Knowledge (XXG)

Mitotic recombination

Source πŸ“

266:, which plays a role in DNA replication and repair. This mutation leads to high rates of mitotic recombination in mice, and this recombination rate is in turn responsible for causing tumor susceptibility in those mice. At the same time, mitotic recombination may be beneficial: it may play an important role in repairing double stranded breaks, and it may be beneficial to the organism if having homozygous dominant alleles is more functional than the heterozygous state. For use in experimentation with genomes in model organisms such as 90: 115:. If the chromatids containing different alleles line up on the same side of the plate, then the resulting daughter cells will appear heterozygous and be undetectable, despite the crossover event. However, if chromatids containing the same alleles line up on the same side, the daughter cells will be homozygous at that locus. This results in 226:
form a double Holliday junction at a common repeat site and are later sheared in such a way that they switch places. In either model, the chromosomes are not guaranteed to trade evenly, or even to rejoin on opposite sides thus most patterns of cleavage do not result in any crossover event. Uneven
85:
as early as 1925, but it was only in 1936 that Curt Stern explained it as a result of mitotic recombination. Prior to Stern's work, it was hypothesized that twin spotting happened because certain genes had the ability to eliminate the chromosome on which they were located. Later experiments
126:. It has been suggested that recombination takes place during G1, when the DNA is in its 2-strand phase, and replicated during DNA synthesis. It is also possible to have the DNA break leading to mitotic recombination happen during G1, but for the repair to happen after replication. 629:
Haynes, R.H. & Kunz, B.A. (1981). DNA repair and mutagenesis in yeast. In: Strathern, J; Jones, E; Broach J. editors. The Molecular Biology of the Yeast Saccharomyces. Life Cycle and Inheritance. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory,
119:, where one cell presents the homozygous recessive phenotype and the other cell has the homozygous wild type phenotype. If those daughter cells go on to replicate and divide, the twin spots will continue to grow and reflect the differential phenotype. 102:
Mitotic recombination can happen at any locus but is observable in individuals that are heterozygous at a given locus. If a crossover event between non-sister chromatids affects that locus, then both homologous chromosomes will have one
254:, some asexually reproducing fungi and in normal human cells, where the event may allow normally recessive cancer-causing alleles to be expressed and thus predispose the cell in which it occurs to the development of 58:
subsequent to replication (but prior to cell division). Inter-sister homologous recombination is ordinarily genetically silent. During mitosis the incidence of recombination between non-sister homologous
182:
The mechanisms behind mitotic recombination are similar to those behind meiotic recombination. These include sister chromatid exchange and mechanisms related to DNA double strand break repair by
230:
Alternatively, a crossover can occur during DNA repair if, due to extensive damage, the homologous chromosome is chosen to be the template over the sister chromatid. This leads to
234:
since one copy of the allele is copied across from the homologous chromosome and then synthesized into the breach on the damaged chromosome. The net effect of this would be one
1015: 214:
There are several theories on how mitotic crossover occurs. In the simple crossover model, the two homologous chromosomes overlap on or near a common
38:
because it is the only source of recombination within an individual. Additionally, mitotic recombination can result in the expression of recessive
860: 222:, which is then repaired using one of the two strands. This can lead to the two chromatids switching places. In another model, two overlapping 140:, mutations in several genes needed for mitotic (and meiotic) recombination cause increased sensitivity to inactivation by radiation and/or 171: 258:. Alternately, a cell may become a homozygous mutant for a tumor-suppressing gene, leading to the same result. For example, 525:
Lee, Phoebe S.; Greenwell, Patricia W.; Dominska, Margaret; Gawel, Malgorzata; Hamilton, Monica; Petes, Thomas D. (2009).
202:
intermediate or SDSA. In addition, non-homologous mitotic recombination is a possibility and can often be attributed to
34:
in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand
1020: 1010: 915:
Luo, Guangbin; et al. (2000). "Cancer predisposition caused by elevated mitotic recombination in Bloom mice".
203: 646:
2 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast"
215: 183: 136: 51: 187: 268: 159: 77: 86:
uncovered when mitotic recombination occurs in the cell cycle and the mechanisms behind recombination.
958:
Xu, T; GM Rubin (April 1993). "Analysis of genetic mosaics in developing and adult Drosophila tissues".
