Knowledge (XXG)

Dissolved organic carbon

Source 📝

1650: 1649: 1776: 1720:). Therefore, it generally means that photodegradation transforms recalcitrant into labile DOC molecules that can be rapidly used by prokaryotes for biomass production and respiration. However, it can also increase CDOM through the transformation of compounds such as triglycerides, into more complex aromatic compounds, which are less degradable by microbes. Moreover, UV radiation can produce e.g., reactive oxygen species, which are harmful to microbes. The impact of photochemical processes on the DOC pool depends also on the chemical composition, with some studies suggesting that recently produced autochthonous DOC becomes less bioavailable while allochthonous DOC becomes more bioavailable to prokaryotes after sunlight exposure, albeit others have found the contrary. Photochemical reactions are particularly important in coastal waters which receive high loads of terrestrial derived CDOM, with an estimated ~20–30% of terrestrial DOC being rapidly photodegraded and consumed. Global estimates also suggests that in marine systems photodegradation of DOC produces ~180 Tg C yr of inorganic carbon, with an additional 100 Tg C yr of DOC made more available to microbial degradation. Another attempt at global ocean estimates also suggest that photodegradation (210 Tg C yr) is approximately the same as the annual global input of riverine DOC (250 Tg C yr;), while others suggest that direct photodegradation exceeds the riverine DOC inputs. 1662:
refractory DOC (RDOC) that persists in the ocean for millennia. The ocean is a patchy environment that harbors a great diversity of microbes and physicochemical processes with the potential to remove refractory DOC when these molecules encounter environmental conditions and microbes that can degrade them. Physical mixing transports refractory DOC throughout the ocean realm and thereby increases the likelihood of its removal. Deep ocean waters can be entrained into hydrothermal circulation and associated DOC can be removed by thermal degradation. Sinking particles from the upper ocean release labile DOC (LDOC) that triggers hot spots of microbial activity and primes the removal of refractory molecules. Mixing of subsurface waters into sunlit waters exposes refractory DOC to warmer temperatures and photochemical processes that can mineralize and transform refractory molecules into simple compounds (e.g., pyruvate, formaldehyde) for rapid microbial utilization. Thus, it appears the lifetime of refractory molecules in the ocean is regulated by the rate of global overturning circulation (GOC). This relationship indicates a slowing of GOC could lead to an increase in the reservoir size of refractory DOC, assuming a constant production rate of refractory DOC (inset panel).
1775: 1806:
compounds are highly photosensitive, whereas proteins, carbohydrates, and their monomers are readily taken up by bacteria. Microbes and other consumers are selective in the type of DOM they utilize and typically prefer certain organic compounds over others. Consequently, DOM becomes less reactive as it is continually reworked. Said another way, the DOM pool becomes less labile and more refractory with degradation. As it is reworked, organic compounds are continually being added to the bulk DOM pool by physical mixing, exchange with particles, and/or production of organic molecules by the consumer community. As such, the compositional changes that occur during degradation are more complex than the simple removal of more labile components and resultant accumulation of remaining, less labile compounds.
1517: 1547:) are highly productive and extend over large areas in coastal waters but their production of DOC has not received much attention. Macrophytes release DOC during growth with a conservative estimate (excluding release from decaying tissues) suggesting that macroalgae release between 1-39% of their gross primary production, while seagrasses release less than 5% as DOC of their gross primary production. The released DOC has been shown to be rich in carbohydrates, with rates depending on temperature and light availability. Globally the macrophyte communities have been suggested to produce ~160 Tg C yr of DOC, which is approximately half the annual global river DOC input (250 Tg C yr). 1061: 1007: 1692:(CDOM) absorbs light in the blue and UV-light range and therefore influences plankton productivity both negatively by absorbing light, that otherwise would be available for photosynthesis, and positively by protecting plankton organisms from harmful UV-light. However, as the impact of UV damage and ability to repair is extremely variable, there is no consensus on how UV-light changes might impact overall plankton communities. The CDOM absorption of light initiates a complex range of photochemical processes, which can impact nutrient, trace metal and DOC chemical composition, and promote DOC degradation. 1556: 1497:
concentrations indicated by dark blue fields) is present during overturning of the water column. precursor for deep and intermediate water mass formation. DOC is also exported with subduction in the gyres. In regions where DOCenriched subtropical water is prevented by polar frontal systems from serving as a precursor for overturning circulation (such as at the sites of Antarctic Bottom Water formation in the Southern Ocean) DOC export is a weak component of the biological pump. Waters south of the Antarctic Polar Front lack significant exportable DOC (depicted by light blue field) during winter.
1583:. The DOC concentrations in sediments are often an order of magnitude higher than in the overlying water column. This concentration difference results in a continued diffusive flux and suggests that sediments are a major DOC source releasing 350 Tg C yr, which is comparable to the input of DOC from rivers. This estimate is based on calculated diffusive fluxes and does not include resuspension events which also releases DOC and therefore the estimate could be conservative. Also, some studies have shown that geothermal systems and petroleum seepage contribute with pre-aged DOC to the deep 1502: 1305: 1729: 785: 1488: 769: 22: 1030: 983:
temperature, sun-light exposure, biological production of recalcitrant compounds, and the effect of priming or dilution of individual molecules. For example, lignin can be degraded in aerobic soils but is relatively recalcitrant in anoxic marine sediments. This example shows bioavailability varies as a function of the ecosystem's properties. Accordingly, even normally ancient and recalcitrant compounds, such as petroleum, carboxyl-rich alicyclic molecules, can be degraded in the appropriate environmental setting.
1793:
3,000 meters, highest concentrations are in the North Atlantic Deep Water where dissolved organic carbon from the high concentration surface ocean is removed to depth. While in the northern Indian Ocean high DOC is observed due to high fresh water flux and sediments. Since the time scales of horizontal motion along the ocean bottom are in the thousands of years, the refractory dissolved organic carbon is slowly consumed on its way from the North Atlantic and reaches a minimum in the North Pacific.
1787:
photochemical degradation (yellow arrow), or particle exchange (green arrow). Labile components are removed down the water column and DOC becomes diluted by processes, such as particle exchange (brown arrow), sediment dissolution (gray arrow), and microbial reworking (white arrow), which continue to alter, add, and/or remove molecules from the bulk DOC pool. Thus, the apparent recalcitrance of DOC in the ocean’s interior is an emergent property that is largely controlled by environmental context.
810:. In some organisms (stages) that do not feed in the traditional sense, dissolved matter may be the only external food source. Moreover, DOC is an indicator of organic loadings in streams, as well as supporting terrestrial processing (e.g., within soil, forests, and wetlands) of organic matter. Dissolved organic carbon has a high proportion of biodegradable dissolved organic carbon (BDOC) in first order streams compared to higher order streams. In the absence of extensive 1680:, but it also stimulates the bacterial degradation of the flocculated DOC. The impacts of flocculation on the removal of DOC from coastal waters are highly variable with some studies suggesting it can remove up to 30% of the DOC pool, while others find much lower values (3–6%;). Such differences could be explained by seasonal and system differences in the DOC chemical composition, pH, metallic cation concentration, microbial reactivity, and ionic strength. 51: 1739:
between 1,000 and 4,000 years in surface waters, and between 3,000 and 6,000 years in the deep ocean, indicating that it persists through several deep ocean mixing cycles between 300 and 1,400 years each. Behind these average radiocarbon ages, a large spectrum of ages is hidden. Follett et al. showed DOC comprises a fraction of modern radiocarbon age, as well as DOC reaching radiocarbon ages of up to 12,000 years.
628: 1278:(R), and exchanged with the atmosphere. Organic carbon is produced by organisms and is released during and after their life; e.g., in rivers, 1–20% of the total amount of DOC is produced by macrophytes. Carbon can enter the system from the catchment and is transported to the oceans by rivers and streams. There is also exchange with carbon in the sediments, e.g., burial of organic carbon, which is important for 1427:). Prokaryotes are also the main decomposers of DOC, although for some of the most recalcitrant forms of DOC very slow abiotic degradation in hydrothermal systems  or possibly sorption to sinking particles  may be the main removal mechanism. Mechanistic knowledge about DOC-microbe-interactions is crucial to understand the cycling and distribution of this active carbon reservoir. 3949: 3713: 3638: 3543: 3490: 3279: 2852: 2814: 2776: 2582: 2178: 2143: 882:
resistant to degradation and can persist in the ocean for millennia. In the coastal ocean, organic matter from terrestrial plant litter or soils appears to be more refractory and thus often behaves conservatively. In addition, refractory DOC is produced in the ocean by the bacterial transformation of labile DOC, which reshapes its composition.
1112:. Soil DOM can be derived from different sources (inputs), such as atmospheric carbon dissolved in rainfall, litter and crop residues, manure, root exudates, and decomposition of soil organic matter (SOM). In the soil, DOM availability depends on its interactions with mineral components (e.g., clays, Fe and Al oxides) modulated by 1814:
alternative or additional explanation is given by the "dilution hypothesis", that all compounds are labile, but exist in concentrations individually too low to sustain microbial populations but collectively form a large pool. The dilution hypothesis has found support in recent experimental and theoretical studies.
1476:). These compounds are widely distributed in the ocean, suggesting that bacterial DOC production could be important in marine systems. Viruses are the most abundant life forms in the oceans infecting all life forms including algae, bacteria and zooplankton. After infection, the virus either enters a dormant ( 1802:
vegetation and soils, coastal fringe ecosystems) and may have been produced recently or thousands of years ago. Moreover, even organic compounds deriving from the same source and of the same age may have been subjected to different processing histories prior to accumulating within the same pool of DOM.
1809:
Dissolved organic matter recalcitrance (i.e., its overall reactivity toward degradation and/or utilization) is therefore an emergent property. The perception of DOM recalcitrance changes during organic matter degradation and in conjunction with any other process that removes or adds organic compounds
1591:
account for an unknown part of the freshwater DOC flux to the oceans. The DOC in groundwater is a mixture of terrestrial, infiltrated marine, and in situ microbially produced material. This flux of DOC to coastal waters could be important, as concentrations in groundwater are generally higher than in
1525:
In panel (A) oceanic DOC stocks are shown in black circles with red font and units are Pg-C. DOC fluxes are shown in black and white font and units are either Tg-C yr or Pg-C yr. Letters in arrows and associated flux values correspond to descriptions displayed in (B), which lists sources and sinks of
1439:
release commonly accounting between 5 and 30% of their total primary production, although this varies from species to species. Nonetheless, this release of extracellular DOC is enhanced under high light and low nutrient levels, and thus should increase relatively from eutrophic to oligotrophic areas,
2520:
Jiao, Nianzhi; Herndl, Gerhard J.; Hansell, Dennis A.; Benner, Ronald; Kattner, Gerhard; Wilhelm, Steven W.; Kirchman, David L.; Weinbauer, Markus G.; Luo, Tingwei; Chen, Feng; Azam, Farooq (2010). "Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global
700:
is a closely related term often used interchangeably with DOC. While DOC refers specifically to the mass of carbon in the dissolved organic material, DOM refers to the total mass of the dissolved organic matter. So DOM also includes the mass of other elements present in the organic material, such as
1747:
More precise measurement techniques developed in the late 1990s have allowed for a good understanding of how dissolved organic carbon is distributed in marine environments both vertically and across the surface. It is now understood that dissolved organic carbon in the ocean spans a range from very
1496:
Regions of significant net DOC production (broad arrows) include coastal and equatorial upwelling regions that support much of the global new production. DOC is transported into and around the subtropical gyres with the wind-driven surface circulation. Export takes place if exportable DOC (elevated
1805:
Interior ocean DOM is a highly modified fraction that remains after years of exposure to sunlight, utilization by heterotrophs, flocculation and coagulation, and interaction with particles. Many of these processes within the DOM pool are compound- or class-specific. For example, condensed aromatic
1801:
Dissolved organic matter is a heterogeneous pool of thousands, likely millions, of organic compounds. These compounds differ not only in composition and concentration (from pM to μM), but also originate from various organisms (phytoplankton, zooplankton, and bacteria) and environments (terrestrial
4133:
Benner, R., and Ziegler, S. (1999). "Do photochemical transformations of dissolved organic matter produce biorefractory as well as bioreactive substrates?" in Proceedings of the 8th International Symposium on Microbial Ecology, eds C. R. Bell, M. Brylinsky, and P. Johnson-Green (Port Aransas, TX:
1792:
In addition to vertical distributions, horizontal distributions have been modeled and sampled as well. In the surface ocean at a depth of 30 meters, the higher dissolved organic carbon concentrations are found in the South Pacific Gyre, the South Atlantic Gyre, and the Indian Ocean. At a depth of
1738:
DOC is conceptually divided into labile DOC, which is rapidly taken up by heterotrophic microbes, and the recalcitrant DOC reservoir, which has accumulated in the ocean (following a definition by Hansell). As a consequence of its recalcitrance, the accumulated DOC reaches average radiocarbon ages
793:
Filtered (0.2 μm) coastal marine waters collected at various locations around the United Kingdom. The differences in colour is due to the range of soil-derived carbon input to the coastal water, with dark brown (left) indicating a high soil-derived carbon contribution and near-clear water (right)
1813:
The surprising resistance of high concentrations of DOC to microbial degradation has been addressed by several hypotheses. The prevalent notion is that the recalcitrant fraction of DOC has certain chemical properties, which prevent decomposition by microbes ("intrinsic stability hypothesis"). An
1671:
of DOC has been found at high-temperature hydrothermal ridge-flanks, where outflow DOC concentrations are lower than in the inflow. While the global impact of these processes has not been investigated, current data suggest it is a minor DOC sink. Abiotic DOC flocculation is often observed during
1786:
The dots represent DOC molecules and arrows represent physicochemical and biological processes that impact DOC concentration and molecular composition. In the surface ocean, DOC derived from primary production is rapidly remineralized or transformed through microbial degradation (black arrow),
1661:
Phytoplankton production and food web dynamics in surface waters release a diverse mixture of dissolved molecules with varying reactivities. Bacteria and archaea utilize labile and semi-labile forms of DOC in surface and mesopelagic waters of the upper ocean, leaving behind a vast reservoir of
1371:
sources. Autochthonous DOC is produced within the system, primarily by plankton organisms and in coastal waters additionally by benthic microalgae, benthic fluxes, and macrophytes, whereas allochthonous DOC is mainly of terrestrial origin supplemented by groundwater and atmospheric inputs. In
881:
DOC, and these terms seem to be used interchangeably in the context of DOC. Depending on the origin and composition of DOC, its behavior and cycling are different; the labile fraction of DOC decomposes rapidly through microbially or photochemically mediated processes, whereas refractory DOC is
2953:
Sparling, G.; Chibnall, E.; Pronger, J.; Rutledge, S.; Wall, A.; Campbell, D.; Schipper, L. 2016. Estimates of annual leaching losses of dissolved organic carbon from pastures on Allophanic soils grazed by dairy cattle, Waikato, New Zealand. New Zealand Journal of Agricultural Research 59:
982:
This wide range in turnover or degradation times has been linked with the chemical composition, structure and molecular size, but degradation also depends on the environmental conditions (e.g., nutrients), prokaryote diversity, redox state, iron availability, mineral-particle associations,
885:
Due to the continuous production and degradation in natural systems, the DOC pool contains a spectrum of reactive compounds each with their own reactivity, that have been divided into fractions from labile to recalcitrant, depending on the turnover times, as shown in the following table...
