Knowledge (XXG)

Molecular diffusion

Source 📝

449:
found remote from their original positions. If the partition is removed, some molecules of A move towards the region occupied by B, their number depends on the number of molecules at the region considered. Concurrently, molecules of B diffuse toward regimens formerly occupied by pure A. Finally, complete mixing occurs. Before this point in time, a gradual variation in the concentration of A occurs along an axis, designated x, which joins the original compartments. This variation, expressed mathematically as -dC
400:, which is the diffusion of a single particle, interactions between particles may have to be considered, unless the particles form an ideal mix with their solvent (ideal mix conditions correspond to the case where the interactions between the solvent and particles are identical to the interactions between particles and the interactions between solvent molecules; in this case, the particles do not interact when inside the solvent). 274: 282: 201: 354: 78:, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a 423:
in the particle diffusion equation becomes dependent of concentration. For an attractive interaction between particles, the diffusion coefficient tends to decrease as concentration increases. For a repulsive interaction between particles, the diffusion coefficient tends to increase as concentration
365:
system (i.e. it is not at rest yet). Many results in classical thermodynamics are not easily applied to non-equilibrium systems. However, there sometimes occur so-called quasi-steady states, where the diffusion process does not change in time, where classical results may locally apply. As the name
448:
Transport of material in stagnant fluid or across streamlines of a fluid in a laminar flow occurs by molecular diffusion. Two adjacent compartments separated by a partition, containing pure gases A or B may be envisaged. Random movement of all molecules occurs so that after a period molecules are
328:
experiment this technique uses the nuclear spin precession phase, allowing to distinguish chemically and physically completely identical species e.g. in the liquid phase, as for example water molecules within liquid water. The self-diffusion coefficient of water has been experimentally determined
377:
of a system, i.e. diffusion is a spontaneous and irreversible process. Particles can spread out by diffusion, but will not spontaneously re-order themselves (absent changes to the system, assuming no creation of new chemical bonds, and absent external forces acting on the particle).
335:
occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation. This diffusion is always a non-equilibrium process, increases the system entropy, and brings the system closer to
73:
of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of
27: 552:, is usually expressed as the number of moles diffusing across unit area in unit time. As with the basic equation of heat transfer, this indicates that the rate of force is directly proportional to the driving force, which is the concentration gradient. 1088: 369:
Non-equilibrium fluid systems can be successfully modeled with Landau-Lifshitz fluctuating hydrodynamics. In this theoretical framework, diffusion is due to fluctuations whose dimensions range from the molecular scale to the macroscopic scale.
344:
for these two types of diffusion are generally different because the diffusion coefficient for chemical diffusion is binary and it includes the effects due to the correlation of the movement of the different diffusing species.
1246: 329:
with high accuracy and thus serves often as a reference value for measurements on other liquids. The self-diffusion coefficient of neat water is: 2.299·10 m·s at 25 °C and 1.261·10 m·s at 4 °C.
932: 1415:
Holz, Manfred; Heil, Stefan R.; Sacco, Antonio (2000). "Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements".
46:
With an enormous number of solute molecules, all randomness is gone: The solute appears to move smoothly and systematically from high-concentration areas to low-concentration areas, following Fick's laws.
703: 415:
in the particle diffusion equation is independent of particle concentration. In other cases, resulting interactions between particles within the solvent will account for the following effects:
542: 457:
is the concentration of A. The negative sign arises because the concentration of A decreases as the distance x increases. Similarly, the variation in the concentration of gas B is -dC
548:
where D is the diffusivity of A through B, proportional to the average molecular velocity and, therefore dependent on the temperature and pressure of gases. The rate of diffusion N
947: 759: 838: 612: 300:, which is a spontaneous mixing of molecules taking place in the absence of concentration (or chemical potential) gradient. This type of diffusion can be followed using 571:
If no bulk flow occurs in an element of length dx, the rates of diffusion of two ideal gases (of similar molar volume) A and B must be equal and opposite, that is
34:
molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed, and the solute diffuses to fill the whole container.
465:, depend on concentration gradient and the average velocity with which the molecules of A moves in the x direction. This relationship is expressed by 1137: 82:
with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.
1528: 1533: 555:
This basic equation applies to a number of situations. Restricting discussion exclusively to steady state conditions, in which neither dC
1538: 148:
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion:
1578: 849: 1543: 1459:
Brogioli, Doriano; Vailati, Alberto (2000-12-22). "Diffusive mass transfer by nonequilibrium fluctuations: Fick's law revisited".
631: 427:
In the case of an attractive interaction between particles, particles exhibit a tendency to coalesce and form clusters if their
1568: 1347: 474: 1296: 1308: 137: 436: 432: 1314: 243: 435:
chemical reaction (and if the considered diffusing particles are chemical molecules in solution, then it is a
1553: 1548: 1083:{\displaystyle N_{B}=-D_{BA}{\frac {1}{RT}}{\frac {dP_{B}}{dx}}=D_{AB}{\frac {1}{RT}}{\frac {dP_{A}}{dx}}} 309: 229: 184: 42:
With more molecules, there is a clear trend where the solute fills the container more and more uniformly.