273: 170:-plus-UV light, suggesting that mitotic recombinational repair is required for removal of the different 23: 89: 657: 476: 891: 259: 219: 163: 72: 993: 940: 975: 932: 883: 822: 769: 734: 685: 612: 558: 527:"A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae" 504: 445: 396: 347: 199: 55: 752:
Helleday, Thomas (2003). "Pathways for Mitotic Homologous Recombination in Mammalian Cells".
967: 924: 875: 812: 804: 761: 724: 716: 675: 665: 602: 592: 548: 538: 494: 484: 435: 427: 386: 378: 337: 329: 367:"Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis" 318:"Loss of Heterozygosity, or: How I learned to Stop Worrying and Love Mitotic Recombination" 195: 112: 35: 841: 661: 480: 729: 704: 607: 580: 553: 526: 440: 415: 391: 366: 342: 317: 231: 680: 641: 499: 464: 93:
Mitotic recombination can result in homozygous expression in a heterozygous individual
1004: 817: 788: 263: 47: 27: 944: 808: 235: 141: 43: 879: 765: 597: 543: 465:"Evidence that Spontaneous Mitotic Recombination Occurs at the Two-Strand Stage" 431: 167: 720: 239: 123: 223: 108: 104: 60: 971: 936: 887: 826: 773: 738: 616: 562: 489: 449: 400: 979: 842:"Double-Strand Break Repair via Double Holliday Junctions (Szostak Model)" 689: 670: 351: 508: 227:
trading introduces many of the deleterious effects of mitotic crossover.
150:
is required for mitotic recombination as well as meiotic recombination.
46:
individual. This expression has important implications for the study of
789:"Multiple Pathways of Recombination Induced by Double-Strand Breaks in 31: 705:"The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast" 255: 39: 382: 111:
of the daughter cells depends on how the chromosomes line up on the
71:
The discovery of mitotic recombination came from the observation of
333: 928: 861:"Pathways for mitotic homologous recombination in mammalian cells" 416:"Somatic Crossing Over and Segregation in Drosophila Melanogaster" 155: 146: 88: 191: 154:
mutant yeast cells have increased sensitivity to killing by
81:. This twin spotting, or mosaic spotting, was observed in 469:
Proceedings of the National Academy of Sciences of the USA
272:, mitotic recombination can be induced via X-ray and the 703:
Game JC, Zamb TJ, Braun RJ, Resnick M, Roth RM (1980).
63:
is only about 1% of that between sister chromatids.
581:"Mitotic Recombination: Why? When? How? Where?" 296:Hartl, Daniel L. and Maryellen Ruvolo (2012). 8: 311: 309: 307: 797:Microbiology and Molecular Biology Reviews 298:Genetics: Analysis of Genetics and Genomes 816: 787:PΓ’ques, FrΓ©dΓ©ric; James E. Haber (1999). 728: 679: 669: 606: 596: 552: 542: 498: 488: 439: 390: 341: 122:Mitotic recombination takes place during 107:containing each genotype. The resulting 574: 572: 291: 289: 190:, synthesis-dependent strand annealing ( 285: 250:Mitotic crossover is known to occur in 463:Esposito, Michael S (September 1978). 50:and lethal recessive alleles. Mitotic 859:Helleday, Thomas (27 November 2003). 520: 518: 7: 316:Tischfield, Jay A. (November 1997). 1016:Modification of genetic information 300:. Burlington: Jones & Bartlett. 322:American Journal of Human Genetics 14: 640:Malone RE, Esposito RE (1980). 579:LaFave, MC; J Sekelsky (2009). 809:10.1128/MMBR.63.2.349-404.1999 1: 365:Moynahan ME, Jasin M (2010). 30:during their preparation for 16:Type of genetic recombination 997:. W. H. Freeman and Company. 