Knowledge (XXG)

Microbiome in the Drosophila gut

Source 📝

223:
establishes itself inside the gut of the developing larvae, is similar to that of the larvae's mothers. This may further be promoted by the particular life history of the flies. Young adult flies, which harbor fewer bacteria than old flies, proliferate in an environment shaped by the feces of the preceding fly generation, thus allowing them to take up additional bacteria.
343:, because their removal in ageing flies increases longevity. Old flies have a reduced ability to fight infections and this may also relate to the bacterial members of the microbiota. In aged animals, immune responses may over-shoot, possibly harming the host and favoring colonization with pathogens (e.g. 361:
microbiota rely on destructive approaches, that is flies are killed, their gut is extracted and from these the bacteria are isolated and/or analyzed. For an assessment of microbiota dynamics across the lifespan of an individual fly or across development of a fly population, a non-destructive approach
222:
microbiota, as it allows the flies to recycle the bacteria within a fly population at a particular time point and also across generations. Flies seed the embryonic eggshell with feces. Upon hatching, young larvae eat their eggshells and thereby pick up the bacteria. The microbiota, which subsequently
292:
metabolic genes within the midgut, possibly to facilitate digestion of food. Recently, IMD pathway in the anterior midgut region has been proposed to play multi-pronged roles to modulate key metabolic and mechanic functions in the gut. Taken together, it appears that the interaction between host and
146:
The particular species of the host fly has a central influence on the composition and quality of the gut microbiota, even if flies are raised under similar conditions. Nevertheless, the host's diet and nutritional environment also shape the exact composition of the microbiota. For instance the exact
217:
Feeding is a key determinant of the microbiota composition. Not only the diet influences presence and abundance of the bacteria inside the gut, but the bacteria also need to be taken up continuously from the environment to prevail as members of the intestinal flora. Feeding on feces seems to play a
330:
had a shorter lifespan than flies raised under normal conditions. The microbiota influence on longevity seems to be particularly strong early in development. To date, however, the exact mechanisms underlying these effects remain elusive. It is possible that the microbiota-induced proliferation of
284:). This suggests that the immune defence in this area is particularly responsive, possibly because this regions represents the first contact region for newly taken up food, microbiota, and/or intestinal pathogens. In the middle and posterior midgut, other genes such as the receptor 66:, analysis of its microbiome could enhance our understanding of similar processes in other types of host-microbiota interactions, including those involving humans. Microbiota plays key roles in the intestinal immune and metabolic responses via their fermentation product ( 362:
would be favorable. Such an approach was recently developed, focusing on the microbial characterization of fly feces. Fly feces are indeed informative on composition of the gut microbiota, since the diversity of gut bacteria, feces bacteria and bacteria of whole fly of
49:
and known as one of the most investigated organisms worldwide. The microbiota in flies is less complex than that found in humans. It still has an influence on the fitness of the fly, and it affects different life-history characteristics such as lifespan
239:
the composition and action of the microbiome appears to be tightly regulated within compartments, that is different sections of the intestines. This is indicated by the differential expression of genes, especially with a regulatory function, in the
101:(approx. 55%, members of the Proteobacteria). Other less common bacterial species are from the families Leuconostocaceae, Enterococaceae, and Enterobacteriaceae (all with an abundance in between 2–4%). The most common species include 288:, which down-regulates the IMD immune response, are expressed, possibly in order to minimize expression of immune defence against the microbiota. In addition, the microbiota itself seems to control the expression of several 175:
shows higher abundance of Enterobacteriaceae and to a lesser extent of acido-philic bacteria (such as Acetobacteraceae and Lactobacillaceae) if compared to fruit-eating species such as
280:
pathway molecules control immune responses in ectodermal tissue of the anterior gut. Moreover, the anterior midgut is enriched in certain antimicrobial peptides (
151:
of the food can kill certain bacterial species. In general, the type of food used by the fly affects the microbiota composition. Mushroom feeder species like
1316:"Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation" 85:
possesses a comparatively simple gut microbiota, consisting of only few bacterial species, mainly from two bacterial taxonomic groups:
264:
origin. In adult flies the midgut is further divided into five smaller regions. The immune response varies among the gut regions. The
163:
harbour many Lactobacillales and generally maintain high bacterial diversity in their guts. The microbiota of flower feeders such as
268:(IMD) pathway responds to bacterial infections and is activated by certain receptors (e.g., the peptidoglycan receptor protein 304:
microbiota have been implicated in mating success by influencing assortative mating; a phenomenon detected in some studies of
1744:
Erkosar B, Leulier F (November 2014). "Transient adult microbiota, gut homeostasis and longevity: novel insights from the
1203: 444:"Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex" 339:
is important in this context. In contrast, the microbiota seems to have a negative effect on lifespan in older
189: 739:
Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum"
139: 1207: 345: 133: 103: 41: 205: 171: 733:
Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, Matos R, Leulier F (February 2018).