317: 1392:
Maton, Anthea; Jean Hopkins; Susan Johnson; David LaHart; Maryanna Quon Warner; Jill D. Wright (1997).
1478: 1425: 362: 19:
This article is about spontaneous dispersion of mass. For a more generic treatment of diffusion, see
715: 361:
Because chemical diffusion is a net transport process, the system in which it takes place is not an
1359: 1353: 1273: 1267: 797: 209: 574: 1573: 1523: 1468: 404: 247: 114: 312:). This diffusion can take place under equilibrium. An excellent method for the measurement of 1549:
A basic introduction to the classical theory of volume diffusion (with figures and animations)
1502: 1494: 1441: 301: 156: 1401: 1486: 1433: 709:
For an ideal gas the partial pressure is related to the molar concentration by the relation
341: 166: 102: 1317: – stochastic process associated with semimartingale processes such as Brownian motion 1279: 1264: – Transport of dissolved species from the highest to the lowest concentration region 397: 265:
diffuses out. Lungs contain a large surface area to facilitate this gas exchange process.
625:. As there is no difference in total pressure across the element (no bulk flow), we have 285:
Example of chemical (classical, Fick's, or Fickian) diffusion of sodium chloride in water
246:
rely in part upon diffusion in addition to bulk or active processes. For example, in the
1482: 1429: 1302: 1285: 366:
suggests, this process is a not a true equilibrium since the system is still evolving.
313: 305: 262: 79: 75: 1562: 1394: 1323: 1290: 466: 428: 188: 62: 1356: – Exchange of mass, energy, and momentum between observed and studied systems 221: 26: 1544:
Short movie on brownian motion (includes calculation of the diffusion coefficient)
257:, due to differences in partial pressures across the alveolar-capillary membrane, 30:
Diffusion from a microscopic and macroscopic point of view. Initially, there are
1370: 94: 58: 1490: 1341: 273: 239: 225: 212:. Of mass transport mechanisms, molecular diffusion is known as a slower one. 69:
of the fluid and the size (mass) of the particles. Diffusion explains the net
1498: 1445: 304:, hence the name. The tracer diffusion is usually assumed to be identical to 277:
Self diffusion, exemplified with an isotopic tracer of radioactive isotope Na
16:
Thermal motion of liquid or gas particles at temperatures above absolute zero
1364: 1329: 1261: 1241:{\displaystyle N_{A}=-{\frac {D}{RT}}{\frac {(P_{A2}-P_{A1})}{x_{2}-x_{1}}}} 412: 325: 172: 152: 66: 20: 1506: 200: 563:/dx change with time, equimolecular counterdiffusion is considered first. 1473: 98: 1338: – Migration of molecules to a region of lower solute concentration 224:, diffusion is a main form of transport for necessary materials such as 181:
can be diffused (e.g., with carbon or nitrogen) to modify its properties
1534:
A tutorial on the theory behind and solution of the Diffusion Equation.
1335: 390: 374: 281: 233: 160: 130: 1332: – Vector quantity describing mass flow rate through a given area 1326: – Net movement of mass from one location, phase, etc. to another 1437: 1251:
A similar equation may be derived for the counterdiffusion of gas B.
621:
over the distance dx. Similarly, the partial pressure of B changes dP
389:
is the diffusion of a large number of particles, most often within a
258: 251: 118: 31: 353: 178: 204:
Schematic representation of mixing of two substances by diffusion
1276: – Diffusion process with a non-linear relationship to time 927:{\displaystyle N_{A}=-D_{AB}{\frac {1}{RT}}{\frac {dP_{A}}{dx}}} 254: 136:
Molecular diffusion is typically described mathematically using
70: 1293: – Method of utilizing water in magnetic resonance imaging 1270: – Drift between charged and neutral particles in a plasma 1344: – Penetration of a liquid, gas, or vapor through a solid 321: 228:
within cells. Diffusion of solvents, such as water, through a
57:, is the thermal motion of all (liquid or gas) particles at 357:
Illustration of low entropy (top) and high entropy (bottom)
324:, where no isotopic tracers are needed. In a so-called NMR 1539:
NetLogo Simulation Model for Educational Use (Java Applet)
1400:. Upper Saddle River, New Jersey: Prentice Hall. pp.  698:{\displaystyle {\frac {dP_{A}}{dx}}=-{\frac {dP_{B}}{dx}}} 65:. The rate of this movement is a function of temperature, 289:
Fundamentally, two types of diffusion are distinguished:
1554:
Diffusion on the nanoscale (with figures and animations)