2684:
Del-Giorgio, P., and Davies, J. (2003). "Patterns of dissolved organic matter lability and consumption across aquatic ecosystems", in Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, eds S. E. G. Findlay and R. L. Sinsabaugh (San Diego, CA: Academic Press), 399–424. doi:
3807:
Webb, J. R., Santos, I. R., Maher, D. T., Tait, D. R., Cyronak, T., Sadat-Noori, M., et al. (2019). Groundwater as a source of dissolved organic matter to coastal waters: insights from radon and CDOM observations in 12 shallow coastal systems. Limnol. Oceanogr. 64, 182–196. doi:
2674:
Thingstad, T. F., Havskum, H., Kaas, H., Nielsen, T. G., Riemann, B., Lefevre, D., et al. (1999). Bacteria-protist interactions and organic matter degradation under P-limited conditions: analysis of an enclosure experiment using a simple model. Limnol. Oceanogr. 44, 62–79. doi:
1120:
processes. It also depends on SOM fractions (e.g., stabilized organic molecules and microbial biomass) by mineralization and immobilization processes. In addition, the intensity of these interactions changes according to soil inherent properties, land use, and crop management.
3044:
Wada, S., Aoki, M. N., Tsuchiya, Y., Sato, T., Shinagawa, H., and Hama, T. (2007). Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan. J. Exp. Mar. Biol. Ecol. 349, 344–358. doi:
1075:. This carbon (1.9 Pg C y) is transported to the oceans (0.9 Pg C y), buried in the sediments (0.2 Pg C y) or emitted as CO (0.8 Pg C y). More recent estimations are different: In 2013, Raymond et al. claimed CO emission from inland waters can be as high as 2.1 Pg C y. 2742:
Myers-Pigg, A. N., Louchouarn, P., Amon, R. M. W., Prokushkin, A., Pierce, K., and Rubtsov, A. (2015). Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: implications for wildfire-stream metabolic linkages. Geophys. Res. Lett. 42, 377–385. doi:
4105:
Hudson, J. J., Dillon, P. J., and Somers, K. M. (2003). Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition. Hydrol. Earth Syst. Sci. 7, 390–398. doi:
4027:
Williamson, C. E., Stemberger, R. S., Morris, D. P., Frost, T. A., and Paulsen, S. G. (1996). Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol. Oceanogr. 41, 1024–1034. doi:
3729:
Hewson, I., O'neil, J. M., Fuhrman, J. A., and Dennison, W. C. (2001). Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 1734–1746. doi:
3618:
Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P.E., Hansman, R., Elvert, M., Middelburg, J.J., Engel, A. and Blattmann, T.M. (2020) "Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon".
1285:
Aquatic systems are very important in global carbon sequestration; e.g., when different European ecosystems are compared, inland aquatic systems form the second largest carbon sink (19–41 Tg C y); only forests take up more carbon (125–223 Tg C y).
3358:
Jumars, P. A., Penry, D. L., Baross, J. A., and Perry, M. J. (1989). Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep Sea Res. 36, 483–495. doi:
2703:
Kattner, G., Simon, M., and Koch, B. P. (2011). "Molecular characterization of dissolved organic matter and constraints for prokaryotic utilization", in Microbial Carbon Pump in the Ocean, eds N. Jiao, F. Azam, and S. Sansers (Washington, DC:
4191:
Wang, X.-C., Chen, R. F., and Gardner, G. B. (2004). Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Mar. Chem. 89, 241–256. doi:
4143:
Sulzberger, B., and Durisch-Kaiser, E. (2009). Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat. Sci. 71, 104–126. doi:
3034:
Lønborg, C., Álvarez-Salgado, X. A., Davidson, K., and Miller, A. E. J. (2009). Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations. Estuar. Coast. Shelf Sci. 82, 682–688. doi:
4017:
Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., and Lechevallier, M. (2000). Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Res. 34, 3247–3257. doi:
1830:. Moreover, DOM samples often contain high concentrations of inorganic salts that are incompatible with such techniques. Therefore, it is necessary a concentration and isolation step of the sample. The most used isolation techniques are 3748:
Burdige, D. J., and Komada, T. (2014). "Sediment pore waters", in Biogeochemistry of Marine Dissolved Organic Matter, eds D. A. Hansen and C. A. Carlson (Cambridge, MA: Academic Press), 535–577. doi: 10.1016/B978-0-12-405940-5.00012-1
3784:
Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A., et al. (2006). Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367, 498–543. doi:
2880:
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185. doi:
732:
processes from dead organic matter including plants and animals. DOC can originate from within or outside any given body of water. DOC originating from within the body of water is known as autochthonous DOC and typically comes from
4075:
Moran, M. A., Sheldon, W. M., and Zepp, R. G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 45, 1254–1264. doi:
3170:
Zigah, Prosper K.; McNichol, Ann P.; Xu, Li; Johnson, Carl; Santinelli, Chiara; Karl, David M.; Repeta, Daniel J. (2017). "Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes".
4095:
Berto, S., Laurentiis, E. D., Tota, T., Chiavazza, E., Daniele, P. G., Minella, M., et al. (2016). Properties of the humic-like material arising from the phototransformation of L-tyrosine. Sci. Total Environ. 546, 434–444. doi:
2921:
Saidy, A.R.; Smernik, R.J.; Baldock, J.A.; Kaiser, K.; Sanderman, J. 2015. Microbial degradation of organic carbon sorbed to phyllosilicate clays with and without hydrous iron oxide coating. European Journal of Soil Science 66:
3885:
Carlson, C. A., and Hansell, D. A. (2015). "DOM sources, sinks, reactivity, and budgets", in Biogeochemistry of Marine Dissolved Organic Matter, eds C. A. Carlson and D. A. Hansell (San Diego, CA: Academic Press), 65–126. doi:
1752:
to very recalcitrant (refractory). The labile dissolved organic carbon is mainly produced by marine organisms and is consumed in the surface ocean, and consists of sugars, proteins, and other compounds that are easily used by
4163:
Stubbins, A., Uher, G., Law, C. S., Mopper, K., Robinson, C., and Upstill-Goddard, R. C. (2006). Open-ocean carbon monoxide photoproduction. Deep Sea Res. II Top. Stud. Oceanogr. 53, 1695–1705. doi: 10.1016/j.dsr2.2006.05.011
845:
can use as a source of energy and carbon. Some subset of DOC constitutes the precursors of disinfection byproducts for drinking water. BDOC can contribute to undesirable biological regrowth within water distribution systems.
4153:
Miller, W. L., and Moran, M. A. (1997). Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol. Oceanogr. 42, 1317–1324. doi:
3066:
Raymond, P. A., and Spencer, R. G. M. (2015). "Riverine DOM", in Biogeochemistry of Marine Dissolved Organic Matter, eds D. A. Hansell and C. A. Carlson (Amsterdam: Elsevier), 509–533. doi: 10.1016/B978-0-12-405940-5.00011-X
2943:
Veum, K.S.; Goyne, K.W.; Motavalli, P.P.; Udawatta, R.P. 2009. Runoff and dissolved organic carbon loss from a paired-watershed study of three adjacent agricultural Watersheds. Agriculture, Ecosystems & Environment 130:
3865:
Mopper, K., Kieber, D. J., and Stubbins, A. (2015). "Marine photochemistry of organic matter", in Biogeochemistry of Marine Dissolved Organic Matter, eds C. A. Carlson and D. A. Hansell (Amsterdam: Elsevier), 389–450. doi:
2963:
Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., and Cole, J. J. (2007). Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219. doi:
1255:). The inorganic carbon compounds exist in equilibrium that depends on the pH of the water. DIC concentrations in freshwater range from about zero in acidic waters to 60 mg C L in areas with carbonate-rich sediments. 1091:
Dissolved organic matter (DOM) is one of the most active and mobile carbon pools and has an important role in global carbon cycling. In addition, dissolved organic carbon (DOC) affects the soil negative electrical charges
4172:
Miller, W. L., Moran, M. A., Sheldon, W. M., Zepp, R. G., and Opsahl, S. (2002). Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnol. Oceanogr. 47, 343–352. doi:
3875:
Lønborg, C., and Álvarez-Salgado, X. A. (2012). Recycling versus export of bioavailable dissolved organic matter in the coastal ocean and efficiency of the continental shelf pump. Glob. Biogeochem. Cycles 26:GB3018. doi:
4547:
Ferguson, R. L., and Sunda, W. G. (1984). Utilization of amino acids by planktonic marine bacteria: importance of clean technique and low substrate additions. Limnol. Oceanogr. 29, 258–274. doi: 10.4319/lo.1984.29.2.0258
3693:
Martin, P., Cherukuru, N., Tan, A.S., Sanwlani, N., Mujahid, A. and Müller, M.(2018) "Distribution and cycling of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak, Borneo",
1757:. Recalcitrant dissolved organic carbon is evenly spread throughout the water column and consists of high molecular weight and structurally complex compounds that are difficult for marine organisms to use such as the 4085:
Kieber, R. J., Hydro, L. H., and Seaton, P. J. (1997). Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances. Limnol. Oceanogr. 42, 1454–1462. doi:
4065:
Miller, W. L., and Zepp, R. G. (1995). Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance of the oceanic organic carbon cycle. Geophys. Res. Lett. 22, 417–420. doi:
853:(TOC) is an operational classification. Many researchers use the term "dissolved" for compounds that pass through a 0.45 μm filter, but 0.22 μm filters have also been used to remove higher colloidal concentrations. 3820:
Lang, S. Q., Butterfield, D. A., Lilley, M. D., Paul Johnson, H., and Hedges, J. I. (2006). Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842. doi:
3757:
Komada, T., and Reimers, C. E. (2001). Resuspension-induced partitioning of organic carbon between solid and solution phases from a river–ocean transition. Mar. Chem. 76, 155–174. doi: 10.1016/S0304-4203(01)00055-X
2713:
Keil, R. G., and Mayer, L. M. (2014). "Mineral matrices and organic matter", in Treatise on Geochemistry, 2nd Edn, eds H. Holland and K. Turekian (Oxford: Elsevier), 337–359. doi: 10.1016/B978-0-08-095975-7.01024-X
2694:
Bianchi, T. S. (2011). The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl. Acad. Sci. U.S.A. 108, 19473–19481. doi: 10.1073/pnas.1017982108
2303: 1216:; particles > 0.45 μm) and DOC (dissolved organic carbon; particles < 0.45 μm). DOC usually makes up 90% of the total amount of aquatic organic carbon. Its concentration ranges from 0.1 to >300 mg L. 4115:
Benner, R., Benitez-Nelson, B., Kaiser, K., and Amon, R. M. W. (2004). Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31:L05305. doi: 10.1029/2003GL019251
3830:
Kerner, M., Hohenberg, H., Ertl, S., Reckermann, M., and Spitzy, A. (2003). Self-organization of dissolved organic matter tomicelle-like microparticles in river water. Nature 422, 150–154. doi: 10.1038/nature01469
3295:
Karl, D. M., Hebel, D. V., Bjorkman, K., and Letelier, R. M. (1998). The role of dissolved organic matter release in the productivity of the oligotrophic north Pacific Ocean. Limnol. Oceanogr. 43, 1270–1286. doi:
3075:
Dachs, J., and Méjanelle, L. (2010). Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the anthropocene? Estuarines Coasts 33, 1–14. doi: 10.1007/s12237-009-9255-8
2908:
Zech, W.; Senesi, N.; Guggenberger, G.; Kaiser, K.; Lehmann, J.; Miano, T.M.; Miltner, A.; Schroth, G. 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:
3025:
Kawasaki, N., and Benner, R. (2006). Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol. Oceanogr. 51, 2170–2180. doi: 10.4319/lo.2006.51.5.2170
4046:
Jeffrey, W. H., Aas, P., Lyons, M. M., Coffin, R. B., Pledger, R. J., and Mitchell, D. L. (1996). Ambient solar radiation-induced photodamage in marine bacterioplankton. Photochem. Photobiol. 64, 419–427. doi:
4182:
Andrews, S. S., and Zafiriou, O. C. (2000). Photochemical oxygen consumption in marine waters: a Major soink for colored dissolved organic matter? Limnol. Oceanogr. 45, 267–277. doi: 10.4319/lo.2000.45.2.0267
2601:
Vahatalo, A. V., Aarnos, H., and Mantyniemi, S. (2010). Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry 100, 227–240. doi:
3054:
Willey, J. D., Kieber, R. J., Eyman, M. S. Jr., and Brooks Avery, G. (2000). Rainwater dissolved organic carbon concentrations and global flux. Glob. Biogeochem. Cycles 14, 139–148. doi: 10.1029/1999GB900036
4037:
Williamson, C. E., Overholt, E. P., Pilla, R. M., Leach, T. H., Brentrup, J. A., Knoll, L. B., et al. (2015). Ecological consequences of longterm browning in lakes. Sci. Rep. 5:18666. doi: 10.1038/srep18666
3853:
Moran, M. A., and Zepp, R. G. (1997). Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 42, 1307–1316. doi: 10.4319/lo.1997.42.6.1307
3339:
Hygum, B. H., Petersen, J. W., and Søndergaard, M. (1997). Dissolved organic carbon released by zooplankton grazing activity- a high quality substrate pool for bacteria. J. Plankton Res. 19, 97–111. doi:
2991:
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607. doi:
860:
is all substances that pass through a GF/F filter, which has a nominal pore size of approximately 0.7 μm (Whatman glass microfiber filter, 0.6–0.8 μm particle retention). The recommended procedure is the
826:
may be near the top of the range and the middle of oceans may be near the bottom. Occasionally, high concentrations of organic carbon indicate anthropogenic influences, but most DOC originates naturally.
