particulate organic carbon regeneration in the South Pacific Ocean" 3208: 3086: 2951: 2861: 2836: 2443: 2275: 2250: 2024: 1995: 1948: 1524: 1499: 1305: 1033:
decreases with depth. The equation is often normalised to a reference depth
903: 3687: 3558: 3499: 3386: 3289:
Laufkötter, C.; John, Jasmin G.; Stock, Charles A.; Dunne, John P. (2017).
3227: 3105: 2959: 2462: 2393: 1258:
However, the exponential model tends to underestimate the POC flux in the
3481: 3421: 3314: 3267: 3148: 3123: 3043: 2820: 2795: 2764: 2723: 2698: 2630: 2605: 2581: 2556: 2537: 2512: 2374: 2365: 2199: 2174: 2150: 2125: 1824: 1466: 1185: 907: 898:
metres and 100 metres respectively. Although other functions, such as an
2342:"Impact of Remineralization Profile Shape on the Air-Sea Carbon Balance" 1288:
regulates atmospheric carbon dioxide levels and climate by transferring
1196: 3627: 2399: 1603: 1475: 1426: 773:
concentration (~280 ppm) would have risen to ~460 ppm. At present, the
507: 290: 3653:"Multi-faceted particle pumps drive carbon sequestration in the ocean" 2915: 2084: 2082: 2045: 2043: 1933: 1879: 3430: 1734: 1645: 1534: 1500:"Dynamics of particulate organic carbon flux in a global ocean model" 926:
The Martin curve can be expressed in a slightly more general way as:
669: 2419:"Metrics that matter for assessing the ocean biological carbon pump" 1972: 1949:"The impact of remineralization depth on the air–sea carbon balance" 1619: 1617: 1195: 1138: 664: 81: 18: 3290: 2403:
Material was copied from this source, which is available under a
1607:
Material was copied from this source, which is available under a
1430:
Material was copied from this source, which is available under a
1947:
Kwon, Eun Young; Primeau, François; Sarmiento, Jorge L. (2009).
1161: 1065: 59:
of POC attenuates. It is named after the American oceanographer
56: 1150:(according to a global biogeochemical model called MAGO ) 860:{\displaystyle F_{z}=F_{100}\left({\frac {z}{100}}\right)^{-b}} 55:
parameter which is a measure of the rate at which the vertical
2794:
Henson, Stephanie A.; Sanders, Richard; Madsen, Esben (2012).
1217:
found POC decomposition rates are high (low) when diatoms and
19: 2699:"Simulating oceanic CaCO3export production in the greenhouse" 2740:"Temperature effects on export production in the open ocean" 3456:
Henson, Stephanie; Le Moigne, Fred; Giering, Sarah (2019).
1304:. This surface to deep transport is usually described by a 2988:
Deep-Sea Research Part II: Topical Studies in Oceanography
2053:
Deep-Sea Research Part II: Topical Studies in Oceanography
24:
Surface concentrations of particulate organic matter (POM)
3458:"Drivers of Carbon Export Efficiency in the Global Ocean" 1794: 1792: 918:
Subsequently, other researchers have derived alternative
1104:) is higher in subtropical and tropical areas where CaCO 2656:
Deep Sea Research Part I: Oceanographic Research Papers
2091:
Deep Sea Research Part A. Oceanographic Research Papers
1763:
Deep Sea Research Part A. Oceanographic Research Papers
1670:
Deep Sea Research Part A. Oceanographic Research Papers
1300:, where the organic carbon is consumed and respired by 2405:
Creative Commons Attribution 4.0 International License
1609:
Creative Commons Attribution 4.0 International License
1432:
Creative Commons Attribution 4.0 International License
2173:
Lutz, Michael; Dunbar, Robert; Caldeira, Ken (2002).
1320:
model by systematically substituting six alternative
935: 805: 1227:
abundance and the consequent increase (decrease) in
