Knowledge (XXG)

Model-based reasoning

Source 📝

46: 927: 69:
The main reason why model-based reasoning is researched since the 1990s is to create different layers for modeling and control of a system. This allows to solve more complex tasks and existing programs can be reused for different problems. The model layer is used to monitor a system and to evaluate
57:
as well are controlled by software. The software is implemented as a normal computer program which consists of if-then-statements, for-loops and subroutines. The task for the programmer is to find an algorithm which is able to control the robot, so that it can do a task. In the history of robotics
294:
There are many other forms of models that may be used. Models might be quantitative (for instance, based on mathematical equations) or qualitative (for instance, based on cause/effect models.) They may include representation of uncertainty. They might represent behavior over time. They might
36:
of the physical world. With this approach, the main focus of application development is developing the model. Then at run time, an "engine" combines this model knowledge with observed data to derive conclusions such as a diagnosis or a prediction.
100:
representative a reactive architecture can overcome the issue. Such a system doesn't need a symbolic model but the actions are connected direct to sensor signals which are grounded in reality.
295:
represent "normal" behavior, or might only represent abnormal behavior, as in the case of the examples above. Model types and usage for model-based reasoning are discussed in.
288: 246: 171: 440: 355: 268: 226: 151: 191: 596: 81:
as a logical formalization for describing a system. From a more practical perspective, a declarative model means, that the system is simulated with a
968: 520: 997: 605: 304: 89:
as input value and determines the output signal. Sometimes, a game engine is described as a prediction engine for simulating the world.
873: 549: 74: 96:
have argued, that symbolic models are separated from underlying physical systems and they fail to control robots. According to
863: 992: 853: 769: 683: 582: 310: 589: 961: 749: 726: 678: 70:
if the actions are correct, while the control layer determines the actions and brings the system into a goal state.
86: 564: 896: 706: 810: 434: 113: 987: 934: 840: 97: 17: 954: 891: 848: 825: 805: 711: 493: 198: 77:
like Prolog and Golog. From a mathematical point of view, a declarative model has much in common with the
774: 655: 630: 349: 123: 414:. Proceedings of the Tenth International Workshop on Principles of Diagnosis (DX’99). pp. 184–192. 202: 906: 886: 716: 625: 315: 498: 66:, which is focused on restricted domains. Expert systems are the precursor to model based systems. 688: 609: 273: 231: 156: 118: 795: 392: 371:"A computational paradigm that integrates rule-based and model-based reasoning in expert systems" 78: 454:
Niederlinski, A (2001). "An expert system shell for uncertain rule-and model based reasoning".
45: 901: 858: 830: 741: 721: 620: 545: 531: 253: 211: 136: 938: 698: 645: 635: 503: 382: 176: 54: 33: 881: 650: 59: 574: 127: 29: 507: 981: 665: 63: 396: 535: 456:
Methods of Artificial Intelligence in Mechanics and Mechanical Engineering AIMech
926: 731: 93: 82: 544:(2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, p. 260, 109: 25: 387: 370: 92:
In 1990, criticism was formulated on model-based reasoning. Pioneers of
815: 759: 790: 471:
Representing actions and state constraints in model-based diagnosis
336:
Watson, David P and Scheidt, David H (2005). "Autonomous systems".
820: 800: 764: 673: 44: 754: 578: 539: 412:
Model-based programming using golog and the situation calculus
569: 318:, solving new problems based on solutions of past problems 942: 521:
Model Based Reasoning for Fault Detection and Diagnosis
484:
Brooks, Rodney A (1990). "Elephants don't play chess".