366:
are all strongly correlated. This new approach could be used to demonstrate the known influence of diets.
67: 1865: 121: 1850: 1802: 1660: 1599: 1493: 1434: 579: 396: 199: 183: 109: 1860: 115: 28: 1773: 1625: 1564: 1517: 1396: 1351:"The call of the wild: using non-model systems to investigate microbiome–behaviour relationships" 1290: 1245: 1194: 569: 165: 153: 55: 1855: 1828: 1765: 1732: 1686: 1617: 1556: 1509: 1462: 1388: 1370: 1337: 1282: 1274: 1237: 1219: 1172: 1114: 1059: 1014: 985:"Microbial Control of Intestinal Homeostasis via Enteroendocrine Cell Innate Immune Signaling" 965: 912: 867: 824: 768: 715: 660: 607: 531: 481: 463: 424: 127: 1032:
Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B (August 2012).
383:
Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. (December 2018).
326:
conditions (i.e., without any bacteria in the environment) or cured of their microbiota with
285: 269: 244:
of different parts of the gut. In detail, the gut is compartmentalized into three parts, the
1818: 1810: 1757: 1722: 1676: 1668: 1607: 1548: 1501: 1452: 1442: 1378: 1362: 1327: 1266: 1227: 1211: 1162: 1152: 1104: 1094: 1049: 1004: 996: 955: 947: 902: 859: 814: 806: 758: 750: 705: 695: 650: 642: 597: 587: 521: 471: 455: 414: 404: 265: 177: 98: 94: 277: 1484:
microbiome modulates host developmental and metabolic homeostasis via insulin signaling".
281: 159: 51: 1806: 1664: 1603: 1497: 1438: 1077:
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (November 2010).
863: 583: 400: 1870: 1823: 1786: 1681: 1644: 1383: 1350: 1232: 1185: 1167: 1136: 1109: 1078: 1009: 984: 960: 931: 819: 790: 763: 734: 710: 679: 655: 626: 602: 553: 476: 443: 419: 384: 209:. The microbial load and bacterial composition also vary with the age of the host fly. 90: 46: 24: 1584:"Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in 1457: 1418: 887:"Morphological and molecular characterization of adult midgut compartmentalization in 885:
Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B, Lemaitre B (May 2013).
1844: 1552: 1521: 1400: 1294: 232: 1629: 1249: 1777: 1568: 32: 1761: 1257:
Douglas, Angela E. (2019-08-15). "Simple animal models for microbiome research".
907: 886: 700: 592: 554:"Host species and environmental effects on bacterial communities associated with 459: 1215: 1038:
gut induces immune responses to infectious bacteria and tolerance to microbiota"
336: 327: 1727: 1710: 1427:
Proceedings of the National Academy of Sciences of the United States of America
1145:
Proceedings of the National Academy of Sciences of the United States of America
1087:
Proceedings of the National Academy of Sciences of the United States of America
1054: 1033: 754: 526: 509: 389:
Proceedings of the National Academy of Sciences of the United States of America
1270: 1000: 332: 261: 257: 241: 36: 20: 1582:
Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, et al. (February 2008).
1480:
Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, et al. (November 2011). "
1374: 1278: 1223: 467: 1612: 1583: 1505: 1447: 1157: 1099: 409: 86: 59: 1832: 1769: 1736: 1690: 1621: 1560: 1513: 1466: 1392: 1341: 1332: 1315: 1286: 1241: 1176: 1118: 1063: 1018: 969: 916: 871: 843: 828: 772: 719: 664: 611: 535: 485: 428: 293:
microbiota is precisely regulated across different regions within the gut.
1535:
Ramsden S, Cheung YY, Seroude L (March 2008). "Functional analysis of the
951: 810: 1814: 1672: 1366: 1305: 646: 71: 1349:
Cusick, Jessica A.; Wellman, Cara L.; Demas, Gregory E. (2021-05-14).