765:(BCP) is a crucial mechanism by which atmospheric CO 2340:Lauderdale, Jonathan Maitland; Cael, B. B. (2021). 1270:in low-latitude areas than in high-latitude areas. 985: 859: 3622:. Geophysical Monograph Series. pp. 99–110. 2335: 2333: 2331: 2329: 1040:but this parameter can be readily absorbed into 3519:Proceedings of the National Academy of Sciences 3347:Proceedings of the National Academy of Sciences 3188:Proceedings of the National Academy of Sciences 3066:Proceedings of the National Academy of Sciences 2550: 2548: 2423:Proceedings of the National Academy of Sciences 66:The Martin Curve has been used in the study of 3241: 3239: 3237: 1498:Lima, I. D.; Lam, P. J.; Doney, S. C. (2014). 902:, have also been proposed and validated, this 3451: 3449: 3177: 3175: 3173: 3171: 3169: 3167: 2789: 2787: 2785: 2783: 1756: 1754: 1752: 1026:is a nondimensional exponent controlling how 711: 43:to describe the export to the ocean floor of 8: 3336: 3334: 3332: 3055: 3053: 1565: 1184:In contrast, Bach et al.conducted in 2019 a 3117: 3115: 2511:Klaas, Christine; Archer, David E. (2002). 1846: 1844: 1842: 1563: 1561: 1559: 1557: 1555: 1553: 1551: 1549: 1547: 1545: 1344:degradation of sinking particulate matter. 1160:, Honda and Watanabe proposed in 2010 that 750:. The rate at which POC is degraded in the 734:(POC) pool in the ocean are central to the 1312:uncertainty) or the underlying equations ( 718: 704: 91: 3548: 3538: 3489: 3429: 3376: 3366: 3217: 3207: 3147: 3095: 3085: 2870: 2860: 2819: 2763: 2722: 2629: 2580: 2536: 2452: 2442: 2383: 2373: 2274: 2198: 2149: 2023: 1878: 1868: 1595: 1533: 1523: 1474: 974: 964: 946: 940: 934: 848: 834: 823: 810: 804: 1365: 655:Territorialisation of carbon governance 99: 986:{\displaystyle f_{p}{(z)}=C_{p}z^{-b}} 660:Total Carbon Column Observing Network 7: 1851:Cael, B. B.; Bisson, Kelsey (2018). 1145:Effective Martin curve slope for POC 1115:Reported sinking velocities of CaCO 1274:Uncertainty in the biological pump 1234:Using radiochemical observations ( 738:. POC is the link between surface 14: 2604:Fischer, G.; Karakaş, G. (2009). 2124:Kriest, I.; Oschlies, A. (2008). 1092:who compiled and analyzed global 2398: 1602: 1425: 894:are the POC fluxes at depths of 685: 684: 107: 2255:Geoscientific Model Development 2216:Geochimica et Cosmochimica Acta 1996:"Sensitivity of atmospheric CO 1022:is a scaling coefficient, and 953: 947: 620:Climate reconstruction proxies 1: 2073:10.1016/S0967-0645(01)00101-1 3462:Global Biogeochemical Cycles 3402:Global Biogeochemical Cycles 3295:Global Biogeochemical Cycles 3248:Global Biogeochemical Cycles 3128:Global Biogeochemical Cycles 3024:Geophysical Research Letters 2930:the Ocean's Twilight Zone". 2896:Global Biogeochemical Cycles 2800:Global Biogeochemical Cycles 2744:Global Biogeochemical Cycles 2703:Geophysical Research Letters 2561:Global Biogeochemical Cycles 2517:Global Biogeochemical Cycles 2498:10.1016/0921-8181(93)90060-2 2346:Geophysical Research Letters 2320:10.1016/j.ocemod.2011.05.001 2236:10.1016/0016-7037(89)90239-1 2179:Global Biogeochemical Cycles 2111:10.1016/0198-0149(90)90058-4 1914:Global Biogeochemical Cycles 1805:Global Biogeochemical Cycles 1783:10.1016/0198-0149(87)90086-0 1690:10.1016/0198-0149(84)90068-2 1447:Geophysical Research Letters 1395:10.1016/j.pocean.2015.05.016 1354:Particulate inorganic carbon 590:Carbonate compensation depth 255:Particulate inorganic carbon 2478:Global and Planetary Change 1857:Frontiers in Marine Science 1410:Frontiers in Marine Science 1292:produced at the surface by 3737: 3593:Journal of Marine Research 3008:10.1016/j.dsr2.2008.04.024 1576:Frontiers in Earth Science 1296:to the ocean interior via 1277: 775:particulate organic carbon 732:particulate organic carbon 645:Carbon capture and storage 249:Particulate organic carbon 243:Dissolved inorganic carbon 45:particulate organic carbon 3680:10.1038/s41586-019-1098-2 2872:21.11116/0000-0004-BD3E-3 2676:10.1016/j.dsr.2018.11.004 1096:data, suggested that CaCO 1051:Vertical attenuation rate 754:can impact atmospheric CO 650:Carbon cycle re-balancing 3605:10.1357/0022240054663231 1870:10.3389/fmars.2018.00395 1597:10.3389/feart.2020.00366 1570:Honda, Makio C. (2020). 