2732:
Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T., et al. (2013). Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6, 530–533. doi:
2722:
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and Galy, V. (2018). Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138–155. doi:
4124:
Obernosterer, I., and Herndl, G. J. (1995). Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N:P ratio. Mar. Ecol. Prog. Ser. 116, 247–257. doi: 10.3354/meps116247
4008:
Sholkovitz, E. R., Boyle, E. A., and Price, N. B. (1978). The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet. Sci. Lett. 40, 130–136. doi: 10.1016/0012-821X(78)90082-1
1444:
during physiological stress situations e.g., nutrient limitation. Other studies have demonstrated DOC production in association with meso- and macro-zooplankton feeding on phytoplankton and bacteria.
3968:
Sholkovitz, E. R. (1976). Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim. Cosmochim. Acta 40, 831–845. doi: 10.1016/0016-7037(76)90035-1
2871:
Thomas, J. D. (1997). The role of dissolved organic matter, particularly free amino acids and humic substances, in freshwater ecosystems. Freshw. Biol. 38, 1–36. doi: 10.1046/j.1365-2427.1997.00206.x
3999:
Powell, R. T., Landing, W. M., and Bauer, J. E. (1996). Colloidal trace metals, organic carbon and nitrogen in a southeastern U.S. estuary. Mar. Chem. 55, 165–176. doi: 10.1016/S0304-4203(96)00054-0
1456:, excretion and defecation which can be important energy sources for microbes. Such DOC production is largest during periods with high food concentration and dominance of large zooplankton species. 2833:
Reitsema, R.E., Meire, P. and Schoelynck, J. (2018) "The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes".
822:, baseflow concentrations of DOC in undisturbed watersheds generally range from approximately 1 to 20 mg/L carbon. Carbon concentrations considerably vary across ecosystems. For example, the 4529:
Hodson, R. E., Maccubbin, A. E., and Pomeroy, L. R. (1981). Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton. Mar. Biol. 64, 43–51. doi: 10.1007/bf00394079
4056:
Rhode, S. C., Pawlowski, M., and Tollrian, R. (2001). The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412, 69–72. doi: 10.1038/35083567
2931:
Kaiser, K.; Guggenberger, G. 2007. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. European Journal of Soil Science 58: 45–59.
2890:
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. (2013). Global carbon dioxide emissions from inland waters. Nature 503, 355–359. doi: 10.1038/nature12760
30:
Net DOC production (NDP) in the upper 74 metres (a) and net DOC export (NDX) below 74 metres (b). At steady state, the global summation of NDX is equal to that of NDP, and is 2.31 ± 0.60 PgC yr.
3739:
Burdige, D. J., and Gardner, K. G. (1998). Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. Mar. Chem. 62, 45–64. doi: 10.1016/S0304-4203(98)00035-8
4556:
Kaiser, K., and Benner, R. (2008). Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol. Oceanogr. 53, 99–112. doi: 10.4319/lo.2008.53.1.0099
3672:
Penhale, P. A., and Smith, W. O. (1977). Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol. Oceanogr. 22, 400–407. doi: 10.4319/lo.1977.22.3.0400
1472:. The biochemical components of bacteria are largely the same as other organisms, but some compounds from the cell wall are unique and are used to trace bacterial derived DOC (e.g., 3314:
Thornton, D. C. O. (2014). Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46. doi: 10.1080/09670262.2013.875596
2220:
Kirchman, David L.; Suzuki, Yoshimi; Garside, Christopher; Ducklow, Hugh W. (15 August 1991). "High turnover rates of dissolved organic carbon during a spring phytoplankton bloom".
701:
nitrogen, oxygen and hydrogen. DOC is a component of DOM and there is typically about twice as much DOM as DOC. Many statements that can be made about DOC apply equally to DOM, and
2973:
Stumm, W., and Morgan, J. J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Environmental Science and Technology. New York: John Wiley & Sons, Inc.
1387:
Dissolved organic carbon (DOC) represents one of the Earth's major carbon pools. It contains a similar amount of carbon as the atmosphere and exceeds the amount of carbon bound in
1168:. The concentration, composition, and bioavailability of DOC are altered during transport through the soil column by various physicochemical and biological processes, including 3368:
Iturriaga, R., and Zsolnay, A. (1981). Transformation of some dissolved organic compounds by a natural heterotrophic population. Mar. Biol. 62, 125–129. doi: 10.1007/BF00388174
2656:
Amon, R. M. W., and Benner, R. (1996). Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41–51. doi: 10.4319/lo.1996.41.1.0041
2665:
Benner, R., and Amon, R. M. (2015). The size-reactivity continuum of major bioelements in the ocean. Ann. Rev. Mar. Sci. 7, 185–205. doi: 10.1146/annurev-marine-010213-135126
2899:
Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165: 277–304.
3990:
Mulholland, P. J. (1981). Formation of Particulate Organic Carbon in Water from a Southeastern Swamp-Stream. Limnol. Oceanogr. 26, 790–795. doi: 10.4319/lo.1981.26.4.0790
3684:
Barrón, C., and Duarte, C. M. (2015). Dissolved organic carbon pools and export from the coastal ocean. Glob. Biogeochem. Cycles 29, 1725–1738. doi: 10.1002/2014GB005056
3663:
Pregnall, A. M. (1983). Release of dissolved organic carbon from the estuarine intertidal macroalga Enteromorpha prolifera. Mar. Biol. 73, 37–42. doi: 10.1007/BF00396283
3839:
Chin, W. C., Orellana, M. V., and Verdugo, P. (1998). Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. doi: 10.1038/35345
2007: 1310:
Simplified view of the main sources (black text; underlined are the allochthonous sources) and sinks (yellow text) of the oceanic dissolved organic carbon (DOC) pool.
2332: 752:
The marine DOC pool is important for the functioning of marine ecosystems because they are at the interface between the chemical and the biological worlds. DOC fuels
3431:
McCarthy, M., Pratum, T., Hedges, J., and Benner, R. (1997). Chemical composition of dissolved organic nitrogen in the ocean. Nature 390, 150–154. doi: 10.1038/36535
1516: 4520:
Stubbins, A., Niggemann, J., and Dittmar, T. (2012). Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9, 1661–1670. doi: 10.5194/bg-9-1661-2012
4538:
Hollibaugh, J. T., and Azam, F. (1983). Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28, 1104–1116. doi: 10.4319/lo.1983.28.6.1104
2563:
Lee, S.A., Kim, T.H. and Kim, G. (2020) "Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes".
2263:
Jaeckle, W.B.; Manahan, D.T. (1989). "Feeding by a "nonfeeding" larva: uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod
4854:
Green, Nelson W.; Perdue, E. Michael; Aiken, George R.; Butler, Kenna D.; Chen, Hongmei; Dittmar, Thorsten; Niggemann, Jutta; Stubbins, Aron (20 April 2014).
1347:– though sometimes photodegradation "transforms" DOC rather than removing it, ending up with higher molecular weight complex molecules), microbial (mainly by 3305:
Wetz, M. S., and Wheeler, P. A. (2007). Release of dissolved organic matter by coastal diatoms. Limnol. Oceanogr. 52, 798–807. doi: 10.4319/lo.2007.52.2.0798
2982:
Madsen, T. V., and Sand-Jensen, K. (1991). Photosynthetic carbon assimilation in aquatic macrophytes. Aquat. Bot. 41, 5–40. doi: 10.1016/0304-3770(91)90037-6
3766:
Dittmar, T., and Koch, B. P. (2006). Thermogenic organic matter dissolved in the abyssal ocean. Mar. Chem. 102, 208–217. doi: 10.1016/j.marchem.2006.04.003
3085:
Hansell, Dennis; Carlson, Craig; Repeta, Daniel; Schlitzer, Reiner (2009). "Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights".
1769:. As a result, the observed vertical distribution consists of high concentrations of labile DOC in the upper water column and low concentrations at depth. 2352:"Relationship Between Heterotrophic Bacteria and Some Physical and Chemical Parameters in a Northern City's Drinking Water Distribution Networks of China" 138: 1512:
Right side: microbial loop, with bacteria using dissolved organic carbon to gain biomass, which then re-enters the classic carbon flow through protists.
1029: 3775:
Dittmar, T., and Paeng, J. (2009). A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2, 175–179. doi: 10.1038/ngeo440
3981:(1989). Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34, 688–699. doi: 10.4319/lo.1989.34.4.0688 1196:. Bioavailable DOM is subjected to microbial decomposition, resulting in a reduction in size and molecular weight. Novel molecules are synthesized by 423: 96: 2124:
Lønborg, C., Carreira, C., Jickells, T. and Álvarez-Salgado, X.A. (2020) "Impacts of global change on ocean dissolved organic carbon (DOC) cycling".
4420:"Dynamics and Characterization of Refractory Dissolved Organic Matter Produced by a Pure Bacterial Culture in an Experimental Predator-Prey System" 1555: 1192:
molecules. The hydrophobicity and retention time of colloids and dissolved molecules in soils are controlled by their size, polarity, charge, and
596: 123: 659: 477: 3349:
Lampert, W. (1978). Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834. doi: 10.4319/lo.1978.23.4.0831
2491:
Tremblay, L. and Benner, R. (2006) "Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus".
2371: 601: 2757:
Gmach, M.R., Cherubin, M.R., Kaiser, K. and Cerri, C.E.P. (2020) "Processes that influence dissolved organic matter in the soil: a review".
1579:
represent the main sites of OM degradation and burial in the ocean, hosting microbes in densities up to 1000 times higher than found in the
1676:
compounds and reducing molecular size, transforming DOC to particulate organic flocs which can sediment and/or be consumed by grazers and
749:. When water originates from land areas with a high proportion of organic soils, these components can drain into rivers and lakes as DOC. 3001:
Luyssaert, S., Abril, G., Andres, R., Bastviken, D., Bellassen, V., Bergamaschi, P., et al. (2012). The European land and inland water CO
2410: 2159:
Monroy, P., Hernández-García, E., Rossi, V. and López, C. (2017) "Modeling the dynamical sinking of biogenic particles in oceanic flow".
1950:"Trends in Levels of Allochthonous Dissolved Organic Carbon in Natural Water: A Review of Potential Mechanisms under a Changing Climate" 66: 3798:(2011). Composition of dissolved organic matter in groundwater. Geochim. Cosmochim. Acta 75, 2752–2761. doi: 10.1016/j.gca.2011.02.020 2795:
Shen, Y., Chapelle, F.H., Strom, E.W. and Benner, R. (2015) "Origins and bioavailability of dissolved organic matter in groundwater".
1384:
and pollens), and also thousands of synthetic human-made organic chemicals that can be measured in the ocean at trace concentrations.
1380:
from plants exported during rain events, emissions of plant materials to the atmosphere and deposition in aquatic environments (e.g.,
3654:
Brilinsky, M. (1977). Release of dissolved organic matter by some marine macrophytes. Mar. Biol. 39, 213–220. doi: 10.1007/BF00390995
4975: 4915: 4583: 3154: 2479: 2420: 2315: 1672:
rapid (minutes) shifts in salinity when fresh and marine waters mix. Flocculation changes the DOC chemical composition, by removing
1569: 2467: 1703:
involves the transformation of CDOM into smaller and less colored molecules (e.g., organic acids), or into inorganic carbon (CO, CO
1510:
Left side: classic description of the carbon flow from photosynthetic algae to grazers and higher trophic levels in the food chain.