1184:
Miguel-Aliaga, Irene; Jasper, Heinrich; Lemaitre, Bruno (2018-10-01).
678:
Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (September 2011).
323: 1785:
Fink C, Staubach F, Kuenzel S, Baines JF, Roeder T (November 2013).
1643:
Fink C, Staubach F, Kuenzel S, Baines JF, Roeder T (November 2013).
256:. While foregut and hindgut are lined with a cuticle formed by the 62:). Considering the comprehensive toolkit available for research in 1301: 574: 442:
Jugder, Bat-Erdene; Kamareddine, Layla; Watnick, Paula I. (2021).
1417:
Brummel T, Ching A, Seroude L, Simon AF, Benzer S (August 2004).
1135:
Leftwich PT, Clarke NV, Hutchings MI, Chapman T (November 2017).
1787:"Noninvasive analysis of microbiome dynamics in the fruit fly 1645:"Noninvasive analysis of microbiome dynamics in the fruit fly 791:"Frequent replenishment sustains the beneficial microbiome of 1711:"Host-intestinal microbiota mutualism: "learning on the fly"" 510:"Host-intestinal microbiota mutualism: "learning on the fly"" 789:
Blum JE, Fischer CN, Miles J, Handelsman J (November 2013).
1709:
Erkosar B, Storelli G, Defaye A, Leulier F (January 2013).
684:
species: ecological context of a host-microbe model system"
552:
Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA (2013).
508:
Erkosar B, Storelli G, Defaye A, Leulier F (January 2013).
148: 357:
Almost all current approaches for the characterization of
97:(abundance of approx. 30%, members of the Bacillota) and 1079:"Commensal bacteria play a role in mating preference of 320:. To date, the mechanisms of this effect remain elusive. 1314:
Leftwich PT, Hutchings MI, Chapman T (December 2018).
1034:"Peptidoglycan sensing by the receptor PGRP-LE in the 272:). These receptors and also other components of the 1186:"Anatomy and Physiology of the Digestive Tract of 558:in the laboratory and in the natural environment" 93:. The most common species belong to the families 930:Broderick NA, Buchon N, Lemaitre B (May 2014). 547: 545: 503: 501: 499: 497: 495: 316:The microbiota seem to affect the lifespan of 39:) living on or in an organism. The fruit fly 8: 385:"Microbiome interactions shape host fitness" 1423:lifespan enhancement by exogenous bacteria" 784: 782: 1822: 1726: 1680: 1611: 1456: 1446: 1382: 1331: 1231: 1166: 1156: 1108: 1098: 1053: 1008: 959: 906: 818: 762: 709: 699: 654: 601: 591: 573: 525: 475: 418: 408: 213:Microbiota transmission and establishment 936:host gene expression and gut morphology" 276:immune system such as Toll receptor and 983:Watnick PI, Jugder BE (February 2020). 375: 1795:Applied and Environmental Microbiology 1653:Applied and Environmental Microbiology 218:central role for establishment of the 16:Microorganisms living in the fruit fly 7: 842:Lemaitre B, Miguel-Aliaga I (2013). 864:10.1146/annurev-genet-111212-133343 680:"Bacterial communities of diverse 353:New methods of microbiome analysis 14: 1361:(10). The Company of Biologists. 625:Broderick NA, Lemaitre B (2012). 54:), resistance against pathogens ( 1553:10.1111/j.1474-9726.2008.00370.x 1539:immune response during aging". 