1422:10.3389/fmars.2020.00518 1375:Progress in Oceanography 1337:dissolved inorganic form 1129:net primary productivity 1108:is a major component of 878:is water depth (m), and 625:Carbon-to-nitrogen ratio 585:Carbonate–silicate cycle 553:Carbon dioxide clathrate 548:Clathrate gun hypothesis 376:Net ecosystem production 237:Dissolved organic carbon 3540:10.1073/pnas.1814559115 3368:10.1073/pnas.1901863116 3209:10.1073/pnas.1415311112 3087:10.1073/pnas.1604414113 2952:10.1126/science.1137959 2862:10.5194/bg-17-1765-2020 2444:10.1073/pnas.1918114117 2276:10.5194/gmd-9-2589-2016 2025:10.5194/bg-16-2923-2019 1525:10.5194/bg-11-1177-2014 635:Deep Carbon Observatory 95:Part of a series on the 39:is a power law used by 1206: 1153: 987: 923:timescale with depth. 861: 763:biological carbon pump 455:Continental shelf pump 231:Total inorganic carbon 197:Satellite measurements 89: 87:Flux of POC with depth 32: 1302:marine microorganisms 1278:Further information: 1199: 1142: 988: 862: 640:Global Carbon Project 371:Ecosystem respiration 85: 22: 3482:10.1029/2018GB006158 3422:10.1002/2014GB004935 3315:10.1002/2017GB005643 3268:10.1002/2016GB005551 3149:10.1029/2019GB006256 3044:10.1029/2009GL041521 2994:(14–15): 1522–1539. 2821:10.1029/2011GB004099 2765:10.1029/1999gb001229 2724:10.1029/2004GL020613 2631:10.5194/bg-6-85-2009 2582:10.1029/2001GB001722 2538:10.1029/2001GB001765 2366:10.1029/2020GL091746 2352:(7): e2020GL091746. 2200:10.1029/2000GB001383 2151:10.5194/bg-5-55-2008 1825:10.1002/2016GB005535 1467:10.1002/2016GL069233 933: 803: 783:carbon sequestration 730:The dynamics of the 469:Carbon sequestration 225:Total organic carbon 68:ocean carbon cycling 3672:2019Natur.568..327B 3531:2018PNAS..11512235S 3525:(48): 12235–12240. 3474:2019GBioC..33..891H 3414:2015GBioC..29..175M 3359:2019PNAS..116.9753P 3307:2017GBioC..31.1038L 3260:2017GBioC..31..535D 3200:2015PNAS..112.1089M 3140:2019GBioC..33..971B 3078:2016PNAS..113.8606W 3036:2010GeoRL..37.2605H 3000:2008DSRII..55.1522B 2944:2007Sci...316..567B 2908:1998GBioC..12..297B 2853:2020BGeo...17.1765M 2812:2012GBioC..26.1028H 2756:2000GBioC..14.1231L 2715:2004GeoRL..3116308H 2697:Heinze, C. (2004). 2668:2019DSRI..144...17S 2622:2009BGeo....6...85F 2573:2002GBioC..16.1087F 2529:2002GBioC..16.1116K 2490:1993GPC.....8...17I 2435:2020PNAS..117.9679B 2358:2021GeoRL..4891746L 2312:2011OcMod..39..275K 2267:2016GMD.....9.2589S 2228:1989GeCoA..53.1577M 2191:2002GBioC..16.1037L 2142:2008BGeo....5...55K 2103:1990DSRA...37.1177B 2065:2001DSRII..49..219A 2016:2019BGeo...16.2923W 1965:2009NatGe...2..630K 1926:1996GBioC..10..361Y 1817:2017GBioC..31.1192G 1775:1987DSRA...34..267M 1727:1987Natur.325..803P 1682:1984DSRA...31....1B 1638:1980Natur.288..260S 1588:2020FrEaS...8..366H 1516:2014BGeo...11.1177L 1459:2016GeoRL..43.8609V 1387:2015PrOce.135..146O 736:marine carbon cycle 516:Atmospheric methane 482:Soil carbon storage 332:Reverse Krebs cycle 187:Ocean acidification 28:imaged by satellite 3628:10.1029/GM032p0099 1333:primary production 1207: 1164:, rather than CaCO 1154: 983: 857: 740:primary production 595:Great Calcite Belt 543:Aerobic production 363:Carbon respiration 305:Metabolic pathways 265:Primary production 90: 33: 3666:(7752): 327–335. 3353:(20): 9753–9758. 3072:(31): 8606–8611. 2938:(5824): 567–570. 2916:10.1029/97GB03366 2567:(4): 34-1–34-20. 2523:(4): 63-1–63-14. 2429:(18): 9679–9687. 2185:(3): 11-1–11-18. 2010:(14): 2923–2936. 1953:Nature Geoscience 1934:10.1029/96gb00634 1721:(6107): 803–804. 1632:(5788): 260–263. 1453:(16): 8609–8616. 1151: 1080:of atmospheric CO 900:exponential curve 842: 785:of atmospheric CO 728: 727: 526:Methane emissions 182:In the atmosphere 3728: 3700: 3699: 3657: 3648: 3642: 3641: 3615: 3609: 3608: 3584: 3578: 3569: 3563: 3562: 3552: 3542: 3510: 3504: 3503: 3493: 3453: 3444: 3443: 3433: 3397: 3391: 3390: 3380: 3370: 3338: 3327: 3326: 3301:(7): 1038–1050. 