880:10.1016/j.mrfmmm.2003.08.013 766:10.1016/j.mrfmmm.2003.08.013 650:Proc. Natl. Acad. Sci. U.S.A 598:10.1371/journal.pgen.1000411 544:10.1371/journal.pgen.1000410 246:Advantages and disadvantages 262:is caused by a mutation in 1037: 204:non-homologous end joining 432:10.1093/genetics/21.6.625 791:Saccharomyces cerevisiae 721:10.1093/genetics/94.1.51 371:Nat. Rev. Mol. Cell Biol 216:Chromosomal fragile site 200:double-Holliday Junction 184:homologous recombination 174:caused by these agents. 137:Saccharomyces cerevisiae 52:homologous recombination 994:Modern Genetic Analysis 991:Griffiths et al. 1999. 269:Drosophila melanogaster 218:(CFS). This leads to a 188:single-strand annealing 160:methyl methanesulfonate 78:Drosophila melanogaster 972:10.1242/dev.117.4.1223 490:10.1073/pnas.75.9.4436 130:Response to DNA damage 94: 54:occurs mainly between 671:10.1073/pnas.77.1.503 274:FLP-FRT recombination 144:. For example, gene 134:In the budding yeast 92: 24:genetic recombination 20:Mitotic recombination 414:Stern, Curt (1936). 662:1980PNAS...77..503M 481:1978PNAS...75.4436E 238:chromosome and one 220:double-strand break 142:genotoxic chemicals 1021:Molecular genetics 1011:Cellular processes 95: 26:that may occur in 966:(4): 1223–12237. 868:Mutation Research 754:Mutation Research 224:sister chromatids 168:8-methoxypsoralen 56:sister chromatids 1028: 984: 983: 955: 949: 948: 912: 906: 905: 903: 902: 896: 890:. Archived from 874:(1–2): 103–115. 865: 856: 850: 849: 837: 831: 830: 820: 784: 778: 777: 760:(1–2): 103–115. 749: 743: 742: 732: 700: 694: 693: 683: 673: 637: 631: 627: 621: 620: 610: 600: 576: 567: 566: 556: 546: 522: 513: 512: 502: 492: 475:(9): 4436–4440. 460: 454: 453: 443: 411: 405: 404: 394: 362: 356: 355: 345: 313: 302: 301: 293: 260:Bloom's syndrome 164:DNA crosslinking 42:in an otherwise 1036: 1035: 1031: 1030: 1029: 1027: 1026: 1025: 1001: 1000: 988: 987: 957: 956: 952: 917:Nature Genetics 914: 913: 909: 900: 898: 894: 863: 858: 857: 853: 839: 838: 834: 786: 785: 781: 751: 750: 746: 702: 701: 697: 639: 638: 634: 628: 624: 591:(3): e1000411. 578: 577: 570: 537:(3): e1000410. 524: 523: 516: 462: 461: 457: 413: 412: 408: 383:10.1038/nrm2851 364: 363: 359: 315: 314: 305: 295: 294: 287: 282: 252:D. melanogaster 248: 212: 196:gene conversion 180: 132: 113:metaphase plate 100: 83:D. melanogaster 69: 36:genetic linkage 17: 12: 11: 5: 1034: 1032: 1024: 1023: 1018: 1013: 1003: 1002: 999: 998: 986: 985: 950: 923:(4): 424–429. 907: 897:on 24 May 2014 851: 832: 803:(2): 349–404. 779: 744: 695: 632: 622: 568: 514: 455: 426:(6): 625–730. 406: 377:(3): 196–207. 357: 334:10.1086/301617 328:(5): 995–999. 303: 284: 283: 281: 278: 247: 244: 232:gene synthesis 211: 208: 179: 176: 131: 128: 99: 96: 68: 65: 15: 13: 10: 9: 6: 4: 3: 2: 1033: 1022: 1019: 1017: 1014: 1012: 1009: 1008: 1006: 996: 995: 990: 989: 981: 977: 973: 969: 965: 961: 954: 951: 946: 942: 938: 934: 930: 929:10.1038/82548 926: 922: 918: 911: 908: 893: 889: 885: 881: 877: 873: 869: 862: 855: 852: 847: 843: 840:Helleday, T. 836: 833: 828: 824: 819: 814: 810: 806: 802: 798: 794: 792: 783: 780: 775: 771: 767: 763: 759: 755: 748: 745: 740: 736: 731: 726: 722: 718: 714: 710: 706: 699: 696: 691: 687: 682: 677: 672: 667: 663: 659: 655: 651: 647: 645: 636: 633: 626: 623: 618: 614: 609: 604: 599: 594: 590: 586: 582: 575: 573: 569: 564: 560: 555: 550: 545: 540: 536: 532: 528: 521: 519: 515: 510: 506: 501: 496: 491: 486: 482: 478: 