1355:Journal of Experimental Biology 932:"Microbiota-induced changes in 125:, while other species such as 1: 1762:10.1016/j.febslet.2014.06.041 260:epithelium, the midgut is of 23:are the sum of all symbiotic 908:10.1016/j.celrep.2013.04.001 701:10.1371/journal.pgen.1002272 627:"Gut-associated microbes of 593:10.1371/journal.pone.0070749 460:10.1016/j.immuni.2021.05.017 1259:Nature Reviews Microbiology 1216:10.1534/genetics.118.300224 1204:Genetics Society of America 58:) and metabolic processes ( 1887: 1728:10.1016/j.chom.2012.12.004 1055:10.1016/j.chom.2012.06.002 755:10.1016/j.cmet.2017.11.011 527:10.1016/j.chom.2012.12.004 1271:10.1038/s41579-019-0242-1 1001:10.1016/j.tim.2019.09.005 852:Annual Review of Genetics 335:and associated metabolic 322:Fruit flies raised under 844:"The digestive tract of 227:Gut compartmentalization 190:Drosophila sulfurigaster 140:Acetobacter pasteurianus 1789:Drosophila melanogaster 1715:Cell Host & Microbe 1647:Drosophila melanogaster 1613:10.1126/science.1149357 1506:10.1126/science.1212782 1448:10.1073/pnas.0405207101 1188:Drosophila melanogaster 1158:10.1073/pnas.1708345114 1100:10.1073/pnas.1009906107 1081:Drosophila melanogaster 1042:Cell Host & Microbe 934:Drosophila melanogaster 846:Drosophila melanogaster 793:Drosophila melanogaster 629:Drosophila melanogaster 514:Cell Host & Microbe 410:10.1073/pnas.1809349115 364:Drosophila melanogaster 341:Drosophila melanogaster 318:Drosophila melanogaster 237:Drosophila melanogaster 195:Drosophila melanogaster 104:Lactobacillus plantarum 83:Drosophila melanogaster 42:Drosophila melanogaster 1333:10.1002/bies.201800053 989:Trends in Microbiology 346:Gluconobacter morbifer 143:are also often found. 134:Acetobacter tropicalis 68:short chain fatty acid 952:10.1128/mbio.01117-14 811:10.1128/mbio.00860-13 395:(51): E11951–E11960. 206:Drosophila takahashii 172:Drosophila flavohirta 122:Enterococcus faecalis 78:Microbial composition 1815:10.1128/AEM.01903-13 1673:10.1128/AEM.01903-13 312:Effects on longevity 297:Effects on behaviour 200:Drosophila sechellia 184:Drosophila immigrans 110:Lactobacillus brevis 1807:2013ApEnM..79.6984F 1665:2013ApEnM..79.6984F 1604:2008Sci...319..777R 1498:2011Sci...334..670S 1439:2004PNAS..10112974B 1306:0000-0001-5212-6826 1151:(48): 12767–12772. 584:2013PLoSO...870749S 454:(8): 1683–1697.e3. 401:2018PNAS..11511951G 116:Acetobacter pomorum 1367:10.1242/jeb.224485 647:10.4161/gmic.19896 308:, but not others. 166:Drosophila elegans 154:Drosophila falleni 266:immune deficiency 128:Acetobacter aceti 1878: 1836: 1826: 1781: 1740: 1730: 1695: 1694: 1684: 1640: 1634: 1633: 1615: 1598:(5864): 777–82. 1579: 1573: 1572: 1532: 1526: 1525: 1477: 1471: 1470: 1460: 1450: 1414: 1408: 1404: 1386: 1345: 1335: 1326:(12): e1800053. 1309: 1298: 1253: 1235: 1180: 1170: 1160: 1129: 1123: 1122: 1112: 1102: 1074: 1068: 1067: 1057: 1029: 1023: 1022: 1012: 980: 974: 973: 963: 946:(3): e01117-14. 927: 921: 920: 910: 882: 876: 875: 839: 833: 832: 822: 805:(6): e00860-13. 786: 777: 776: 766: 730: 724: 723: 713: 703: 675: 669: 668: 658: 622: 616: 615: 605: 595: 577: 549: 540: 539: 529: 505: 490: 489: 479: 439: 433: 432: 422: 412: 380: 178:Drosophila hydei 99:Acetobacteraceae 95:Lactobacillaceae 1886: 1885: 1881: 1880: 1879: 1877: 1876: 1875: 1841: 1840: 1839: 1784: 1743: 1708: 1704: 1699: 1698: 1642: 1641: 1637: 1581: 1580: 1576: 1534: 1533: 1529: 1492:(6056): 670–4. 