276: 256: 234: 214: 179: 159: 139: 62:
there were many paradigm developed. One of them are
872: 839: 783: 740: 697: 664: 282: 262: 240: 220: 185: 165: 145: 307:, determining if a system's behavior is correct 201:system knowledge would be represented through 962: 590: 425:Dvorak, Daniel and Kuipers, Benjamin (1989). 8: 439:: CS1 maint: multiple names: authors list ( 375:International Journal of Intelligent Systems 354:: CS1 maint: multiple names: authors list ( 73:Typical techniques to implement a model are 565:Model-based reasoning at Utrecht University 969: 955: 597: 583: 575: 541:Artificial Intelligence: A Modern Approach 497: 427:Model-Based Monitoring of Dynamic Systems 386: 275: 270:patients : Unequal(Pupils(patient)) 255: 233: 213: 178: 158: 138: 328: 432: 347: 7: 923: 921: 305:Diagnosis (artificial intelligence) 941:. You can help Knowledge (XXG) by 338:Johns Hopkins APL Technical Digest 257: 228:patients : Confused(patient) 215: 140: 108:In a model-based reasoning system 14: 570:NASA Intelligent Systems Division 75:declarative programming languages 41:Reasoning with declarative models 925: 153:patients : Stroke(patient) 130:may contain the following rule: 486:Robotics and Autonomous Systems 277: 235: 160: 1: 998:Artificial intelligence stubs 508:10.1016/s0921-8890(05)80025-9 854:Constraint logic programming 770:Knowledge Interchange Format 727:Procedural reasoning systems 684:Expert systems for mortgages 679:Connectionist expert systems 473:. AAAI/IAAI. pp. 43–49. 469:McIlraith, Sheila A (1997). 429:. IJCAI. pp. 1238–1243. 410:McIlraith, Sheila A (1999). 311:Behavior selection algorithm 283:{\displaystyle \rightarrow } 241:{\displaystyle \rightarrow } 166:{\displaystyle \rightarrow } 49:Model based goal based agent 750:Attempto Controlled English 1016: 920: 897:Preference-based planning 616: 606:Knowledge representation 263:{\displaystyle \forall } 221:{\displaystyle \forall } 193:Unequal(Pupils(patient)) 146:{\displaystyle \forall } 124:medical diagnosis system 104:Knowledge representation 85:. A game engine takes a 935:artificial intelligence 841:Constraint satisfaction 492:(1–2). Elsevier: 3–15. 98:behavior-based robotics 18:artificial intelligence 937:-related article is a 892:Partial-order planning 849:Constraint programming 388:10.1002/int.4550050202 369:Newton S. Lee (1990). 284: 264: 242: 222: 187: 186:{\displaystyle \land } 167: 147: 50: 775:Web Ontology Language 717:Deductive classifiers 656:Knowledge engineering 641:Model-based reasoning 631:Commonsense reasoning 381:(2). Wiley: 135–151. 285: 265: 243: 223: 188: 168: 148: 48: 22:model-based reasoning 907:State space planning 887:Multi-agent planning 689:Legal expert systems 626:Case-based reasoning 316:Case-based reasoning 274: 254: 232: 212: 199:diagnostic reasoning 177: 157: 137: 122:. For example, in a 993:Automated reasoning 874:Automated planning 742:Ontology languages 712:Constraint solvers 532:Russell, Stuart J. 280: 260: 238: 218: 183: 173:Confused(patient) 163: 143: 79:situation calculus 51: 950: 949: 915: 914: 902:Reactive planning 859:Local consistency 699:Reasoning systems 646:Inference engines 621:Backward chaining 197:In contrast in a 55:dynamical systems 1005: 971: 964: 957: 929: 922: 651:Proof assistants 636:Forward chaining 599: 592: 585: 576: 554: 523: 518: 512: 511: 501: 481: 475: 474: 466: 460: 459: 451: 445: 444: 438: 430: 422: 416: 415: 407: 401: 400: 390: 366: 360: 359: 353: 345: 333: 289: 287: 286: 281: 269: 267: 266: 261: 247: 245: 244: 239: 227: 225: 224: 219: 203:diagnostic rules 192: 190: 189: 184: 172: 170: 169: 164: 152: 150: 149: 144: 1015: 1014: 1008: 1007: 1006: 1004: 1003: 1002: 978: 977: 976: 975: 918: 916: 911: 882:Motion planning 868: 835: 784:Theorem provers 779: 736: 707:Theorem provers 693: 660: 612: 603: 561: 552: 530: 527: 526: 519: 515: 499:10.1.1.588.7539 483: 482: 478: 468: 467: 463: 453: 452: 448: 435:cite conference 431: 424: 