3381:
Ogawa, H.; Amagai, Y.; Koike, I.; Kaiser, K.; Benner, R. (2001). "Production of refractory dissolved organic matter by bacteria".
1060: 4970: 4243:"Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age" 1689: 1487: 3449:
Weinbauer, M. A. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181. doi: 10.1016/j.femsre.2003.08.001
1638:. It has been suggested that the combined effects of photochemical and microbial degradation represent the major sinks of DOC. 3462:: impacts on dissolved organic matter production and composition. Biogeochemistry 116, 231–240. doi: 10.1007/s10533-013-9853-1 2194:
Simon, M., Grossart, H., Schweitzer, B. and Ploug, H. (2002) "Microbial ecology of organic aggregates in aquatic ecosystems".
1006: 1923: 2336: 1501: 1980:
Moody, C.S. and Worrall, F. (2017) "Modeling rates of DOC degradation using DOM composition and hydroclimatic variables".
526: 2436: 1894:
Roshan, S. and DeVries, T. (2017) "Efficient dissolved organic carbon production and export in the oligotrophic ocean".
531: 516: 196: 1728: 1304: 4905: 784: 4817:"Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis" 1219:
Likewise, inorganic carbon also consists of a particulate (PIC) and a dissolved phase (DIC). PIC mainly consists of
1140:
are also important processes associated to DOM losses in the soil. In well-drained soils, leached DOC can reach the
865:
technique, which calls for filtration through pre-combusted glass fiber filters, typically the GF/F classification.
1860: 1823: 1568:
and accounts for roughly 10 % of the global land-to-sea dissolved organic carbon (DOC) flux. The rivers carry high
1213: 768: 691: 586: 484: 190: 184: 3231:"Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes" 1392: 1351:), aggregation (primarily when river and seawater mixes) and thermal degradation (in e.g., hydrothermal systems). 591: 211: 4202:
Walker, Brett D.; Beaupré, Steven R.; Guilderson, Thomas P.; McCarthy, Matthew D.; Druffel, Ellen R. M. (2016).
3327:
spring bloom and coupling with the microbial foodweb. Mar. Ecol. Prog. Ser. 81, 269–276. doi: 10.3354/meps081269
652: 4980: 2042:"Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake C addition experiments" 1317: 1041: 566: 494: 489: 472: 317: 76: 1212:
is a mixture of organic compounds originating from detritus or primary producers. It can be divided into POC (
4922:
Stone, Richard (18 June 2010). "Marine Biogeochemistry: The Invisible Hand Behind A Vast Carbon Reservoir".
1381: 1208:
Aquatic carbon occurs in different forms. Firstly, a division is made between organic and inorganic carbon.
1082:                   1078:                   576: 91: 21: 1188:
molecules are preferentially partitioned onto soil minerals and have a longer retention time in soils than
1843: 1839: 1624: 1377: 1316:
Most commonly referred sources of DOC are: atmospheric (e.g., rain and dust), terrestrial (e.g., rivers),
1133: 683: 396: 172: 133: 101: 2040:
Kritzberg, Emma S.; Cole, Jonathan J.; Pace, Michael L.; Granéli, Wilhelm; Bade, Darren L. (March 2004).
741:, while DOC originating outside the body of water is known as allochthonous DOC and typically comes from 3978: 1275: 1072: 645: 632: 581: 312: 4856:"An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter" 3323:
Boekell, W. H. M. V., Hansen, F. C., Riegman, R., and Bak, R. P. M. (1992). Lysis-induced decline of a
4343:
Sharp, Jonathan H. (6 August 1996). "Marine dissolved organic carbon: Are the older values correct?".
2333:"Brown Water: The Ecological and Economic Implications of Increased Dissolved Organic Carbon in Lakes" 873:
Dissolved organic matter can be classified as labile or as recalcitrant, depending on its reactivity.
4933: 4867: 4855: 4710: 4653: 4612: 4431: 4386: 4297: 4250: 4215: 3912: 3795: 3568: 3390: 3242: 3180: 2229: 2056: 1875: 1600:
The main processes that remove DOC from the ocean water column are: (1) Thermal degradation in e.g.,
1279: 862: 850: 713: 508: 410: 166: 71: 4816: 4415: 4284:
Follett, Christopher L.; Repeta, Daniel J.; Rothman, Daniel H.; Xu, Li; Santinelli, Chiara (2014).
1668: 1441: 1396: 1325: 457: 273: 128: 4794: 4679: 4266: 3592: 3414: 3206: 3112: 2546: 2451: 2395: 2377: 2284: 2245: 2080: 1635: 1601: 1408: 1348: 1097: 536: 304: 288: 283: 206: 4566:
Dittmar, Thorsten (2015). "Reasons Behind the Long-Term Stability of Dissolved Organic Matter".
3901:"Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon" 1440:
probably as a mechanism for dissipating cellular energy. Phytoplankton can also produce DOC by
4949: 4924: 4911: 4883: 4836: 4815:
Minor, Elizabeth C.; Swenson, Michael M.; Mattson, Bruce M.; Oyler, Alan R. (21 August 2014).
4786: 4778: 4736: 4671: 4579: 4457: 4325: 4204:"Pacific carbon cycling constrained by organic matter size, age and composition relationships" 3938: 3584: 3406: 3268: 3150: 2636: 2538: 2475: 2416: 2367: 2311: 2072: 1827: 1565: 1420: 1400: 1329: 1321: 467: 246: 81: 4640:
Arrieta, J. M.; Mayol, E.; Hansman, R. L.; Herndl, G. J.; Dittmar, T.; Duarte, C. M. (2015).
3137:
Carlson, Craig A.; Hansell, Dennis A. (2015). "DOM Sources, Sinks, Reactivity, and Budgets".
1464:
Bacteria are often viewed as the main consumers of DOC, but they can also produce DOC during
4941: 4875: 4828: 4770: 4726: 4718: 4661: 4620: 4571: 4501: 4491: 4447: 4439: 4394: 4352: 4315: 4305: 4258: 4254: 4223: 3928: 3920: 3703: 3628: 3576: 3559:
Delong, Edward F.; Karl, David M. (2005). "Genomic perspectives in microbial oceanography".
3530: 3520: 3480: 3398: 3258: 3250: 3196: 3188: 3142: 3102: 3094: 2842: 2804: 2766: 2628: 2572: 2530: 2500: 2359: 2276: 2237: 2203: 2168: 2133: 2064: 2022: 1989: 1961: 1903: 1855: 1700: 1436: 1373: 1364: 1340: 1263: 753: 709: 433: 327: 322: 2041: 1160:
Precipitation and surface water leaches dissolved organic carbon (DOC) from vegetation and
50: 1835: 1831: 1766: 1754: 1576: 1193: 1093: 874: 857: 561: 428: 361: 349: 278: 152: 4371: 3013:
O balance between 2001 and 2005. Biogeosciences 9, 3357–3380. doi: 10.5194/bg-9-3357-2012
2632: 1391:
by more than two-hundred times. DOC is mainly produced in the near-surface layers during
1328:), and benthic fluxes (exchange of DOC across the sediment-water interface but also from 4937: 4871: 4714: 4657: 4616: 4435: 4390: 4301: 4219: 3916: 3572: 3394: 3246: 3184: 2233: 2060: 1587:, but consistent global estimates of the overall input are currently lacking. Globally, 686:
as that which can pass through a filter with a pore size typically between 0.22 and 0.7
4731: 4698: 4575: 4479: 4452: 4419: 4320: 4285: 3933: 3900: 3471:
Hansell DA and Craig AC (2015) "Marine Dissolved Organic Matter and the Carbon Cycle".
3440:
Suttle, C. A. (2005). Viruses in the sea. Nature 437, 356–361. doi: 10.1038/nature04160
3263: 3230: 3146: 1870: 1628: 1453: 1404: 1399:
processes. Other sources of marine DOC are dissolution from particles, terrestrial and
1388: 1267: 1209: 1177: 1165: 1137: 807: 757: 725: 717: 680: 571: 541: 521: 462: 376: 259: 254: 115: 4356: 4964: 4758: 4601:"Growth of Marine Bacteria at Limiting Concentrations of Organic Carbon in Seawater1" 3116: 2026: 1677: 1632: 1616: 1522:
Dissolved organic carbon (DOC) fluxes in the surface, mesopelagic, and interior ocean
1473: 1465: 1368: 1244: 839: 799: 734: 729: 4798: 4699:"A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?" 4683: 3418: 3210: 2550: 2381: 2288: 2084: 4270: 3596: 2249: 1612: 1580: 1344: 1259: 1197: 1181: 1161: 1105: 803: 354: 268: 222: 160: 42: 4945: 4879: 4759:"Molecular characterization of dissolved organic matter (DOM): a critical review" 4697:
Traving, Sachia J.; Thygesen, Uffe H.; Riemann, Lasse; Stedmon, Colin A. (2015).
4478:
Hansell, Dennis A.; Craig A. Carlson; Daniel J. Repeta; Reiner Schlitzer (2009).
2304:"Hydraulic Fracturing Operations: Handbook of Environmental Management Practices" 2770: 1605: 1588: 1584: 1469: 1424: 1232: 1189: 1185: 1145: 1141: 1036: 418: 391: 386: 381: 371: 341: 227: 86: 4262: 3953: 3924: 3717: 3642: 3547: 3494: 3283: 3254: 2856: 2818: 2808: 2780: 2586: 2351: 2182: 2147: 1907: 4774: 4625: 4600: 4480:"Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights" 2619:
Hansell, Dennis A. (2013). "Recalcitrant Dissolved Organic Carbon Fractions".
2504: 2356:
2008 2nd International Conference on Bioinformatics and Biomedical Engineering
2068: 1540: 1536: 1484:) state. The lytic cycle causes disruption of the cell(s) and release of DOC. 1416: 1271: 1173: 1149: 1117: 1113: 1109: 878: 823: 687: 366: 4887: 4782: 4496: 3632: 3509:"Exploring the oceanic microeukaryotic interactome with metaomics approaches" 3098: 2137: 2076: 1783:
Environmental processes controlling the apparent recalcitrance of oceanic DOC
4666: 4641: 4310: 4242: 4203: 3707: 3484: 3402: 2846: 2172: 1865: 1592:
coastal seawater, but reliable global estimates are also currently lacking.
1477: 1220: 1129: 4953: 4840: 4790: 4740: 4675: 4461: 4329: 3942: 3588: 3458:
Lønborg, C., Middelboe, M., and Brussaard, C. P. D. (2013). Viral lysis of
3410: 3272: 2640: 2576: 2542: 2453:
Protocols for the Joint Global Ocean Flux studies (JGOFS) core measurements
2409:
Narayana, P.S.; Varalakshmi, D; Pullaiah, T; Sambasiva Rao, K.R.S. (2018).
2363: 3507:
Krabberød, AK; Bjorbækmo, MFM; Shalchian-Tabrizi, K.; Logares, R. (2017).
4722: 4443: 3229:
Mentges, A.; Feenders, C.; Deutsch, C.; Blasius, B.; Dittmar, T. (2019).
3192: 1993: 1620: 1544: 1412: 1169: 842: 835: 4642:"Dilution limits dissolved organic carbon utilization in the deep ocean" 3580: 3535: 2534: 1200:, and some of these metabolites enter the DOC reservoir in groundwater. 4832: 4399: 3948: 3712: 3637: 3542: 3489: 3278: 2851: 2813: 2775: 2581: 2280: 2177: 2142: 1609: 1124:
During the decomposition of organic material, most carbon is lost as CO
811: 449: 232: 2207: 1822:
DOM is found in low concentrations in nature for direct analysis with
724:
as in the atmosphere and up to 20% of all organic carbon. In general,
4506: 4227: 3525: 3508: 3201: 3107: 2241: 1966: 1949: 1762: 1758: 1749: 1572:(CDOM) concentrations, shown here interfacing with ocean shelf water. 1101: 721: 611: 1727: 1673: 1554: 1515: 1500: 1486: 1481: 819: 783: 767: 746: 738: 606: 20: 3952:
Material was copied from this source, which is available under a
3716:
Material was copied from this source, which is available under a
3641:
Material was copied from this source, which is available under a
3546:
Material was copied from this source, which is available under a
3493:
Material was copied from this source, which is available under a
3282:
Material was copied from this source, which is available under a
2855:
Material was copied from this source, which is available under a
2817:
Material was copied from this source, which is available under a
2779:
Material was copied from this source, which is available under a
2585:
Material was copied from this source, which is available under a
2181:
Material was copied from this source, which is available under a
2146:
Material was copied from this source, which is available under a
1411:(bacteria and archaea) contribute to the DOC pool via release of 2450:
Knap, A. Michaels; A. Close; A. Ducklow; H. Dickson, A. (1994).
1564:
South-East Asia is home to one of the world's largest stores of
1339:
The four main processes removing DOC from the water column are:
1100:
in the soil solution, retention and translocation of nutrients (
1012:
Sources and sinks of dissolved organic carbon in the soil system
742: 1948:
Kenny, Jonathan E.; Bida, Morgan; Pagano, Todd (October 2014).