3286: 3280: 3279: 3243: 3232: 3231: 3221: 3211: 3194:(4): 1089–1094. 3179: 3162: 3161: 3151: 3119: 3110: 3109: 3099: 3089: 3057: 3048: 3047: 3018: 3012: 3011: 2978: 2972: 2971: 2926: 2920: 2919: 2891: 2885: 2884: 2874: 2864: 2847:(7): 1765–1803. 2832: 2826: 2825: 2823: 2791: 2778: 2777: 2767: 2750:(4): 1231–1246. 2735: 2729: 2728: 2726: 2694: 2688: 2687: 2650: 2644: 2643: 2633: 2601: 2595: 2594: 2584: 2552: 2543: 2542: 2540: 2508: 2502: 2501: 2473: 2467: 2466: 2456: 2446: 2414: 2408: 2402: 2397: 2387: 2377: 2337: 2324: 2323: 2306:(3–4): 275–283. 2295: 2289: 2288: 2278: 2261:(8): 2589–2622. 2246: 2240: 2239: 2222:(7): 1577–1581. 2211: 2205: 2204: 2202: 2170: 2164: 2163: 2153: 2121: 2115: 2114: 2097:(7): 1177–1195. 2086: 2077: 2076: 2059:(1–3): 219–236. 2047: 2038: 2037: 2027: 1991: 1985: 1984: 1944: 1938: 1937: 1908: 1902: 1891: 1885: 1884: 1882: 1872: 1848: 1837: 1836: 1811:(7): 1192–1215. 1796: 1787: 1786: 1758: 1747: 1746: 1735:10.1038/325803a0 1710: 1704: 1700: 1694: 1693: 1664: 1658: 1657: 1646:10.1038/288260a0 1621: 1612: 1606: 1601: 1599: 1567: 1540: 1539: 1537: 1527: 1510:(4): 1177–1198. 1495: 1489: 1488: 1478: 1441: 1435: 1429: 1405: 1399: 1398: 1370: 1322:remineralisation 1229:grazing pressure 1211:dissolved oxygen 1168:, is crucial as 1158:coccolithophores 1149: 1074:aluminosilicates 992: 990: 989: 984: 982: 981: 969: 968: 956: 945: 944: 920:remineralization 869: 866: 864: 863: 858: 856: 855: 847: 843: 835: 828: 827: 815: 814: 792:In 1987, Martin 748:marine sediments 720: 713: 706: 693: 688: 687: 492:pelagic sediment 386:Soil respiration 381:Photorespiration 111: 92: 53:remineralisation 3736: 3735: 3731: 3730: 3729: 3727: 3726: 3725: 3706: 3705: 3704: 3703: 3655: 3650: 3649: 3645: 3638: 3617: 3616: 3612: 3590: 3586: 3585: 3581: 3570: 3566: 3512: 3511: 3507: 3455: 3454: 3447: 3399: 3398: 3394: 3340: 3339: 3330: 3288: 3287: 3283: 3245: 3244: 3235: 3181: 3180: 3165: 3121: 3120: 3113: 3059: 3058: 3051: 3020: 3019: 3015: 2980: 2979: 2975: 2928: 2927: 2923: 2893: 2892: 2888: 2834: 2833: 2829: 2793: 2792: 2781: 2737: 2736: 2732: 2696: 2695: 2691: 2652: 2651: 2647: 2603: 2602: 2598: 2554: 2553: 2546: 2510: 2509: 2505: 2475: 2474: 2470: 2416: 2415: 2411: 2339: 2338: 2327: 2300:Ocean Modelling 2297: 2296: 2292: 2248: 2247: 2243: 2213: 2212: 2208: 2172: 2171: 2167: 2123: 2122: 2118: 2088: 2087: 2080: 2049: 2048: 2041: 1999: 1993: 1992: 1988: 1973:10.1038/ngeo612 1946: 1945: 1941: 1910: 1909: 1905: 1892: 1888: 1850: 1849: 1840: 1798: 1797: 1790: 1760: 1759: 1750: 1712: 1711: 1707: 1701: 1697: 1666: 1665: 1661: 1623: 1622: 1615: 1569: 1568: 1543: 1497: 1496: 1492: 1443: 1442: 1438: 1406: 1402: 1372: 1371: 1367: 1362: 1350: 1342: 1327: 1318:biogeochemistry 1286:biological pump 1282: 1280:Biological pump 1276: 1265: 1205: 1192: 1180: 1167: 1152: 1147: 1134: 1118: 1107: 1099: 1083: 1071: 1053: 1045: 1038: 1031: 1021: 1004: 970: 960: 936: 931: 930: 915:concentration. 914: 893: 886: 867: 830: 829: 819: 806: 801: 800: 788: 780: 772: 768: 758:concentration. 757: 724: 683: 676: 675: 674: 614: 606: 605: 604: 569: 559: 558: 557: 510: 500: 499: 498: 487:Marine sediment 471: 461: 460: 459: 420:Solubility pump 408:Biological pump 402: 392: 391: 390: 365: 355: 354: 353: 337:Carbon fixation 322: 307: 297: 296: 295: 276: 260: 213: 211:Forms of carbon 203: 202: 201: 176: 166: 165: 164: 119: 88: 80: 73: 31: 25: 17: 12: 11: 5: 3734: 3732: 3724: 3723: 3718: 3708: 3707: 3702: 3701: 3643: 3636: 3610: 3599:(4): 813–839. 3588: 3579: 3564: 3505: 3468:(7): 891–903. 3445: 3408:(2): 175–193. 3392: 3328: 3281: 3254:(3): 535–555. 3233: 3163: 3134:(8): 971–994. 3111: 3049: 3013: 2973: 2921: 2902:(2): 297–310. 2886: 2841:Biogeosciences 2827: 2779: 2730: 2689: 2645: 2610:Biogeosciences 2596: 2544: 2503: 2484:(1–2): 17–25. 2468: 2409: 2325: 2290: 2241: 2206: 2165: 2130:Biogeosciences 2116: 2078: 2039: 2004:Biogeosciences 1997: 1986: 1959:(9): 630–635. 