474: 470: 466: 459: 456: 451: 447: 442: 437: 433: 429: 425: 421: 417: 410: 407: 402: 398: 393: 388: 384: 380: 376: 372: 368: 361: 358: 353: 349: 344: 339: 335: 331: 327: 323: 319: 312: 310: 308: 304: 299: 292: 290: 286: 279: 277: 275: 271: 270: 265: 264:RecQ helicase 261: 257: 253: 245: 243: 241: 237: 233: 228: 225: 221: 217: 209: 207: 205: 201: 197: 193: 189: 185: 177: 175: 173: 169: 165: 161: 157: 153: 149: 148: 143: 139: 138: 129: 127: 125: 120: 118: 117:twin spotting 114: 110: 106: 97: 91: 87: 84: 80: 79: 74: 73:twin spotting 66: 64: 62: 57: 53: 49: 48:tumorigenesis 45: 41: 37: 33: 29: 28:somatic cells 25: 22:is a type of 21: 992: 963: 959: 953: 920: 916: 910: 899:. Retrieved 892:the original 871: 867: 854: 845: 835: 800: 796: 790: 782: 757: 753: 747: 715:(1): 51–68. 712: 708: 698: 656:(1): 503–7. 653: 649: 643: 635: 625: 588: 584: 534: 530: 472: 468: 458: 423: 419: 409: 374: 370: 360: 325: 321: 297: 267: 251: 249: 242:chromosome. 236:heterozygous 229: 213: 181: 151: 145: 135: 133: 121: 116: 101: 82: 76: 70: 44:heterozygous 19: 18: 960:Development 172:DNA damages 1005:Categories 901:2012-12-26 585:PLOS Genet 531:PLOS Genet 280:References 240:homozygous 198:through a 178:Mechanisms 124:interphase 98:Occurrence 61:chromatids 846:Animation 109:phenotype 105:chromatid 67:Discovery 945:21218975 937:11101838 888:14643432 827:10357855 774:14643432 739:17248996 709:Genetics 630:371-414. 617:19282976 563:19282969 450:17246815 420:Genetics 401:20177395 276:system. 186:such as 162:and the 980:8404527 730:1214137 690:6987653 658:Bibcode 608:2648873 554:2646836 477:Bibcode 441:1208727 392:3261768 352:9345110 343:1716040 194:), and 40:alleles 32:mitosis 978:  943:  935:  886:  848:. MIT. 825:  815:  772:  737:  727:  688:  681:348300 678:  615:  605:  561:  551:  509:360220 507:  500:336130 497:  448:  438:  399:  389:  350:  340:  256:cancer 210:Method 166:agent 156:X-rays 941:S2CID 895:(PDF) 864:(PDF) 818:98970 642:"The 152:Rad52 147:rad52 976:PMID 933:PMID 884:PMID 823:PMID 770:PMID 735:PMID 686:PMID 644:RAD5 613:PMID 559:PMID 505:PMID 446:PMID 397:PMID 348:PMID 192:SDSA 968:doi 964:117 925:doi 876:doi 872:532 813:PMC 805:doi 762:doi 758:532 725:PMC 717:doi 676:PMC 666:doi 603:PMC 593:doi 549:PMC 539:doi 495:PMC 485:doi 436:PMC 428:doi 387:PMC 379:doi 338:PMC 330:doi 75:in 1007:: 974:. 962:. 939:. 931:. 921:26 919:. 882:. 870:. 866:. 844:. 821:. 811:. 801:63 799:. 795:. 768:. 756:. 733:. 723:. 713:94 711:. 707:. 684:. 674:. 664:. 654:77 652:. 648:. 611:. 601:. 587:. 583:. 571:^ 557:. 547:. 533:. 529:. 517:^ 503:. 493:. 483:. 473:75 471:. 467:. 444:. 434:. 424:21 422:. 418:. 395:. 385:. 375:11 373:. 369:. 346:. 336:. 326:61 324:. 320:. 306:^ 288:^ 206:. 158:, 982:. 970:: 947:. 927:: 904:. 878:: 829:. 807:: 793:" 776:. 764:: 741:. 719:: 692:. 668:: 660:: 619:. 595:: 589:5 565:. 541:: 535:5 511:. 487:: 479:: 452:. 430:: 403:. 381:: 354:. 332::

Index

genetic recombination
somatic cells
mitosis
genetic linkage
alleles
heterozygous
tumorigenesis
homologous recombination
sister chromatids
chromatids
twin spotting
Drosophila melanogaster

chromatid
phenotype
metaphase plate
interphase
Saccharomyces cerevisiae
genotoxic chemicals
rad52
X-rays
methyl methanesulfonate
DNA crosslinking
8-methoxypsoralen
DNA damages
homologous recombination
single-strand annealing
SDSA
gene conversion
double-Holliday Junction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