815: 1320:(e.g., microalgae, cyanobacteria, macrophytes), groundwater, 4372:"A cross-system analysis of labile dissolved organic carbon" 4286:"Hidden cycle of dissolved organic carbon in the deep ocean" 1144:
and release nutrients and pollutants that can contaminate
3894: 3892: 716:
systems and is one of the greatest cycled reservoirs of
4757:
Nebbioso, Antonio; Piccolo, Alessandro (January 2013).
4370:
Sondergaard, Morten; Mathias Middelboe (9 March 1995).
1258:
POC can be degraded to form DOC; DOC can become POC by
790:
Colour differences in DOC collected from coastal waters
3954:
Creative Commons Attribution 4.0 International License
3718:
Creative Commons Attribution 4.0 International License
3643:
Creative Commons Attribution 4.0 International License
3548:
Creative Commons Attribution 4.0 International License
3495:
Creative Commons Attribution 4.0 International License
3284:
Creative Commons Attribution 4.0 International License
2857:
Creative Commons Attribution 4.0 International License
2819:
Creative Commons Attribution 4.0 International License
2781:
Creative Commons Attribution 4.0 International License
2587:
Creative Commons Attribution 4.0 International License
2183:
Creative Commons Attribution 3.0 International License
2148:
Creative Commons Attribution 4.0 International License
856:
A practical definition of dissolved typically used in
4810: 4808: 2008:"Global biogeochemical cycles: progress and problems" 1846:
is considered as the cheapest and easiest technique.
1493:
DOC net production, transport and export in the ocean
3376: 3374: 2515: 2513: 2302:Cheremisinoff, Nicholas; Davletshin, Anton (2015). 1452:Zooplankton-mediated release of DOC occurs through 4907:Biogeochemistry of Marine Dissolved Organic Matter 4568:Biogeochemistry of Marine Dissolved Organic Matter 3964: 3962: 3139:Biogeochemistry of Marine Dissolved Organic Matter 2472:Biogeochemistry of Marine Dissolved Organic Matter 1262:. Inorganic and organic carbon are linked through 794:indicating a low soil-derived carbon contribution. 1561:Peatland river water draining into coastal waters 1507:Simplified microbial food web in the sunlit ocean 690:. The fraction remaining on the filter is called 2350:Wu, Qing; Zhao, Xin-Hua; Wang, Xiao-Dan (2008). 4473: 4471: 4290:Proceedings of the National Academy of Sciences 4241:Khatiwala, S.; Primeau, F.; Holzer, M. (2012). 2829: 2827: 2597: 2595: 1982:Journal of Geophysical Research: Biogeosciences 4821:Environmental Science: Processes & Impacts 3224: 3222: 3220: 3132: 3130: 3128: 3126: 2614: 2612: 2610: 2608: 2437:"Whatman glass microfiber filters, Grade GF/F" 2120: 2118: 2116: 2114: 1918: 1916: 1164:and percolates through the soil column to the 893:DOC pool spectrum from labile to recalcitrant 798:DOC is a basic nutrient, supporting growth of 3680: 3678: 3614: 3612: 3610: 3608: 3606: 2867: 2865: 2112: 2110: 2108: 2106: 2104: 2102: 2100: 2098: 2096: 2094: 1363:In marine systems DOC originates from either 653: 8: 3335: 3333: 2917: 2915: 2753: 2751: 2749: 1071:Inland waters primarily receive carbon from 720:on Earth, accounting for the same amount of 2791: 2789: 2652: 2650: 1733:Change in the composition of DOC with depth 774:Size and classification of marine particles 1623:to particles; (3) abiotic degradation via 1128:to the atmosphere by microbial oxidation. 802:and plays an important role in the global 756:, and is a major component of the Earth's 660: 646: 33: 27:Net ocean DOC production and export fluxes 4752: 4750: 4730: 4665: 4624: 4505: 4495: 4451: 4398: 4319: 4309: 3932: 3534: 3524: 3262: 3200: 3106: 1965: 1376:, terrestrial DOC also includes material 4904:Hansell DA and Carlson CA (Eds.) (2014) 3861: 3859: 3816: 3814: 3062: 3060: 3021: 3019: 2939: 2937: 888: 3849: 3847: 3845: 1887: 1771: 1645: 597:Territorialisation of carbon governance 41: 4763:Analytical and Bioanalytical Chemistry 4703:Applied and Environmental Microbiology 4424:Applied and Environmental Microbiology 2415:. Scientific Publishers. p. 225. 1657:Removal of refractory DOC in the ocean 1035:Origins and bioavailability of DOC in 4414:Gruber, David F.; Jean-Paul Simjouw; 2470:. In: Hansell D and Carlson C (Eds.) 1810:to the DOM pool under consideration. 602:Total Carbon Column Observing Network 7: 2633:10.1146/annurev-marine-120710-100757 1148:, whereas runoff transports DOM and 4247:Earth and Planetary Science Letters 3899:Shen, Yuan; Benner, Ronald (2018). 2006:Hedges, John I. (3 December 1991). 1243:and a negligibly small fraction of 1152:to other areas, rivers, and lakes. 4910:, Second edition, Academic Press. 4576:10.1016/B978-0-12-405940-5.00007-8 4047:10.1111/j.1751-1097.1996.tb03086.x 3886:10.1016/B978-0-12-405940-5.00003-0 3866:10.1016/B978-0-12-405940-5.00008-X 3147:10.1016/B978-0-12-405940-5.00003-0 1053:Freshwater DOC sources and sinks 14: 2161:Nonlinear Processes in Geophysics 1570:coloured dissolved organic matter 1423:, as well as via mortality (e.g. 3947: 3711: 3636: 3541: 3488: 3277: 2850: 2812: 2774: 2723:10.1016/j.orggeochem.2017.09.008 2685:10.1016/B978-012256371-3/50018-4 2580: 2396:"Dissolved Organic Carbon (DOC)" 2176: 2141: 1774: 1648: 1303: 1227:), DIC consists of carbonate (CO 1059: 1028: 1005: 778:Adapted from Simon et al., 2002. 627: 626: 49: 4134:University of Texas at Austin). 4096:10.1016/j.scitotenv.2015.12.047 3785:10.1016/j.scitotenv.2006.05.009 2621:Annual Review of Marine Science 2493:Geochimica et Cosmochimica Acta 2412:Research Methodology in Zoology 4418:; Gary L. Taghon (June 2006). 4379:Marine Ecology Progress Series 1602:submarine hydrothermal systems 1435:Phytoplankton produces DOC by 698:Dissolved organic matter (DOM) 562:Climate reconstruction proxies 1: 4946:10.1126/science.328.5985.1476 4880:10.1016/j.marchem.2014.01.012 4357:10.1016/S0304-4203(96)00075-8 4192:10.1016/j.marchem.2004.02.014 4018:10.1016/S0043-1354(00)00033-6 16:Organic carbon classification 4599:Jannasch, Holger W. (1967). 3359:10.1016/0198-0149(89)90001-0 3173:Geophysical Research Letters 2027:10.1016/0304-4203(92)90096-s 1297:Ocean DOC sources and sinks 728:compounds are the result of 532:Carbonate compensation depth 197:Particulate inorganic carbon 3621:Frontiers in Marine Science 3045:10.1016/j.jembe.2007.05.024 2771:10.1590/1678-992x-2018-0164 2523:Nature Reviews Microbiology 2474:, pages 579–610, Elsevier. 2126:Frontiers in Marine Science 999:Soil DOC sources and sinks 974:tens of thousands of years 4997: 4605:Limnology and Oceanography 4263:10.1016/j.epsl.2012.01.038 3925:10.1038/s41598-018-20857-5 3255:10.1038/s41598-019-54290-z 3035:10.1016/j.ecss.2009.02.026 2835:Frontiers in plant science 2809:10.1038/s41467-019-11394-4 2049:Limnology and Oceanography 1908:10.1038/s41467-017-02227-3 1861:Dissolved inorganic carbon 1818:DOM isolation and analysis 1214:particulate organic carbon 849:The dissolved fraction of 692:particulate organic carbon 587:Carbon capture and storage 191:Particulate organic carbon 185:Dissolved inorganic carbon 4775:10.1007/s00216-012-6363-2 4626:10.4319/lo.1967.12.2.0264 4173:10.4319/lo.2002.47.2.0343 4154:10.4319/lo.1997.42.6.1317 4144:10.1007/s00027-008-8082-5 4086:10.4319/lo.1997.42.6.1454 4076:10.4319/lo.2000.45.6.1254 4028:10.4319/lo.1996.41.5.1024 3821:10.1016/j.gca.2006.04.031 3730:10.4319/lo.2001.46.7.1734 3513:Aquatic Microbial Ecology 3296:10.4319/lo.1998.43.6.1270 2964:10.4319/lo.2007.52.3.1208 2881:10.1007/s10021-006-9013-8 2675:10.4319/lo.1999.44.1.0062 2602:10.1007/s10533-010-9419-4 2505:10.1016/j.gca.2005.08.024 2468:"DOM in the Coastal Zone" 2196:Aquatic microbial ecology 2069:10.4319/lo.2004.49.2.0588 1707:), and nutrient salts (NH 1372:addition to soil derived 1104:), and immobilization of 1068:DOC and POC — DIC and PIC 891: 592:Carbon cycle re-balancing 4976:Water quality indicators 4497:10.5670/oceanog.2009.109 3633:10.3389/fmars.2020.00341 3099:10.5670/oceanog.2009.109 2308:Environmental Management 2138:10.3389/fmars.2020.00466 1042:dissolved organic matter 673:Dissolved organic carbon 567:Carbon-to-nitrogen ratio 527:Carbonate–silicate cycle 495:Carbon dioxide clathrate 490:Clathrate gun hypothesis 318:Net ecosystem production 179:Dissolved organic carbon 4971:Environmental chemistry 4667:10.1126/science.1258955 4311:10.1073/pnas.1407445111 4255:2012E&PSL.325..116K 4106:10.5194/hess-7-390-2003 3708:10.5194/bg-15-6847-2018 3485:10.5670/oceanog.2001.05 3403:10.1126/science.1057627 2847:10.3389/fpls.2018.00629 2331:Elser, Stephen (2014). 2173:10.5194/npg-24-293-2017 1928:Bio-geochemical Methods 1690:colored fraction of DOC 1625:photochemical reactions 1382:volatile organic carbon 1022:Groundwater DOC sources 869:Labile and recalcitrant 577:Deep Carbon Observatory 37:Part of a series on the 3340:10.1093/plankt/19.1.97 2577:10.5194/bg-17-135-2020 2364:10.1109/ICBBE.2008.336 2358:. pp. 4713–4716. 1844:solid-phase extraction 1840:solid-phase extraction 1735: 1573: 1527: 1513: 1498: 1073:terrestrial ecosystems 987:Terrestrial ecosystems 795: 781: 397:Continental shelf pump 173:Total inorganic carbon 139:Satellite measurements 31: 2339:on 25 September 2017. 1896:Nature Communications 1731: 1558: 1519: 1504: 1490: 1282:in aquatic habitats. 1204:Freshwater ecosystems 1132:and landscape slope, 787: 771: 684:operationally defined 679:) is the fraction of 582:Global Carbon Project 313:Ecosystem respiration 24: 4723:10.1128/AEM.02070-15 4570:. pp. 369–388. 4444:10.1128/AEM.02882-05 4249:. 325–326: 116–125. 