1939: 1920:(2): 361–382. 1903: 1886: 1838: 1788: 1769:(2): 267–285. 1748: 1705: 1695: 1659: 1613: 1541: 1504:Biogeosciences 1490: 1436: 1400: 1364: 1363: 1361: 1358: 1357: 1356: 1349: 1346: 1340: 1325: 1290:organic carbon 1275: 1272: 1263: 1200: 1190: 1178: 1165: 1148: 1143: 1132: 1116: 1105: 1097: 1081: 1069: 1064:(hereinafter " 1052: 1049: 1043: 1036: 1029: 1017: 1000: 994: 993: 980: 977: 973: 967: 963: 959: 955: 952: 949: 943: 939: 912: 891: 882: 872: 871: 854: 851: 846: 841: 838: 833: 826: 822: 818: 813: 809: 786: 778: 770: 766: 755: 726: 725: 723: 722: 715: 708: 700: 697: 696: 695: 694: 678: 677: 673: 672: 667: 662: 657: 652: 647: 642: 637: 632: 630:Deep biosphere 627: 622: 616: 615: 612: 611: 608: 607: 603: 602: 600:Redfield ratio 597: 592: 587: 582: 580:Nutrient cycle 577: 571: 570: 567:Biogeochemical 565: 564: 561: 560: 556: 555: 550: 545: 540: 539: 538: 533: 523: 521:Methanogenesis 518: 512: 511: 506: 505: 502: 501: 497: 496: 495: 494: 484: 479: 473: 472: 467: 466: 463: 462: 458: 457: 452: 447: 442: 437: 435:Microbial loop 432: 427: 422: 417: 416: 415: 404: 403: 398: 397: 394: 393: 389: 388: 383: 378: 373: 367: 366: 361: 360: 357: 356: 352: 351: 350: 349: 344: 334: 329: 323: 321: 320: 318:Chemosynthesis 315: 313:Photosynthesis 309: 308: 303: 302: 299: 298: 294: 293: 288: 283: 277: 275: 274: 273: 272: 261: 259: 258: 252: 246: 240: 234: 228: 222: 215: 214: 209: 208: 205: 204: 200: 199: 194: 189: 184: 178: 177: 174:Carbon dioxide 172: 171: 168: 167: 163: 162: 157: 152: 147: 142: 137: 132: 127: 121: 120: 117: 116: 113: 112: 104: 103: 97: 96: 86: 79: 76: 71: 41:oceanographers 23: 15: 13: 10: 9: 6: 4: 3: 2: 3733: 3722: 3719: 3717: 3714: 3713: 3711: 3697: 3693: 3689: 3685: 3681: 3677: 3673: 3669: 3665: 3661: 3654: 3647: 3644: 3639: 3637:9781118664322 3633: 3629: 3625: 3621: 3614: 3611: 3606: 3602: 3598: 3594: 3583: 3580: 3577:, 8 May 2021. 3576: 3573: 3568: 3565: 3560: 3556: 3551: 3546: 3541: 3536: 3532: 3528: 3524: 3520: 3516: 3509: 3506: 3501: 3497: 3492: 3487: 3483: 3479: 3475: 3471: 3467: 3463: 3459: 3452: 3450: 3446: 3441: 3437: 3432: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3396: 3393: 3388: 3384: 3379: 3374: 3369: 3364: 3360: 3356: 3352: 3348: 3344: 3337: 3335: 3333: 3329: 3324: 3320: 3316: 3312: 3308: 3304: 3300: 3296: 3292: 3285: 3282: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3242: 3240: 3238: 3234: 3229: 3225: 3220: 3215: 3210: 3205: 3201: 3197: 3193: 3189: 3185: 3178: 3176: 3174: 3172: 3170: 3168: 3164: 3159: 3155: 3150: 3145: 3141: 3137: 3133: 3129: 3125: 3118: 3116: 3112: 3107: 3103: 3098: 3093: 3088: 3083: 3079: 3075: 3071: 3067: 3063: 3056: 3054: 3050: 3045: 3041: 3037: 3033: 3029: 3025: 3017: 3014: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2977: 2974: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2925: 2922: 2917: 2913: 2909: 2905: 2901: 2897: 2890: 2887: 2882: 2878: 2873: 2868: 2863: 2858: 2854: 2850: 2846: 2842: 2838: 2831: 2828: 2822: 2817: 2813: 2809: 2805: 2801: 2797: 2790: 2788: 2786: 2784: 2780: 2775: 2771: 2766: 2761: 2757: 2753: 2749: 2745: 2741: 2734: 2731: 2725: 2720: 2716: 2712: 2708: 2704: 2700: 2693: 2690: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2649: 2646: 2641: 2637: 2632: 2627: 2623: 2619: 2616:(1): 85–102. 