1479: 1478: 1474: 1433:(35): 12974–9. 1416: 1415: 1411: 1407: 1348: 1313: 1299: 1265:(12): 764–775. 1256: 1183: 1134: 1130: 1126: 1093:(46): 20051–6. 1076: 1075: 1071: 1031: 1030: 1026: 982: 981: 977: 929: 928: 924: 884: 883: 879: 841: 840: 836: 788: 787: 780: 732: 731: 727: 694:(9): e1002272. 677: 676: 672: 624: 623: 619: 551: 550: 543: 507: 506: 493: 441: 440: 436: 382: 381: 377: 372: 355: 321: 314: 299: 229: 215: 160:Microdrosophila 80: 52:life expectancy 17: 12: 11: 5: 1884: 1882: 1874: 1873: 1868: 1863: 1858: 1853: 1843: 1842: 1838: 1837: 1801:(22): 6984–8. 1782: 1756:(22): 4250–7. 1741: 1705: 1703: 1702:External links 1700: 1697: 1696: 1659:(22): 6984–8. 1635: 1574: 1527: 1472: 1409: 1406: 1405: 1346: 1311: 1254: 1181: 1131: 1124: 1069: 1024: 995:(2): 141–149. 975: 922: 901:(5): 1725–38. 877: 834: 778: 749:(2): 362–377. 725: 670: 617: 541: 491: 434: 374: 373: 371: 368: 354: 351: 313: 310: 298: 295: 228: 225: 214: 211: 91:Pseudomonadota 79: 76: 47:model organism 25:microorganisms 15: 13: 10: 9: 6: 4: 3: 2: 1883: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1848: 1846: 1834: 1830: 1825: 1820: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1790: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1742: 1738: 1734: 1729: 1724: 1720: 1716: 1712: 1707: 1706: 1701: 1692: 1688: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1648: 1639: 1636: 1631: 1627: 1623: 1619: 1614: 1609: 1605: 1601: 1597: 1593: 1589: 1587: 1578: 1575: 1570: 1566: 1562: 1558: 1554: 1550: 1547:(2): 225–36. 1546: 1542: 1538: 1531: 1528: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1468: 1464: 1459: 1454: 1449: 1444: 1440: 1436: 1432: 1428: 1424: 1422: 1413: 1410: 1402: 1398: 1394: 1390: 1385: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1347: 1343: 1339: 1334: 1329: 1325: 1321: 1317: 1312: 1307: 1303: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1255: 1251: 1247: 1243: 1239: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1196: 1191: 1189: 1182: 1178: 1174: 1169: 1164: 1159: 1154: 1150: 1146: 1142: 1140: 1133: 1132: 1128: 1125: 1120: 1116: 1111: 1106: 1101: 1096: 1092: 1088: 1084: 1082: 1073: 1070: 1065: 1061: 1056: 1051: 1048:(2): 153–65. 1047: 1043: 1039: 1037: 1028: 1025: 1020: 1016: 1011: 1006: 1002: 998: 994: 990: 986: 979: 976: 971: 967: 962: 957: 953: 949: 945: 941: 937: 935: 926: 923: 918: 914: 909: 904: 900: 896: 892: 890: 881: 878: 873: 869: 865: 861: 857: 853: 849: 847: 838: 835: 830: 826: 821: 816: 812: 808: 804: 800: 796: 794: 785: 783: 779: 774: 770: 765: 760: 756: 752: 748: 744: 740: 738: 729: 726: 721: 717: 712: 707: 702: 697: 693: 689: 688:PLOS Genetics 685: 683: 674: 671: 666: 662: 657: 652: 648: 644: 641:(4): 307–21. 640: 636: 632: 630: 621: 618: 613: 609: 604: 599: 594: 589: 585: 581: 576: 571: 568:(8): e70749. 