3977:Tranvik, L. J., and 3876:10.1029/2012GB004353 3794:Longnecker, K., and 3193:10.1002/2016GL071348 2743:10.1002/2014GL062762 1994:10.1002/2016JG003493 1876:Total organic carbon 1460:Bacteria and viruses 1405:microbial production 1280:carbon sequestration 1270:(P) by for instance 851:total organic carbon 834:consists of organic 411:Carbon sequestration 167:Total organic carbon 4938:2010Sci...328.1476S 4932:(5985): 1476–1477. 4872:2014MarCh.161...14G 4715:2015ApEnM..81.7385T 4658:2015Sci...348..331A 4617:1967LimOc..12..264J 4436:2006ApEnM..72.4184G 4416:Sybil P. Seitzinger 4391:1995MEPS..118..283S 4302:2014PNAS..11116706F 4296:(47): 16706–16711. 4220:2016NatGe...9..888W 3917:2018NatSR...8.2542S 3581:10.1038/nature04157 3573:2005Natur.437..336D 3395:2001Sci...292..917O 3247:2019NatSR...917780M 3185:2017GeoRL..44.2407Z 3141:. pp. 65–126. 2535:10.1038/nrmicro2386 2234:1991Natur.352..612K 2061:2004LimOc..49..588K 1669:Thermal degradation 1642:Thermal degradation 1397:zooplankton grazing 1326:zooplankton grazing 1098:acid-base reactions 1080:P = photosynthesis 961:thousands of years 877:DOC is also called 708:DOC is abundant in 458:Atmospheric methane 424:Soil carbon storage 274:Reverse Krebs cycle 129:Ocean acidification 4833:10.1039/C4EM00062E 4400:10.3354/meps118283 3905:Scientific Reports 3460:Micromonas pusilla 3235:Scientific Reports 2281:10.1007/BF00391067 2265:Haliotis rufescens 1736: 1636:marine prokaryotes 1629:biotic degradation 1574: 1528: 1514: 1499: 1421:hydrolytic enzymes 1393:primary production 1330:hydrothermal vents 941:semi-recalcitrant 796: 782: 747:terrestrial plants 537:Great Calcite Belt 485:Aerobic production 305:Carbon respiration 247:Metabolic pathways 207:Primary production 32: 4709:(21): 7385–7393. 4652:(6232): 331–333. 4208:Nature Geoscience 4066:10.1029/94GL03344 3808:10.1002/lno.11028 3796:Kujawinski, E. B. 3567:(7057): 336–342. 3389:(5518): 917–920. 2759:Scientia Agricola 2373:978-1-4244-1747-6 2228:(6336): 612–614. 2208:10.3354/ame028175 1960:(10): 2862–2897. 1566:tropical peatland 1480:) or productive ( 1401:hydrothermal vent 1324:processes (e.g., 1318:primary producers 1290:Marine ecosystems 1264:aquatic organisms 980: 979: 969:highly resistant 779: 670: 669: 468:Methane emissions 124:In the atmosphere 4988: 4957: 4892: 4891: 4860:Marine Chemistry 4851: 4845: 4844: 4827:(9): 2064–2079. 4812: 4803: 4802: 4754: 4745: 4744: 4734: 4694: 4688: 4687: 4669: 4637: 4631: 4630: 4628: 4596: 4590: 4589: 4563: 4557: 4554: 4548: 4545: 4539: 4536: 4530: 4527: 4521: 4518: 4512: 4511: 4509: 4499: 4475: 4466: 4465: 4455: 4430:(6): 4184–4191. 4411: 4405: 4404: 4402: 4376: 4367: 4361: 4360: 4351:(3–4): 265–277. 4345:Marine Chemistry 4340: 4334: 4333: 4323: 4313: 4281: 4275: 4274: 4238: 4232: 4231: 4228:10.1038/ngeo2830 4199: 4193: 4189: 4183: 4180: 4174: 4170: 4164: 4161: 4155: 4151: 4145: 4141: 4135: 4131: 4125: 4122: 4116: 4113: 4107: 4103: 4097: 4093: 4087: 4083: 4077: 4073: 4067: 4063: 4057: 4054: 4048: 4044: 4038: 4035: 4029: 4025: 4019: 4015: 4009: 4006: 4000: 3997: 3991: 3988: 3982: 3975: 3969: 3966: 3957: 3951: 3946: 3936: 3896: 3887: 3883: 3877: 3873: 3867: 3863: 3854: 3851: 3840: 3837: 3831: 3828: 3822: 3818: 3809: 3805: 3799: 3792: 3786: 3782: 3776: 3773: 3767: 3764: 3758: 3755: 3749: 3746: 3740: 3737: 3731: 3727: 3721: 3715: 3702:(2): 6847–6865. 3691: 3685: 3682: 3673: 3670: 3664: 3661: 3655: 3652: 3646: 3640: 3616: 3601: 3600: 3556: 3550: 3545: 3540: 3538: 3528: 3526:10.3354/ame01811 3504: 3498: 3492: 3469: 3463: 3456: 3450: 3447: 3441: 3438: 3432: 3429: 3423: 3422: 3378: 3369: 3366: 3360: 3356: 3350: 3347: 3341: 3337: 3328: 3321: 3315: 3312: 3306: 3303: 3297: 3293: 3287: 3281: 3276: 3266: 3226: 3215: 3214: 3204: 3179:(5): 2407–2415. 3167: 3161: 3160: 3134: 3121: 3120: 3110: 3082: 3076: 3073: 3067: 3064: 3055: 3052: 3046: 3042: 3036: 3032: 3026: 3023: 3014: 2999: 2993: 2992:10.1038/ngeo1830 2989: 2983: 2980: 2974: 2971: 2965: 2961: 2955: 2951: 2945: 2941: 2932: 2929: 2923: 2919: 2910: 2906: 2900: 2897: 2891: 2888: 2882: 2878: 2872: 2869: 2860: 2854: 2831: 2822: 2816: 2793: 2784: 2778: 2755: 2744: 2740: 2734: 2733:10.1038/ngeo1817 2730: 2724: 2720: 2714: 2711: 2705: 2701: 2695: 2692: 2686: 2682: 2676: 2672: 2666: 2663: 2657: 2654: 2645: 2644: 2616: 2603: 2599: 2590: 2584: 2561: 2555: 2554: 2517: 2508: 2489: 2483: 2466:Cauwet G (2002) 2464: 2458: 2457: 2447: 2441: 2440: 2433: 2427: 2426: 2406: 2400: 2399: 2392: 2386: 2385: 2347: 2341: 2340: 2335:. Archived from 2328: 2322: 2321: 2299: 2293: 2292: 2260: 2254: 2253: 2242:10.1038/352612a0 2217: 2211: 2192: 2186: 2180: 2157: 2151: 2145: 2122: 2089: 2088: 2046: 2037: 2031: 2030: 2015:Marine Chemistry 2012: 2003: 1997: 1988:(5): 1175–1191. 1978: 1972: 1971: 1969: 1967:10.3390/w6102862 1945: 1939: 1938: 1936: 1934: 1924:"Organic Carbon" 1920: 1911: 1892: 1856:Blackwater river 1778: 1724:Recalcitrant DOC 1719: 1718: 1701:Photodegradation 1696:Photodegradation 1652: 1577:Marine sediments 1551:Marine sediments 1374:humic substances 1341:photodegradation 1307: 1266:. CO is used in 1083: 1079: 1063: 1032: 1009: 933:weeks to months 889: 858:marine chemistry 777: 754:marine food webs 662: 655: 648: 635: 630: 629: 434:pelagic sediment 328:Soil respiration 323:Photorespiration 53: 34: 4996: 4995: 4991: 4990: 4989: 4987: 4986: 4985: 4981:Water chemistry 4961: 4960: 4921: 4901: 4896: 4895: 4853: 4852: 4848: 4814: 4813: 4806: 4756: 4755: 4748: 4696: 4695: 4691: 4639: 4638: 4634: 4598: 4597: 4593: 4586: 4565: 4564: 4560: 4555: 4551: 4546: 4542: 4537: 4533: 4528: 4524: 4519: 4515: 4477: 4476: 4469: 4413: 4412: 4408: 4374: 4369: 4368: 4364: 4342: 4341: 4337: 4283: 4282: 4278: 4240: 4239: 4235: 4214:(12): 888–891. 4201: 4200: 4196: 4190: 4186: 4181: 4177: 4171: 4167: 4162: 4158: 4152: 4148: 4142: 4138: 4132: 4128: 4123: 4119: 4114: 4110: 4104: 4100: 4094: 4090: 4084: 4080: 4074: 4070: 4064: 4060: 4055: 4051: 4045: 4041: 4036: 4032: 4026: 4022: 4016: 4012: 4007: 4003: 3998: 3994: 3989: 3985: 3979:Sieburth, J. M. 3976: 3972: 3967: 3960: 3898: 3897: 3890: 3884: 3880: 3874: 3870: 3864: 3857: 3852: 3843: 3838: 3834: 3829: 3825: 3819: 3812: 3806: 3802: 3793: 3789: 3783: 3779: 3774: 3770: 3765: 3761: 3756: 3752: 3747: 3743: 3738: 3734: 3728: 3724: 3692: 3688: 3683: 3676: 3671: 3667: 3662: 3658: 3653: 3649: 3617: 3604: 3558: 3557: 3553: 3506: 3505: 3501: 3470: 3466: 3457: 3453: 3448: 3444: 3439: 3435: 3430: 3426: 3380: 3379: 3372: 3367: 3363: 3357: 3353: 3348: 3344: 3338: 3331: 3322: 3318: 3313: 3309: 3304: 3300: 3294: 3290: 3228: 3227: 3218: 3169: 3168: 3164: 3157: 3136: 3135: 3124: 3084: 3083: 3079: 3074: 3070: 3065: 3058: 3053: 3049: 3043: 3039: 3033: 3029: 3024: 3017: 3012: 3008: 3004: 3000: 2996: 2990: 2986: 2981: 2977: 2972: 2968: 2962: 2958: 2952: 2948: 2942: 2935: 2930: 2926: 2920: 2913: 2907: 2903: 2898: 2894: 2889: 2885: 2879: 2875: 2870: 2863: 2832: 2825: 2797:Biogeochemistry 2794: 2787: 2756: 2747: 2741: 2737: 2731: 2727: 2721: 2717: 2712: 2708: 2702: 2698: 2693: 2689: 2683: 2679: 2673: 2669: 2664: 2660: 2655: 2648: 2618: 2617: 2606: 2600: 2593: 2562: 2558: 2519: 2518: 2511: 2490: 2486: 2465: 2461: 2449: 2448: 2444: 2435: 2434: 2430: 2423: 2408: 2407: 2403: 2394: 2393: 2389: 2374: 2349: 2348: 2344: 2330: 2329: 2325: 2318: 2301: 2300: 2296: 2262: 2261: 2257: 2219: 2218: 2214: 2193: 2189: 2158: 2154: 2123: 2092: 2044: 2039: 2038: 2034: 2010: 2005: 2004: 2000: 1979: 1975: 1947: 1946: 1942: 1932: 1930: 1922: 1921: 1914: 1893: 1889: 1884: 1852: 1836:reverse osmosis 1832:ultrafiltration 1820: 1799: 1788: 1785: 1779: 1755:marine bacteria 1745: 1734: 1726: 1717: 1714: 1713: 1712: 1698: 1686: 1664: 1663: 1659: 1653: 1644: 1598: 1563: 1553: 1533: 1524: 1511: 1509: 1495: 1462: 1450: 1433: 1361: 1356: 1355: 1354: 1353: 1352: 1338: 1333: 1315: 1308: 1299: 1298: 1292: 1254: 1250: 1242: 1238: 1230: 1226: 1206: 1194:bioavailability 1158: 1127: 1094:denitrification 1089: 1088: 1087: 1086: 1085: 1084:R = respiration 1081: 1077: 1076: 1070: 1064: 1055: 1054: 1048: 1047: 1046: 1045: 1044: 1039: 1033: 1024: 1023: 1017: 1016: 1015: 1014: 1013: 1010: 1001: 1000: 994: 989: 894: 871: 792: 780: 776: 766: 666: 625: 618: 617: 616: 556: 548: 547: 546: 511: 501: 500: 499: 452: 442: 441: 440: 429:Marine sediment 413: 403: 402: 401: 362:Solubility pump 350:Biological pump 344: 334: 333: 332: 307: 297: 296: 295: 279:Carbon fixation 264: 249: 239: 238: 237: 218: 202: 155: 153:Forms of carbon 145: 144: 143: 118: 108: 107: 106: 61: 29: 17: 12: 11: 5: 4994: 4992: 4984: 4983: 4978: 4973: 4963: 4962: 4959: 4958: 4919: 4900: 4899:External links 4897: 4894: 4893: 4846: 4804: 4769:(1): 109–124. 4746: 4689: 4632: 4611:(2): 264–271. 4591: 4584: 4558: 4549: 4540: 4531: 4522: 4513: 4490:(4): 202–211. 4467: 4406: 4362: 4335: 4276: 4233: 4194: 4184: 4175: 4165: 4156: 4146: 4136: 4126: 4117: 4108: 4098: 4088: 4078: 4068: 4058: 4049: 4039: 4030: 4020: 4010: 4001: 3992: 3983: 3970: 3958: 3888: 3878: 3868: 3855: 3841: 3832: 3823: 3810: 3800: 3787: 3777: 3768: 3759: 3750: 3741: 3732: 3722: 3696:Biogeosciences 3686: 3674: 3665: 3656: 3647: 3602: 3551: 3499: 3464: 3451: 3442: 3433: 3424: 3370: 3361: 3351: 3342: 3329: 3316: 3307: 3298: 3288: 3216: 3162: 3155: 3122: 3093:(4): 202–211. 3077: 3068: 3056: 3047: 3037: 3027: 3015: 3010: 3006: 3002: 2994: 2984: 2975: 2966: 2956: 2946: 2933: 2924: 2911: 2901: 2892: 2883: 2873: 2861: 2823: 2785: 2745: 2735: 2725: 2715: 2706: 2704:Science/AAAS). 2696: 2687: 2677: 2667: 2658: 2646: 2604: 2591: 2565:Biogeosciences 2556: 2529:(8): 593–599. 2509: 2499:(1): 133–146. 