2615: 2611: 2607: 2600: 2597: 2592: 2588: 2583: 2578: 2574: 2570: 2566: 2562: 2558: 2551: 2549: 2545: 2539: 2534: 2530: 2526: 2522: 2518: 2514: 2507: 2504: 2499: 2495: 2491: 2487: 2483: 2479: 2472: 2469: 2464: 2460: 2455: 2450: 2445: 2440: 2436: 2432: 2428: 2424: 2420: 2413: 2410: 2406: 2401: 2395: 2391: 2386: 2381: 2376: 2375:1721.1/130486 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2343: 2336: 2334: 2332: 2330: 2326: 2321: 2317: 2313: 2309: 2305: 2301: 2294: 2291: 2286: 2282: 2277: 2272: 2268: 2264: 2260: 2256: 2252: 2245: 2242: 2237: 2233: 2229: 2225: 2221: 2217: 2210: 2207: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2169: 2166: 2161: 2157: 2152: 2147: 2143: 2139: 2135: 2131: 2127: 2120: 2117: 2112: 2108: 2104: 2100: 2096: 2092: 2085: 2083: 2079: 2074: 2070: 2066: 2062: 2058: 2054: 2046: 2044: 2040: 2035: 2031: 2026: 2021: 2017: 2013: 2009: 2005: 2001: 1990: 1987: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1943: 1940: 1935: 1931: 1927: 1923: 1919: 1915: 1907: 1904: 1900: 1896: 1890: 1887: 1881: 1876: 1871: 1866: 1862: 1858: 1854: 1847: 1845: 1843: 1839: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1795: 1793: 1789: 1784: 1780: 1776: 1772: 1768: 1764: 1757: 1755: 1753: 1749: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1709: 1706: 1699: 1696: 1691: 1687: 1683: 1679: 1675: 1671: 1663: 1660: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1618: 1614: 1610: 1605: 1598: 1593: 1589: 1585: 1581: 1577: 1573: 1566: 1564: 1562: 1560: 1558: 1556: 1554: 1552: 1550: 1548: 1546: 1542: 1536: 1531: 1526: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1491: 1486: 1482: 1477: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1440: 1437: 1433: 1428: 1423: 1419: 1415: 1411: 1404: 1401: 1396: 1392: 1388: 1384: 1380: 1376: 1369: 1366: 1359: 1355: 1352: 1351: 1347: 1345: 1338: 1334: 1329: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1294:phytoplankton 1291: 1287: 1281: 1273: 1271: 1269: 1261: 1260:midnight zone 1256: 1254: 1253:twilight zone 1249: 1248:euphotic zone 1243: 1241: 1237: 1232: 1230: 1226: 1222: 1221: 1220:Synechococcus 1216: 1212: 1204: 1201:Zones in the 1198: 1194: 1193:export flux. 1187: 1182: 1175: 1171: 1163: 1159: 1146: 1141: 1137: 1130: 1126: 1122: 1121:euphotic zone 1113: 1111: 1103: 1095: 1094:sediment trap 1091: 1087: 1079: 1075: 1067: 1063: 1062:biogenic opal 1059: 1050: 1048: 1046: 1039: 1032: 1025: 1020: 1016: 1012: 1008: 1003: 999: 978: 975: 971: 965: 961: 957: 950: 941: 937: 929: 928: 927: 924: 921: 916: 909: 905: 901: 897: 890: 885: 881: 877: 852: 849: 844: 839: 836: 831: 824: 820: 816: 811: 807: 799: 798: 797: 795: 790: 784: 776: 764: 759: 753: 749: 745: 741: 737: 733: 721: 716: 714: 709: 707: 702: 701: 699: 698: 692: 682: 681: 680: 679: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 617: 610: 609: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 575:Marine cycles 573: 572: 568: 563: 562: 554: 551: 549: 546: 544: 541: 537: 534: 532: 529: 528: 527: 524: 522: 519: 517: 514: 513: 509: 504: 503: 493: 490: 489: 488: 485: 483: 480: 478: 475: 474: 470: 465: 464: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 414: 411: 410: 409: 406: 405: 401: 396: 395: 387: 384: 382: 379: 377: 374: 372: 369: 368: 364: 359: 358: 348: 345: 343: 340: 339: 338: 335: 333: 330: 328: 325: 324: 319: 316: 314: 311: 310: 306: 301: 300: 292: 289: 287: 284: 282: 279: 278: 271: 268: 267: 266: 263: 262: 256: 253: 250: 247: 244: 241: 238: 235: 232: 229: 226: 223: 220: 217: 216: 212: 207: 206: 198: 195: 193: 190: 188: 185: 183: 180: 179: 175: 170: 169: 161: 158: 156: 155:Boreal forest 153: 151: 148: 146: 143: 141: 138: 136: 133: 131: 128: 126: 123: 122: 115: 114: 110: 106: 105: 102: 98: 94: 93: 84: 77: 75: 69: 64: 62: 58: 54: 50: 46: 42: 38: 29: 21: 3716:Oceanography 3663: 3659: 3646: 3619: 3613: 3596: 3592: 3582: 3575:SciTechDaily 3574: 3567: 3522: 3518: 3508: 3465: 3461: 3405: 3401: 3395: 3350: 3346: 3298: 3294: 3284: 3251: 3247: 3191: 3187: 3131: 3127: 3069: 3065: 3027: 3023: 3016: 2991: 2987: 2976: 2935: 2931: 2924: 2899: 2895: 2889: 2844: 2840: 2830: 2803: 2799: 2747: 2743: 2733: 2706: 2702: 2692: 2659: 2655: 2648: 2613: 2609: 2599: 2564: 2560: 2520: 2516: 2506: 2481: 2477: 2471: 2426: 2422: 2412: 2349: 2345: 2303: 2299: 2293: 2258: 2254: 2244: 2219: 2215: 2209: 2182: 2178: 2168: 2136:(1): 55–72. 