567: 563: 559: 557: 548: 546: 542: 537: 533: 528: 523: 519: 515: 511: 504: 502: 500: 498: 496: 492: 487: 483: 478: 473: 469: 465: 461: 457: 453: 449: 445: 438: 435: 430: 426: 421: 416: 411: 406: 402: 398: 394: 390: 386: 379: 376: 369: 367: 365: 360: 352: 350: 348: 347: 342: 338: 334: 329: 325: 319: 311: 309: 307: 303: 296: 294: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 238: 234: 226: 224: 221: 212: 210: 208: 207: 202: 201: 196: 192: 191: 186: 185: 180: 179: 174: 173: 168: 167: 162: 161: 156: 155: 150: 144: 142: 141: 136: 135: 130: 129: 124: 123: 118: 117: 112: 111: 106: 105: 100: 96: 92: 88: 84: 77: 75: 73: 69: 65: 61: 57: 53: 48: 44: 43: 38: 34: 30: 26: 22: 1866:Microbiology 1798: 1794: 1788: 1753: 1750:FEBS Letters 1749: 1745: 1718: 1714: 1656: 1652: 1646: 1638: 1595: 1591: 1585: 1577: 1544: 1540: 1536: 1530: 1489: 1485: 1481: 1475: 1430: 1426: 1420: 1412: 1358: 1354: 1323: 1319: 1262: 1258: 1210:): 357–396. 1199: 1193: 1187: 1148: 1144: 1138: 1127: 1090: 1086: 1080: 1072: 1045: 1041: 1035: 1027: 992: 988: 978: 943: 939: 933: 925: 898: 895:Cell Reports 894: 888: 880: 855: 851: 845: 837: 802: 798: 792: 746: 742: 736: 728: 691: 687: 681: 673: 638: 635:Gut Microbes 634: 628: 620: 565: 561: 555: 517: 513: 451: 447: 437: 392: 388: 378: 363: 358: 356: 344: 340: 317: 315: 305: 301: 300: 289: 273: 253: 249: 245: 236: 230: 219: 216: 204: 198: 194: 188: 182: 176: 170: 164: 158: 152: 145: 138: 132: 126: 120: 114: 108: 102: 82: 81: 63: 40: 18: 1851:Microbiomes 1721:(1): 8–14. 858:: 377–404. 520:(1): 8–14. 337:homeostasis 331:intestinal 328:antibiotics 29:mutualistic 1861:Drosophila 1845:Categories 1746:Drosophila 1586:Drosophila 1541:Aging Cell 1537:Drosophila 1482:Drosophila 1421:Drosophila 1139:Drosophila 1036:Drosophila 889:Drosophila 743:Cell Metab 737:Drosophila 682:Drosophila 556:Drosophila 370:References 359:Drosophila 333:stem cells 306:Drosophila 302:Drosophila 290:Drosophila 274:Drosophila 262:endodermal 258:ectodermal 252:, and the 242:epithelium 220:Drosophila 64:Drosophila 37:pathogenic 21:microbiota 1522:206536986 1401:234497490 1375:0022-0949 1320:BioEssays 1295:199661914 1279:1740-1534 1224:1943-2631 575:1211.3367 468:1074-7613 87:Bacillota 60:digestion 33:commensal 1856:Bacteria 1833:24014528 1770:24983497 1748:model". 1737:23332152 1691:24014528 1630:23798836 1622:18218863 1561:18221416 1514:22053049 1467:15322271 1393:33988717 1342:30311675 1287:31417197 1250:52922044 1242:30287514 1195:Genetics 1177:29109277 1119:21041648 1064:22901536 1019:31699645 970:24865556 917:23643535 872:24016187 829:24194543 773:29290388 720:21966276 665:22572876 612:23967097 562:PLOS ONE 536:23332152 486:34107298 448:Immunity 429:30510004 56:immunity 1824:3811555 1803:Bibcode 1778:5423153 1682:3811555 1661:Bibcode 1600:Bibcode 1592:Science 1569:8510421 1494:Bibcode 1486:Science 1435:Bibcode 1384:8180253 1233:6216580 1168:5715749 1110:2993361 1010:6980660 961:4045073 820:3892787 764:5807057 711:3178584 656:3463489 603:3742674 580:Bibcode 477:8363570 420:6304949 397:Bibcode 286:PGRP-LB 270:PGRP-LC 254:hindgut 246:foregut 231:In the 72:acetate 1831:  1821:  1776:  1768:  1735:  1689:  1679:  1628:  1620:  1567:  1559:  1520:  1512:  1465:  1458:516503 1455:  1399:  1391:  1381:  1373:  1340:  1293:  1285:  1277:  1248:  1240:  1230:  1222:  1175:  1165:  1117:  1107:  1062:  1017:  1007:  968:  958:  915:  870:  827:  817:  771:  761:  718:  708:  663:  653:  610:  600:  534:  484:  474:  466:  427:  417:  324:axenic 250:midgut 248:, the 1871:Feces 1774:S2CID 1626:S2CID 1565:S2CID 1518:S2CID 1397:S2CID 1302:ORCID 1300:(AED 1291:S2CID 1246:S2CID 1202:(2). 