2484: 2459: 2442: 2428: 2421: 2401: 2387: 2372: 2342: 2323: 2316: 2294: 2269:Marine Biology 2255: 2212: 2187: 2167:(2): 293–305. 2152: 2090: 2055:(2): 588–596. 2032: 2021:(1–3): 67–93. 1998: 1973: 1940: 1912: 1886: 1885: 1883: 1880: 1879: 1878: 1873: 1871:Microbial loop 1868: 1863: 1858: 1851: 1848: 1819: 1816: 1798: 1795: 1790: 1789: 1781: 1780: 1773: 1744: 1741: 1732: 1725: 1722: 1715: 1697: 1694: 1685: 1682: 1678:filter feeders 1666: 1665: 1660: 1655: 1654: 1647: 1643: 1640: 1617:microparticles 1597: 1594: 1559: 1552: 1549: 1532: 1529: 1520: 1505: 1491: 1461: 1458: 1454:sloppy feeding 1449: 1446: 1432: 1429: 1389:marine biomass 1360: 1357: 1343:(particularly 1334: 1311: 1309: 1302: 1301: 1300: 1296: 1295: 1294: 1293: 1291: 1288: 1274:, produced by 1268:photosynthesis 1252: 1248: 1240: 1236: 1228: 1224: 1210:Organic carbon 1205: 1202: 1178:biodegradation 1166:saturated zone 1157: 1154: 1125: 1066: 1065: 1058: 1057: 1056: 1052: 1051: 1050: 1049: 1034: 1027: 1026: 1025: 1021: 1020: 1019: 1018: 1011: 1004: 1003: 1002: 998: 997: 996: 995: 993: 990: 988: 985: 978: 977: 975: 972: 970: 966: 965: 962: 959: 956: 952: 951: 948: 945: 942: 938: 937: 934: 931: 928: 924: 923: 922:< 200 Tg C 920: 919:hours to days 917: 914: 910: 909: 906: 905:turnover time 903: 900: 896: 895: 892: 870: 867: 808:microbial loop 800:microorganisms 788: 772: 765: 762: 758:carbon cycling 735:aquatic plants 726:organic carbon 718:organic matter 681:organic carbon 668: 667: 665: 664: 657: 650: 642: 639: 638: 637: 636: 620: 619: 615: 614: 609: 604: 599: 594: 589: 584: 579: 574: 572:Deep biosphere 569: 564: 558: 557: 554: 553: 550: 549: 545: 544: 542:Redfield ratio 539: 534: 529: 524: 522:Nutrient cycle 519: 513: 512: 509:Biogeochemical 507: 506: 503: 502: 498: 497: 492: 487: 482: 481: 480: 475: 465: 463:Methanogenesis 460: 454: 453: 448: 447: 444: 443: 439: 438: 437: 436: 426: 421: 415: 414: 409: 408: 405: 404: 400: 399: 394: 389: 384: 379: 377:Microbial loop 374: 369: 364: 359: 358: 357: 346: 345: 340: 339: 336: 335: 331: 330: 325: 320: 315: 309: 308: 303: 302: 299: 298: 294: 293: 292: 291: 286: 276: 271: 265: 263: 262: 260:Chemosynthesis 257: 255:Photosynthesis 251: 250: 245: 244: 241: 240: 236: 235: 230: 225: 219: 217: 216: 215: 214: 203: 201: 200: 194: 188: 182: 176: 170: 164: 157: 156: 151: 150: 147: 146: 142: 141: 136: 131: 126: 120: 119: 116:Carbon dioxide 114: 113: 110: 109: 105: 104: 99: 94: 89: 84: 79: 74: 69: 63: 62: 59: 58: 55: 54: 46: 45: 39: 38: 25: 15: 13: 10: 9: 6: 4: 3: 2: 4993: 4982: 4979: 4977: 4974: 4972: 4969: 4968: 4966: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4927: 4926: 4920: 4917: 4916:9780124071537 4913: 4909: 4908: 4903: 4902: 4898: 4889: 4885: 4881: 4877: 4873: 4869: 4865: 4861: 4857: 4850: 4847: 4842: 4838: 4834: 4830: 4826: 4822: 4818: 4811: 4809: 4805: 4800: 4796: 4792: 4788: 4784: 4780: 4776: 4772: 4768: 4764: 4760: 4753: 4751: 4747: 4742: 4738: 4733: 4728: 4724: 4720: 4716: 4712: 4708: 4704: 4700: 4693: 4690: 4685: 4681: 4677: 4673: 4668: 4663: 4659: 4655: 4651: 4647: 4643: 4636: 4633: 4627: 4622: 4618: 4614: 4610: 4606: 4602: 4595: 4592: 4587: 4585:9780124059405 4581: 4577: 4573: 4569: 4562: 4559: 4553: 4550: 4544: 4541: 4535: 4532: 4526: 4523: 4517: 4514: 4508: 4503: 4498: 4493: 4489: 4485: 4481: 4474: 4472: 4468: 4463: 4459: 4454: 4449: 4445: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4410: 4407: 4401: 4396: 4392: 4388: 4384: 4380: 4373: 4366: 4363: 4358: 4354: 4350: 4346: 4339: 4336: 4331: 4327: 4322: 4317: 4312: 4307: 4303: 4299: 4295: 4291: 4287: 4280: 4277: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4244: 4237: 4234: 4229: 4225: 4221: 4217: 4213: 4209: 4205: 4198: 4195: 4188: 4185: 4179: 4176: 4169: 4166: 4160: 4157: 4150: 4147: 4140: 4137: 4130: 4127: 4121: 4118: 4112: 4109: 4102: 4099: 4092: 4089: 4082: 4079: 4072: 4069: 4062: 4059: 4053: 4050: 4043: 4040: 4034: 4031: 4024: 4021: 4014: 4011: 4005: 4002: 3996: 3993: 3987: 3984: 3980: 3974: 3971: 3965: 3963: 3959: 3955: 3950: 3944: 3940: 3935: 3930: 3926: 3922: 3918: 3914: 3910: 3906: 3902: 3895: 3893: 3889: 3882: 3879: 3872: 3869: 3862: 3860: 3856: 3850: 3848: 3846: 3842: 3836: 3833: 3827: 3824: 3817: 3815: 3811: 3804: 3801: 3797: 3791: 3788: 3781: 3778: 3772: 3769: 3763: 3760: 3754: 3751: 3745: 3742: 3736: 3733: 3726: 3723: 3719: 3714: 3709: 3705: 3701: 3697: 3690: 3687: 3681: 3679: 3675: 3669: 3666: 3660: 3657: 3651: 3648: 3644: 3639: 3634: 3630: 3626: 3622: 3615: 3613: 3611: 3609: 3607: 3603: 3598: 3594: 3590: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3555: 3552: 3549: 3544: 3537: 3532: 3527: 3522: 3518: 3514: 3510: 3503: 3500: 3496: 3491: 3486: 3482: 3478: 3474: 3468: 3465: 3461: 3455: 3452: 3446: 3443: 3437: 3434: 3428: 3425: 3420: 3416: 3412: 3408: 3404: 3400: 3396: 3392: 3388: 3384: 3377: 3375: 3371: 3365: 3362: 3355: 3352: 3346: 3343: 3336: 3334: 3330: 3326: 3320: 3317: 3311: 3308: 3302: 3299: 3292: 3289: 3285: 3280: 3274: 3270: 3265: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3225: 3223: 3221: 3217: 3212: 3208: 3203: 3198: 3194: 3190: 3186: 3182: 3178: 3174: 3166: 3163: 3158: 3156:9780124059405 3152: 3148: 3144: 3140: 3133: 3131: 3129: 3127: 3123: 3118: 3114: 3109: 3104: 3100: 3096: 3092: 3088: 3081: 3078: 3072: 3069: 3063: 3061: 3057: 3051: 3048: 3041: 3038: 3031: 3028: 3022: 3020: 3016: 2998: 2995: 2988: 2985: 2979: 2976: 2970: 2967: 2960: 2957: 2950: 2947: 2940: 2938: 2934: 2928: 2925: 2918: 2916: 2912: 2905: 2902: 2896: 2893: 2887: 2884: 2877: 2874: 2868: 2866: 2862: 2858: 2853: 2848: 2844: 2840: 2836: 2830: 2828: 2824: 2820: 2815: 2810: 2806: 2802: 2798: 2792: 2790: 2786: 2782: 2777: 2772: 2768: 2764: 2760: 2754: 2752: 2750: 2746: 2739: 2736: 2729: 2726: 2719: 2716: 2710: 2707: 2700: 2697: 2691: 2688: 2681: 2678: 2671: 2668: 2662: 2659: 2653: 2651: 2647: 2642: 2638: 2634: 2630: 2626: 2622: 2615: 2613: 2611: 2609: 2605: 2598: 2596: 2592: 2588: 2583: 2578: 2574: 2570: 2566: 2560: 2557: 2552: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2516: 2514: 2510: 2506: 2502: 2498: 2494: 2488: 2485: 2481: 2480:9780080500119 2477: 2473: 2469: 2463: 2460: 2455: 2454: 2446: 2443: 2438: 2432: 2429: 2424: 2422:9789388172400 2418: 2414: 2413: 2405: 2402: 2397: 2391: 2388: 2383: 2379: 2375: 2369: 2365: 2361: 2357: 2353: 2346: 2343: 2338: 2334: 2327: 2324: 2319: 2317:9781119099994 2313: 2309: 2305: 2298: 2295: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2259: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2213: 2209: 2205: 2201: 2197: 2191: 2188: 2184: 2179: 2174: 2170: 2166: 2162: 2156: 2153: 2149: 2144: 2139: 2135: 2131: 2127: 2121: 2119: 2117: 2115: 2113: 2111: 2109: 2107: 2105: 2103: 2101: 2099: 2097: 2095: 2091: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2043: 2036: 2033: 2028: 2024: 2020: 2016: 2009: 2002: 1999: 1995: 1991: 1987: 1983: 1977: 1974: 1968: 1963: 1959: 1955: 1951: 1944: 1941: 1929: 1925: 1919: 1917: 1913: 1909: 1905: 1901: 1897: 1891: 1888: 1881: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1853: 1849: 1847: 1845: 1842:. Among them 1841: 1837: 1833: 1829: 1825: 1817: 1815: 1811: 1807: 1803: 1796: 1794: 1784: 1777: 1772: 1770: 1768: 1764: 1760: 1756: 1751: 1742: 1740: 1730: 1723: 1721: 1710: 1706: 1702: 1695: 1693: 1691: 1683: 1681: 1679: 1675: 1670: 1658: 1651: 1646: 1641: 1639: 1637: 1634: 1633:heterotrophic 1630: 1626: 1622: 1618: 1614: 1611: 1607: 1604:; (2) bubble 1603: 1595: 1593: 1590: 1586: 1582: 1578: 1571: 1567: 1562: 1557: 1550: 1548: 1546: 1542: 1538: 1530: 1523: 1518: 1508: 1503: 1494: 1489: 1485: 1483: 1479: 1475: 1474:peptidoglycan 1471: 1467: 1466:cell division 1459: 1457: 1455: 1447: 1445: 1443: 1438: 1437:extracellular 1431:Phytoplankton 1430: 1428: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1385: 1383: 1379: 1375: 1370: 1369:allochthonous 1366: 1365:autochthonous 1358: 1350: 1346: 1342: 1337: 1331: 1327: 1323: 1319: 1314: 1306: 1289: 1287: 1283: 1281: 1277: 1273: 1269: 1265: 1261: 1256: 1246: 1245:carbonic acid 1234: 1222: 1217: 1215: 1211: 1203: 1201: 1199: 1198:soil microbes 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1155: 1153: 1151: 1147: 1143: 1139: 1135: 1131: 1122: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1074: 1069: 1062: 1043: 1038: 1031: 1008: 991: 986: 984: 976: 973: 971: 968: 967: 963: 960: 957: 955:recalcitrant 954: 953: 949: 946: 943: 940: 939: 935: 932: 929: 926: 925: 921: 918: 915: 912: 911: 907: 904: 901: 899:DOC fraction 898: 897: 890: 887: 883: 880: 876: 868: 866: 864: 859: 854: 852: 847: 844: 841: 840:heterotrophic 837: 833: 832:BDOC fraction 828: 825: 821: 817: 813: 809: 805: 801: 791: 786: 775: 770: 763: 761: 759: 755: 750: 748: 744: 740: 736: 731: 730:decomposition 727: 723: 719: 715: 711: 706: 704: 699: 695: 693: 689: 685: 682: 678: 674: 663: 658: 656: 651: 649: 644: 643: 641: 640: 634: 624: 623: 622: 621: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 559: 552: 551: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 517:Marine cycles 515: 514: 510: 505: 504: 496: 493: 491: 488: 486: 483: 479: 476: 474: 471: 470: 469: 466: 464: 461: 459: 456: 455: 451: 446: 445: 435: 432: 431: 430: 427: 425: 422: 420: 417: 416: 412: 407: 406: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 356: 353: 352: 351: 348: 347: 343: 338: 337: 329: 326: 324: 321: 319: 316: 314: 311: 310: 306: 301: 300: 290: 287: 285: 282: 281: 280: 277: 275: 272: 270: 267: 266: 261: 258: 256: 253: 252: 248: 243: 242: 234: 231: 229: 226: 224: 221: 220: 213: 210: 209: 208: 205: 204: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 158: 154: 149: 148: 140: 137: 135: 132: 130: 127: 125: 122: 121: 117: 112: 111: 103: 100: 98: 97:Boreal forest 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 64: 57: 56: 52: 48: 47: 44: 40: 36: 35: 28: 23: 19: 4929: 4923: 4906: 4863: 4859: 4849: 4824: 4820: 4766: 4762: 4706: 4702: 4692: 4649: 4645: 4635: 4608: 4604: 4594: 4567: 4561: 4552: 4543: 4534: 4525: 4516: 4487: 4484:Oceanography 4483: 4427: 4423: 4409: 4382: 4378: 4365: 4348: 4344: 4338: 4293: 4289: 4279: 4246: 4236: 4211: 4207: 4197: 4187: 4178: 4168: 4159: 4149: 4139: 4129: 4120: 4111: 4101: 4091: 4081: 4071: 4061: 4052: 4042: 4033: 4023: 4013: 4004: 3995: 3986: 3973: 3908: 3904: 3881: 3871: 3835: 3826: 3803: 3790: 3780: 3771: 3762: 3753: 3744: 3735: 3725: 3699: 3695: 3689: 3668: 3659: 3650: 3624: 3620: 3564: 3560: 3554: 3536:10261/153315 3516: 3512: 3502: 3479:(4): 41–49. 