2133: 2129: 2119: 2094: 2090: 2056: 2052: 2007: 2003: 1989: 1956: 1952: 1942: 1917: 1913: 1906: 1898: 1895:Oceanography 1894: 1889: 1860: 1856: 1808: 1804: 1766: 1762: 1718: 1714: 1708: 1698: 1673: 1669: 1662: 1629: 1625: 1579: 1575: 1507: 1503: 1493: 1450: 1446: 1439: 1413: 1409: 1403: 1378: 1374: 1368: 1330: 1284:The ocean's 1283: 1257: 1244: 1233: 1218: 1214: 1208: 1203:water column 1183: 1174:picoplankton 1155: 1144: 1114: 1089: 1086:aeolian dust 1054: 1041: 1034: 1027: 1023: 1018: 1014: 1010: 1006: 1001: 997: 995: 925: 917: 895: 888: 883: 879: 875: 873: 793: 791: 760: 729: 413:Martin curve 412: 400:Carbon pumps 327:Calvin cycle 281:Black carbon 219:Total carbon 160:Geochemistry 101:Carbon cycle 65: 49:water column 37:Martin curve 36: 34: 1676:(1): 1–11. 1476:11441/98535 1381:: 146–155. 1298:marine snow 1236:234Th-based 1225:zooplankton 1125:mixed layer 1110:marine snow 1102:mixed layer 477:Carbon sink 440:Viral shunt 430:Marine snow 286:Blue carbon 140:Deep carbon 135:Atmospheric 125:Terrestrial 61:John Martin 3710:Categories 3030:(2): n/a. 2806:(1): n/a. 1880:1912/23677 1360:References 1314:structural 1310:parametric 1268:refractory 752:dark ocean 744:deep ocean 450:Whale pump 445:Jelly pump 425:Lipid pump 150:Permafrost 118:By regions 78:Background 3696:119513489 3431:1912/7333 3323:102953187 3276:132192896 3158:201329875 2881:216206324 2684:133654627 2662:: 17–27. 2591:128876389 2034:202987265 1833:133746237 1535:1912/6674 1306:power law 976:− 904:power law 850:− 3688:30996317 3559:30429327 3500:32063666 3440:53453555 3387:31036647 3228:25561526 3106:27457946 2960:17463282 2774:53998465 2640:45117580 2463:32253312 2394:34219838 2285:59034696 1981:59058813 1901:: 59–64. 1348:See also 1186:mesocosm 1068:"), CaCO 908:exponent 691:Category 74:levels. 51:, and a 3668:Bibcode 3550:6275536 3527:Bibcode 3491:7006809 3470:Bibcode 3410:Bibcode 3378:6525517 3355:Bibcode 3303:Bibcode 3256:Bibcode 3219:4313834 3196:Bibcode 3136:Bibcode 3097:4978250 3074:Bibcode 3032:Bibcode 2996:Bibcode 2968:8423647 2940:Bibcode 2932:Science 2904:Bibcode 2849:Bibcode 2808:Bibcode 2752:Bibcode 2711:Bibcode 2664:Bibcode 2618:Bibcode 2569:Bibcode 2525:Bibcode 2486:Bibcode 2454:7211944 2431:Bibcode 2385:8243937 2354:Bibcode 2308:Bibcode 2263:Bibcode 2224:Bibcode 2187:Bibcode 2160:3840184 2138:Bibcode 2099:Bibcode 2061:Bibcode 2012:Bibcode 1961:Bibcode 1922:Bibcode 1813:Bibcode 1771:Bibcode 1743:4353764 1723:Bibcode 1678:Bibcode 1654:4275275 1634:Bibcode 1584:Bibcode 1582:: 366. 1512:Bibcode 1485:3728545 1455:Bibcode 1416:: 518. 1383:Bibcode 1240:hypoxic 1170:ballast 1058:ballast 536:Wetland 508:Methane 291:Kerogen 192:Removal 30:in 2011 3721:Carbon 3694:  3686:  3660:Nature 3634:  3557:  3547:  3498:  3488:  3438:  3385:  3375:  3321:  3274:  3226:  3216:  3156:  3104:  3094:  2966:  2958:  2879:  2772:  2709:(16). 2682:  2638:  2589:  2461:  2451:  2392:  2382:  2283:  2158:  2032:  1979:  1831:  1741:  1715:Nature 1703:87–30. 1652:  1626:Nature 1483:  1215:et al. 1090:et al. 1072:, and 996:where 874:where 746:, and 742:, the 689:  670:CO2SYS 531:Arctic 270:marine 130:Marine 3692:S2CID 3656:(PDF) 3436:S2CID 3319:S2CID 3272:S2CID 3154:S2CID 2964:S2CID 2877:S2CID 2770:S2CID 2680:S2CID 2636:S2CID 2587:S2CID 2281:S2CID 2156:S2CID 2030:S2CID 1977:S2CID 1829:S2CID 1739:S2CID 1650:S2CID 1481:S2CID 1127:) to 794:et al 665:C4MIP 613:Other 257:(PIC) 251:(POC) 245:(DIC) 239:(DOC) 233:(TIC) 227:(TOC) 3684:PMID 3632:ISBN 3555:PMID 3496:PMID 3383:PMID 3224:PMID 3102:PMID 2956:PMID 2459:PMID 2390:PMID 1162:opal 1066:opal 887:and 761:The 221:(TC) 145:Soil 57:flux 35:The 3676:doi 3664:568 3624:doi 3601:doi 3591:". 