570:arXiv 278:dDUOX 45:is a 1829:PMID 1766:PMID 1733:PMID 1687:PMID 1618:PMID 1557:PMID 1510:PMID 1463:PMID 1389:PMID 1371:ISSN 1338:PMID 1283:PMID 1275:ISSN 1238:PMID 1220:ISSN 1173:PMID 1115:PMID 1060:PMID 1015:PMID 966:PMID 940:mBio 913:PMID 868:PMID 825:PMID 799:mBio 769:PMID 716:PMID 661:PMID 608:PMID 532:PMID 482:PMID 464:ISSN 425:PMID 282:AMPs 169:and 157:and 137:and 119:and 89:and 19:The 1819:PMC 1811:doi 1758:doi 1754:588 1723:doi 1677:PMC 1669:doi 1608:doi 1596:319 1549:doi 1502:doi 1490:334 1453:PMC 1443:doi 1431:101 1379:PMC 1363:doi 1359:224 1328:doi 1267:doi 1228:PMC 1212:doi 1208:OUP 1200:210 1163:PMC 1153:doi 1149:114 1105:PMC 1095:doi 1091:107 1050:doi 1005:PMC 997:doi 956:PMC 948:doi 903:doi 860:doi 815:PMC 807:doi 759:PMC 751:doi 706:PMC 696:doi 651:PMC 643:doi 598:PMC 588:doi 522:doi 472:PMC 456:doi 415:PMC 405:doi 393:115 349:). 235:of 233:gut 203:or 70:), 35:or 1847:: 1827:. 1817:. 1809:. 1799:79 1797:. 1793:. 1772:. 1764:. 1752:. 1731:. 1719:13 1717:. 1713:. 1685:. 1675:. 1667:. 1657:79 1655:. 1651:. 1624:. 1616:. 1606:. 1594:. 1590:. 1563:. 1555:. 1543:. 1516:. 1508:. 1500:. 1488:. 1461:. 1451:. 1441:. 1429:. 1425:. 1395:. 1387:. 1377:. 1369:. 1357:. 1353:. 1336:. 1324:40 1322:. 1318:. 1304:: 1289:. 1281:. 1273:. 1263:17 1261:. 1244:. 1236:. 1226:. 1218:. 1198:. 1192:. 1171:. 1161:. 1147:. 1143:. 1113:. 1103:. 1089:. 1085:. 1058:. 1046:12 1044:. 1040:. 1013:. 1003:. 993:28 991:. 987:. 964:. 954:. 942:. 938:. 911:. 897:. 893:. 866:. 856:47 854:. 850:. 823:. 813:. 801:. 797:. 781:^ 767:. 757:. 747:27 745:. 741:. 714:. 704:. 690:. 686:. 659:. 649:. 637:. 633:. 606:. 596:. 586:. 578:. 564:. 560:. 544:^ 530:. 518:13 516:. 512:. 494:^ 480:. 470:. 462:. 452:54 450:. 446:. 423:. 413:. 403:. 391:. 387:. 197:, 193:, 187:, 181:, 149:pH 131:, 113:, 107:, 74:. 31:, 1835:. 1813:: 1805:: 1791:" 1780:. 1760:: 1739:. 1725:: 1693:. 1671:: 1663:: 1649:" 1632:. 1610:: 1602:: 1588:" 1571:. 1551:: 1545:7 1524:. 1504:: 1496:: 1469:. 1445:: 1437:: 1419:" 1403:. 1365:: 1344:. 1330:: 1310:. 1308:) 1297:. 1269:: 1252:. 1214:: 1206:( 1190:" 1179:. 1155:: 1141:" 1137:" 1121:. 1097:: 1083:" 1066:. 1052:: 1021:. 999:: 972:. 950:: 944:5 919:. 905:: 899:3 891:" 874:. 862:: 848:" 831:. 809:: 803:4 795:" 775:. 753:: 735:" 722:. 698:: 692:7 667:. 645:: 639:3 631:" 614:. 590:: 582:: 572:: 566:8 538:. 524:: 488:. 458:: 431:. 407:: 399:: 50:( 27:(

Index

microbiota
microorganisms
mutualistic
commensal
pathogenic
Drosophila melanogaster
model organism
life expectancy
immunity
digestion
short chain fatty acid
acetate
Bacillota
Pseudomonadota
Lactobacillaceae
Acetobacteraceae
Lactobacillus plantarum
Lactobacillus brevis
Acetobacter pomorum
Enterococcus faecalis
Acetobacter aceti
Acetobacter tropicalis
Acetobacter pasteurianus
pH
Drosophila falleni
Microdrosophila
Drosophila elegans
Drosophila flavohirta
Drosophila hydei
Drosophila immigrans

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.