423: 419: 409: 408: 404: 368: 367: 363: 346: 335: 334: 330: 325: 301: 290:Stroke(patient) 272: 271: 252: 251: 248:Stroke(patient) 230: 229: 210: 209: 175: 174: 155: 154: 135: 134: 106: 60:optimal control 43: 28:method used in 12: 11: 5: 1013: 1012: 1009: 1001: 1000: 995: 990: 988:Expert systems 980: 979: 974: 973: 966: 959: 951: 948: 947: 930: 913: 912: 910: 909: 904: 899: 894: 889: 884: 878: 876: 870: 869: 867: 866: 861: 856: 851: 845: 843: 837: 836: 834: 833: 828: 823: 818: 813: 808: 803: 798: 793: 787: 785: 781: 780: 778: 777: 772: 767: 762: 757: 752: 746: 744: 738: 737: 735: 734: 729: 724: 722:Logic programs 719: 714: 709: 703: 701: 695: 694: 692: 691: 686: 681: 676: 670: 668: 666:Expert systems 662: 661: 659: 658: 653: 648: 643: 638: 633: 628: 623: 617: 614: 613: 604: 602: 601: 594: 587: 579: 573: 572: 567: 560: 559:External links 557: 556: 555: 550: 525: 524: 513: 476: 461: 446: 417: 402: 361: 327: 326: 324: 321: 320: 319: 313: 308: 300: 297: 292: 291: 279: 259: 249: 237: 217: 195: 194: 182: 162: 142: 128:knowledge base 105: 102: 64:expert systems 42: 39: 30:expert systems 13: 10: 9: 6: 4: 3: 2: 1011: 1010: 999: 996: 994: 991: 989: 986: 985: 983: 972: 967: 965: 960: 958: 953: 952: 946: 944: 940: 936: 931: 928: 924: 919: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 879: 877: 875: 871: 865: 862: 860: 857: 855: 852: 850: 847: 846: 844: 842: 838: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 788: 786: 782: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 747: 745: 743: 739: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 704: 702: 700: 696: 690: 687: 685: 682: 680: 677: 675: 672: 671: 669: 667: 663: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 618: 615: 611: 607: 600: 595: 593: 588: 586: 581: 580: 577: 571: 568: 566: 563: 562: 558: 553: 551:0-13-790395-2 547: 543: 542: 537: 536:Norvig, Peter 533: 529: 528: 522: 517: 514: 509: 505: 500: 495: 491: 487: 480: 477: 472: 465: 462: 457: 450: 447: 442: 436: 428: 421: 418: 413: 406: 403: 398: 394: 389: 384: 380: 376: 372: 365: 362: 357: 351: 344:(4): 368–376. 343: 339: 332: 329: 322: 317: 314: 312: 309: 306: 303: 302: 298: 296: 250: 208: 207: 206: 204: 200: 180: 133: 132: 131: 129: 125: 121: 120: 115: 111: 103: 101: 99: 95: 90: 88: 84: 80: 76: 71: 67: 65: 61: 56: 47: 40: 38: 35: 31: 27: 24:refers to an 23: 19: 943:expanding it 932: 917: 732:Rule engines 640: 540: 516: 489: 485: 479: 470: 464: 455: 449: 426: 420: 411: 405: 378: 374: 364: 350:cite journal 341: 337: 331: 293: 196: 119:causal rules 117: 107: 91: 72: 68: 53:A robot and 52: 21: 15: 864:SMT solvers 114:represented 94:Nouvelle AI 83:game engine 32:based on a 982:Categories 323:References 610:reasoning 494:CiteSeerX 278:→ 258:∀ 236:→ 216:∀ 205:such as: 181:∧ 161:→ 141:∀ 110:knowledge 26:inference 538:(2003), 397:26907392 299:See also 816:Prover9 811:Paradox 760:F-logic 112:can be 87:feature 791:CARINE 548:  496:  395:  116:using 933:This 821:SPASS 806:Otter 801:Nqthm 765:FO(.) 674:CLIPS 393:S2CID 34:model 939:stub 755:CycL 608:and 546:ISBN 441:link 356:link 126:the 58:and 826:TPS 504:doi 383:doi 16:In 984:: 831:Z3 534:; 502:. 488:. 437:}} 433:{{ 391:. 377:. 373:. 352:}} 348:{{ 342:26 340:. 20:, 970:e 963:t 956:v 945:. 796:E 598:e 591:t 584:v 510:. 506:: 490:6 458:. 443:) 399:. 385:: 379:5 358:)

Index

artificial intelligence
inference
expert systems
model

dynamical systems
optimal control
expert systems
declarative programming languages
situation calculus
game engine
feature
Nouvelle AI
behavior-based robotics
knowledge
represented
causal rules
medical diagnosis system
knowledge base
diagnostic reasoning
diagnostic rules
Diagnosis (artificial intelligence)
Behavior selection algorithm
Case-based reasoning
cite journal
link
"A computational paradigm that integrates rule-based and model-based reasoning in expert systems"
doi
10.1002/int.4550050202
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.