3545:PMC 3535:doi 3523:115 3486:PMC 3478:doi 3426:hdl 3418:doi 3373:PMC 3363:doi 3351:116 3311:doi 3264:doi 3214:PMC 3204:doi 3192:112 3144:doi 3092:PMC 3082:doi 3070:113 3040:doi 3004:doi 2948:doi 2936:316 2912:doi 2867:hdl 2857:doi 2816:doi 2760:doi 2719:doi 2672:doi 2660:144 2626:doi 2577:doi 2533:doi 2494:doi 2449:PMC 2439:doi 2427:117 2380:PMC 2370:hdl 2362:doi 2316:doi 2271:doi 2232:doi 2195:doi 2146:doi 2107:doi 2069:doi 2020:doi 1969:doi 1930:doi 1875:hdl 1865:doi 1821:doi 1779:doi 1731:doi 1719:325 1686:doi 1642:doi 1630:288 1592:doi 1530:hdl 1520:doi 1471:hdl 1463:doi 1418:doi 1391:doi 1379:135 1123:or 1078:ppm 892:100 870:(1) 840:100 825:100 26:as 3712:: 3690:. 3682:. 3674:. 3662:. 3658:. 3630:. 3597:63 3595:. 3553:. 3543:. 3533:. 3521:. 3517:. 3494:. 3484:. 3476:. 3466:33 3464:. 3460:. 3448:^ 3434:. 3424:. 3416:. 3406:29 3404:. 3381:. 3371:. 3361:. 3349:. 3345:. 3331:^ 3317:. 3309:. 3299:31 3297:. 3293:. 3270:. 3262:. 3252:31 3250:. 3236:^ 3222:. 3212:. 3202:. 3190:. 3186:. 3166:^ 3152:. 3142:. 3132:33 3130:. 3126:. 3114:^ 3100:. 3090:. 3080:. 3068:. 3064:. 3052:^ 3038:. 3028:37 3026:. 3002:. 2992:55 2990:. 2986:. 2962:. 2954:. 2946:. 2934:. 2910:. 2900:12 2898:. 2875:. 2865:. 2855:. 2845:17 2843:. 2839:. 2814:. 2804:26 2802:. 2798:. 2782:^ 2768:. 2758:. 2748:14 2746:. 2742:. 2717:. 2707:31 2705:. 2701:. 2678:. 2670:. 2658:. 2634:. 2624:. 2612:. 2608:. 2585:. 2575:. 2565:16 2563:. 2559:. 2547:^ 2531:. 2521:16 2519:. 2515:. 2492:. 2480:. 2457:. 2447:. 2437:. 2425:. 2421:. 2388:. 2378:. 2368:. 2360:. 2350:48 2348:. 2344:. 2328:^ 2314:. 2304:39 2302:. 2279:. 2269:. 2257:. 2253:. 2230:. 2220:53 2218:. 2193:. 2183:16 2181:. 2177:. 2154:. 2144:. 2132:. 2128:. 2105:. 2095:37 2093:. 2081:^ 2067:. 2057:49 2055:. 2042:^ 2028:. 2018:. 2008:16 2006:. 2002:. 1975:. 1967:. 1955:. 1951:. 1928:. 1918:10 1916:. 1899:14 1897:, 1873:. 1863:. 1859:. 1855:. 1841:^ 1827:. 1819:. 1809:31 1807:. 1803:. 1791:^ 1777:. 1767:34 1765:. 1751:^ 1737:. 1729:. 1717:. 1684:. 1674:31 1672:. 1648:. 1640:. 1628:. 1616:^ 1590:. 1578:. 1574:. 1544:^ 1528:. 1518:. 1508:11 1506:. 1502:. 1479:. 1469:. 1461:. 1451:43 1449:. 1424:. 1412:, 1389:. 1377:. 1231:. 1177:CO 1112:. 1047:. 1013:, 911:CO 347:C4 342:C3 63:. 3698:. 3678:: 3670:: 3640:. 3626:: 3607:. 3603:: 3589:2 3561:. 3537:: 3529:: 3502:. 3480:: 3472:: 3442:. 3428:: 3420:: 3412:: 3389:. 3365:: 3357:: 3325:. 3313:: 3305:: 3278:. 3266:: 3258:: 3230:. 3206:: 3198:: 3160:. 3146:: 3138:: 3108:. 3084:: 3076:: 3046:. 3042:: 3034:: 3010:. 3006:: 2998:: 2970:. 2950:: 2942:: 2918:. 2914:: 2906:: 2883:. 2869:: 2859:: 2851:: 2824:. 2818:: 2810:: 2776:. 2762:: 2754:: 2727:. 2721:: 2713:: 2686:. 2674:: 2666:: 2642:. 2628:: 2620:: 2614:6 2593:. 2579:: 2571:: 2541:. 2535:: 2527:: 2500:. 2496:: 2488:: 2482:8 2465:. 2441:: 2433:: 2407:. 2396:. 2372:: 2364:: 2356:: 2322:. 2318:: 2310:: 2287:. 2273:: 2265:: 2259:9 2238:. 2234:: 2226:: 2203:. 2197:: 2189:: 2162:. 2148:: 2140:: 2134:5 2113:. 2109:: 2101:: 2075:. 2071:: 2063:: 2036:. 2022:: 2014:: 1998:2 1983:. 1971:: 1963:: 1957:2 1936:. 1932:: 1924:: 1883:. 1877:: 1867:: 1861:5 1835:. 1823:: 1815:: 1785:. 1781:: 1773:: 1745:. 1733:: 1725:: 1692:. 1688:: 1680:: 1656:. 1644:: 1636:: 1611:. 1600:. 1594:: 1586:: 1580:8 1538:. 1532:: 1522:: 1514:: 1487:. 1473:: 1465:: 1457:: 1434:. 1420:: 1414:7 1397:. 1393:: 1385:: 1341:2 1326:2 1264:3 1191:3 1179:2 1166:3 1133:3 1117:3 1106:3 1098:3 1082:2 1070:3 1044:p 1042:C 1037:o 1035:z 1030:p 1028:f 1024:b 1019:p 1015:C 1011:z 1007:z 1005:( 1002:p 998:f 979:b 972:z 966:p 962:C 958:= 954:) 951:z 948:( 942:p 938:f 913:2 896:z 889:F 884:z 880:F 876:z 853:b 845:) 837:z 832:( 821:F 817:= 812:z 808:F 787:2 779:2 771:2 767:2 756:2 719:e 712:t 705:v 72:2

Index


imaged by satellite
oceanographers
particulate organic carbon
water column
remineralisation
flux
John Martin
ocean carbon cycling

Carbon cycle

Terrestrial
Marine
Atmospheric
Deep carbon
Soil
Permafrost
Boreal forest
Geochemistry
Carbon dioxide
In the atmosphere
Ocean acidification
Removal
Satellite measurements
Forms of carbon
Total carbon
Total organic carbon
Total inorganic carbon
Dissolved organic carbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.