3476: 3473:Oceanography 3472: 3467: 3459: 3454: 3445: 3436: 3427: 3386: 3382: 3364: 3354: 3345: 3324: 3319: 3310: 3301: 3291: 3241:(1): 17780. 3238: 3234: 3176: 3172: 3165: 3138: 3090: 3087:Oceanography 3086: 3080: 3071: 3050: 3040: 3030: 2997: 2987: 2978: 2969: 2959: 2949: 2927: 2904: 2895: 2886: 2876: 2838: 2834: 2803:(1): 61–78. 2800: 2796: 2762: 2758: 2738: 2728: 2718: 2709: 2699: 2690: 2680: 2670: 2661: 2624: 2620: 2568: 2564: 2559: 2526: 2522: 2496: 2492: 2487: 2471: 2462: 2452: 2445: 2431: 2411: 2404: 2390: 2355: 2345: 2337:the original 2326: 2307: 2297: 2272: 2268: 2264: 2258: 2225: 2221: 2215: 2199: 2195: 2190: 2164: 2160: 2155: 2129: 2125: 2052: 2048: 2035: 2018: 2014: 2001: 1985: 1981: 1976: 1957: 1953: 1943: 1931:. Retrieved 1927: 1899: 1895: 1890: 1821: 1812: 1808: 1804: 1800: 1791: 1782: 1746: 1743:Distribution 1737: 1708: 1704: 1699: 1687: 1667: 1656: 1613:flocculation 1599: 1589:groundwaters 1585:ocean basins 1581:water column 1575: 1560: 1534: 1526:oceanic DOC. 1521: 1506: 1492: 1463: 1451: 1434: 1386: 1362: 1345:UV-radiation 1335: 1313:Main sources 1312: 1284: 1260:flocculation 1257: 1218: 1207: 1182:biosynthesis 1162:plant litter 1159: 1123: 1106:heavy metals 1090: 1067: 981: 964:~63000 Tg C 927:semi-labile 884: 875:Recalcitrant 872: 855: 848: 831: 829: 806:through the 804:carbon cycle 797: 789: 773: 751: 707: 702: 697: 696: 676: 672: 671: 355:Martin curve 342:Carbon pumps 269:Calvin cycle 223:Black carbon 178: 161:Total carbon 102:Geochemistry 43:Carbon cycle 26: 18: 4385:: 283–294. 3911:(1): 2542. 3325:Phaeocystis 2627:: 421–445. 2202:: 175–211. 1933:27 November 1797:As emergent 1767:humic acids 1606:coagulation 1537:macrophytes 1531:Macrophytes 1470:viral lysis 1448:Zooplankton 1425:viral shunt 1417:exopolymers 1409:Prokaryotes 1403:input, and 1349:prokaryotes 1276:respiration 1272:macrophytes 1233:bicarbonate 1223:(e.g., CaCO 1190:hydrophilic 1186:Hydrophobic 1156:Groundwater 1150:xenobiotics 1146:groundwater 1142:water table 1110:xenobiotics 1037:groundwater 950:~1400 Tg C 688:micrometers 419:Carbon sink 382:Viral shunt 372:Marine snow 228:Blue carbon 82:Deep carbon 77:Atmospheric 67:Terrestrial 4965:Categories 1902:(1): 1–8. 1882:References 1627:; and (4) 1541:macroalgae 1415:material, 1336:Main sinks 1322:food chain 1221:carbonates 1174:desorption 1118:desorption 1114:adsorption 936:~600 Tg C 879:refractory 824:Everglades 714:freshwater 703:vice versa 392:Whale pump 387:Jelly pump 367:Lipid pump 92:Permafrost 60:By regions 4888:0304-4203 4866:: 14–19. 4783:1618-2642 4507:1912/3183 3202:1912/8912 3117:129511530 3108:1912/3183 2275:: 87–94. 2077:0024-3590 1866:Foam line 1478:lysogenic 1442:autolysis 1130:Soil type 1096:process, 836:molecules 4954:20558685 4841:24668418 4799:36714947 4791:22965531 4741:26253668 4684:28514618 4676:25883355 4462:16751530 4330:25385632 3943:29416076 3589:16163343 3519:: 1–12. 3419:36359472 3411:11340202 3273:31780725 3211:55057882 3005:, CO, CH 2944:115–122. 2909:117–161. 2641:22881353 2551:14616875 2543:20601964 2521:ocean". 2456:. JGOFS. 2439:. Merck. 2382:24876521 2289:84541307 2085:15021562 1850:See also 1621:sorption 1545:seagrass 1413:capsular 1170:sorption 1134:leaching 947:decades 902:acronym 843:bacteria 812:wetlands 764:Overview 633:Category 4934:Bibcode 4925:Science 4868:Bibcode 4732:4592861 4711:Bibcode 4654:Bibcode 4646:Science 4613:Bibcode 4453:1489638 4432:Bibcode 4387:Bibcode 4321:4250131 4298:Bibcode 4271:7017553 4251:Bibcode 4216:Bibcode 3934:5803198 3913:Bibcode 3597:4400950 3569:Bibcode 3391:Bibcode 3383:Science 3264:6883037 3243:Bibcode 3181:Bibcode 2841:: 629. 2250:4285758 2230:Bibcode 2132:: 466. 2057:Bibcode 1610:abiotic 1539:(i.e., 1535:Marine 1378:leached 1359:Sources 1102:cations 913:labile 908:amount 694:(POC). 478:Wetland 450:Methane 233:Kerogen 134:Removal 4952:  4914:  4886:  4839:  4797:  4789:  4781:  4739:  4729:  4682:  4674:  4582:  4460:  4450:  4328:  4318:  4269:  3941:  3931:  3627::341. 3595:  3587:  3561:Nature 3417:  3409:  3271:  3261:  3209:  3153:  3115:  2954:32–49. 2922:83–94. 2639:  2549:  2541:  2478:  2419:  2380:  2370:  2314:  2287:  2248:  2222:Nature 2083:  2075:  1838:, and 1763:pollen 1759:lignin 1750:labile 1419:, and 1138:runoff 1136:, and 944:DOCSR 930:DOCSL 820:swamps 722:carbon 710:marine 631:  612:CO2SYS 473:Arctic 212:marine 72:Marine 4795:S2CID 4680:S2CID 4375:(PDF) 4267:S2CID 3593:S2CID 3415:S2CID 3207:S2CID 3113:S2CID 3009:and N 2765:(3). 2571:(1). 2547:S2CID 2378:S2CID 2285:S2CID 2246:S2CID 2081:S2CID 2045:(PDF) 2011:(PDF) 1954:Water 1765:, or 1711:, HPO 1674:humic 1615:into 1596:Sinks 1482:lytic 1239:), CO 1040:DOM: 958:DOCR 916:DOCL 838:that 818:, or 743:soils 739:algae 607:C4MIP 555:Other 199:(PIC) 193:(POC) 187:(DIC) 181:(DOC) 175:(TIC) 169:(TOC) 4950:PMID 4912:ISBN 4884:ISSN 4837:PMID 4787:PMID 4779:ISSN 4737:PMID 4672:PMID 4580:ISBN 4458:PMID 4326:PMID 3939:PMID 3585:PMID 3407:PMID 3269:PMID 3151:ISBN 2637:PMID 2539:PMID 2476:ISBN 2417:ISBN 2368:ISBN 2312:ISBN 2073:ISSN 1935:2018 1688:The 1684:CDOM 1608:and 1543:and 1468:and 1395:and 1235:(HCO 1180:and 1116:and 1108:and 992:Soil 863:HTCO 830:The 816:bogs 712:and 163:(TC) 87:Soil 4942:doi 4930:328 4876:doi 4864:161 4829:doi 4771:doi 4767:405 4727:PMC 4719:doi 4662:doi 4650:348 4621:doi 4572:doi 4502:hdl 4492:doi 4448:PMC 4440:doi 4395:doi 4383:118 4353:doi 4316:PMC 4306:doi 4294:111 4259:doi 4224:doi 3929:PMC 3921:doi 3704:doi 3629:doi 3577:doi 3565:437 3531:hdl 3521:doi 3481:doi 3399:doi 3387:292 3259:PMC 3251:doi 3197:hdl 3189:doi 3143:doi 3103:hdl 3095:doi 2843:doi 2805:doi 2801:122 2767:doi 2629:doi 2573:doi 2531:doi 2501:doi 2360:doi 2277:doi 2273:103 2267:". 2238:doi 2226:352 2204:doi 2169:doi 2134:doi 2065:doi 2023:doi 1990:doi 1986:122 1962:doi 1904:doi 1826:or 1824:NMR 1631:by 1619:or 1367:or 1231:), 745:or 737:or 677:DOC 4967:: 4948:. 4940:. 4928:. 4882:. 4874:. 4862:. 4858:. 4835:. 4825:16 4823:. 4819:. 4807:^ 4793:. 4785:. 4777:. 4765:. 4761:. 4749:^ 4735:. 4725:. 4717:. 4707:81 4705:. 4701:. 4678:. 4670:. 4660:. 4648:. 4644:. 4619:. 4609:12 4607:. 4603:. 4578:. 4500:. 4488:22 4486:. 4482:. 4470:^ 4456:. 4446:. 4438:. 4428:72 4426:. 4422:. 4393:. 4381:. 4377:. 4349:56 4347:. 4324:. 4314:. 4304:. 4292:. 4288:. 4265:. 4257:. 4245:. 4222:. 4210:. 4206:. 3961:^ 3937:. 3927:. 3919:. 3907:. 3903:. 3891:^ 3858:^ 3844:^ 3813:^ 3710:. 3700:15 3698:, 3677:^ 3635:. 3623:, 3605:^ 3591:. 3583:. 3575:. 3563:. 3529:. 3517:79 3515:. 3511:. 3487:. 3477:14 3475:, 3413:. 3405:. 3397:. 3385:. 3373:^ 3332:^ 3267:. 3257:. 3249:. 3237:. 3233:. 3219:^ 3205:. 3195:. 3187:. 3177:44 3175:. 3149:. 3125:^ 3111:. 3101:. 3091:22 3089:. 3059:^ 3018:^ 2936:^ 2914:^ 2864:^ 2849:. 2837:, 2826:^ 2811:. 2799:, 2788:^ 2773:. 2763:77 2761:, 2748:^ 2649:^ 2635:. 2623:. 2607:^ 2594:^ 2579:. 2569:17 2567:, 2545:. 2537:. 2525:. 2512:^ 2497:70 2495:, 2376:. 2366:. 2354:. 2310:. 2306:. 2283:. 2271:. 2244:. 2236:. 2224:. 2200:28 2198:, 2175:. 2165:24 2163:, 2140:. 2128:, 2093:^ 2079:. 2071:. 2063:. 2053:49 2051:. 2047:. 2019:39 2017:. 2013:. 1984:, 1956:. 1952:. 1926:. 1915:^ 1898:, 1834:, 1828:MS 1761:, 1407:. 1332:). 1251:CO 1247:(H 1184:. 1176:, 1172:, 814:, 760:. 705:. 289:C4 284:C3 4956:. 4944:: 4936:: 4918:. 4890:. 4878:: 4870:: 4843:. 4831:: 4801:. 4773:: 4743:. 4721:: 4713:: 4686:. 4664:: 4656:: 4629:. 4623:: 4615:: 4588:. 4574:: 4510:. 4504:: 4494:: 4464:. 4442:: 4434:: 4403:. 4397:: 4389:: 4359:. 4355:: 4332:. 4308:: 4300:: 4273:. 4261:: 4253:: 4230:. 4226:: 4218:: 4212:9 3956:. 3945:. 3923:: 3915:: 3909:8 3720:. 3706:: 3645:. 3631:: 3625:7 3599:. 3579:: 3571:: 3539:. 3533:: 3523:: 3497:. 3483:: 3421:. 3401:: 3393:: 3286:. 3275:. 3253:: 3245:: 3239:9 3213:. 3199:: 3191:: 3183:: 3159:. 3145:: 3119:. 3105:: 3097:: 3011:2 3007:4 3003:2 2859:. 2845:: 2839:9 2821:. 2807:: 2783:. 2769:: 2643:. 2631:: 2625:5 2589:. 2575:: 2553:. 2533:: 2527:8 2507:. 2503:: 2482:. 2425:. 2398:. 2384:. 2362:: 2320:. 2291:. 2279:: 2252:. 2240:: 2232:: 2210:. 2206:: 2185:. 2171:: 2150:. 2136:: 2130:7 2087:. 2067:: 2059:: 2029:. 2025:: 1996:. 1992:: 1970:. 1964:: 1958:6 1937:. 1910:. 1906:: 1900:8 1716:4 1709:4 1705:2 1253:3 1249:2 1241:2 1237:3 1229:3 1225:3 1126:2 675:( 661:e 654:t 647:v

Index


Carbon cycle

Terrestrial
Marine
Atmospheric
Deep carbon
Soil
Permafrost
Boreal forest
Geochemistry
Carbon dioxide
In the atmosphere
Ocean acidification
Removal
Satellite measurements
Forms of carbon
Total carbon
Total organic carbon
Total inorganic carbon
Dissolved organic carbon
Dissolved inorganic carbon
Particulate organic carbon
Particulate inorganic carbon
Primary production
marine
Black carbon
Blue carbon
Kerogen
Metabolic pathways

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.