1311: – Mathematical descriptions of molecular diffusion 431:
lies above a certain threshold. This is equivalent to a
129:, because nature always prefers low energy and maximum 1140: 950: 852: 800: 718: 634: 577: 477: 1319:
Pages displaying wikidata descriptions as a fallback
1424:(20). Royal Society of Chemistry (RSC): 4740–4742. 1305: – Retarding force on a body moving in a fluid 1393: 1367: – Resistance of a fluid to shear deformation 1240: 1082: 926: 832: 753: 697: 606: 536: 537:{\displaystyle N_{A}=-D_{AB}{\frac {dC_{A}}{dx}}} 1524:Some pictures that display diffusion and osmosis 1350: – Model compatible with special relativity 1467:(1). American Physical Society (APS): 012105. 382:Concentration dependent "collective" diffusion 1299: – Convection with two density gradients 8: 1282: – Length scale used in fluid dynamics 1373: – Model of rotating physical systems 1472: 1229: 1216: 1198: 1182: 1172: 1157: 1145: 1139: 1063: 1053: 1038: 1029: 1005: 995: 980: 971: 955: 949: 941:is the diffusivity of A in B. Similarly, 907: 897: 882: 873: 857: 851: 818: 805: 799: 739: 723: 717: 678: 668: 645: 635: 633: 598: 582: 576: 517: 507: 498: 482: 476: 407:holds true and the diffusion coefficient 38:A single molecule moves around randomly. 352: 280: 272: 199: 25: 1384: 617:The partial pressure of A changes by dP 403:In case of an ideal mix, the particle 1109:=D. If the partial pressure of A at x 7: 544:(only applicable for no bulk motion) 269:Tracer, self- and chemical diffusion 1418:Physical Chemistry Chemical Physics 1529:An animation describing diffusion. 461:/dx. The rate of diffusion of A, N 14: 1131:, integration of above equation, 373:Chemical diffusion increases the 1101:/dx, it therefore proves that D 1207: 1175: 768:is the number of moles of gas 754:{\displaystyle P_{A}V=n_{A}RT} 567:Equimolecular counterdiffusion 101:. If there is a change in the 1: 1396:Cells Building Blocks of Life 833:{\displaystyle P_{A}=C_{A}RT} 776:. As the molar concentration 1348:Relativistic heat conduction 607:{\displaystyle N_{A}=-N_{B}} 444:Molecular diffusion of gases 261:diffuses into the blood and 155:to produce solid materials ( 1297:Double diffusive convection 175:design in chemical industry 1595: 1491:10.1103/physreve.63.012105 419:the diffusion coefficient 105:of a system; for example μ 97:and capable of exchanging 18: 1579:Underwater diving physics 843:Consequently, for gas A, 308:(assuming no significant 208:Diffusion is part of the 1315:Local time (mathematics) 1309:Fick's laws of diffusion 138:Fick's laws of diffusion 85:Consider two systems; S 1242: 1084: 928: 834: 755: 699: 608: 538: 358: 349:Non-equilibrium system 342:diffusion coefficients 286: 278: 230:semipermeable membrane 205: 121:flow will occur from S 53:, often simply called 47: 1243: 1085: 929: 835: 756: 700: 609: 539: 356: 318:pulsed field gradient 284: 276: 203: 187:during production of 29: 1138: 948: 850: 798: 716: 632: 575: 475: 387:Collective diffusion 1569:Transport phenomena 1483:2000PhRvE..63a2105B 1430:2000PCCP....2.4740H 1360:Turbulent diffusion 1354:Transport phenomena 1274:Anomalous diffusion 1268:Ambipolar diffusion 1093:Considering that dP 210:transport phenomena 51:Molecular diffusion 1238: 1080: 924: 830: 751: 695: 604: 534: 405:diffusion equation 359: 333:Chemical diffusion 287: 279: 206: 115:Chemical potential 48: 1461:Physical Review E 1236: 1170: 1078: 1051: 1020: 993: 922: 895: 693: 660: 532: 232:is classified as 157:powder metallurgy 1586: 1511: 1510: 1476: 1474:cond-mat/0006163 1456: 1450: 1449: 1438:10.1039/b005319h 1412: 1406: 1405: 1399: 1389: 1320: 1247: 1245: 1244: 1239: 1237: 1235: 1234: 1233: 1221: 1220: 1210: 1206: 1205: 1190: 1189: 1173: 1171: 1169: 1158: 1150: 1149: 1089: 1087: 1086: 1081: 1079: 1077: 1069: 1068: 1067: 1054: 1052: 1050: 1039: 1037: 1036: 1021: 1019: 1011: 1010: 1009: 996: 994: 992: 981: 979: 978: 960: 959: 933: 931: 930: 925: 923: 921: 913: 912: 911: 898: 896: 894: 883: 881: 880: 862: 861: 839: 837: 836: 831: 823: 822: 810: 809: 760: 758: 757: 752: 744: 743: 728: 727: 704: 702: 701: 696: 694: 692: 684: 683: 682: 669: 661: 659: 651: 650: 649: 636: 613: 611: 610: 605: 603: 602: 587: 586: 543: 541: 540: 535: 533: 531: 523: 522: 521: 508: 506: 505: 487: 486: 316:coefficients is 302:isotopic tracers 294:Tracer diffusion 167:Chemical reactor 159:, production of 103:potential energy 1594: 1593: 1589: 1588: 1587: 1585: 1584: 1583: 1559: 1558: 1520: 1515: 1514: 1458: 1457: 1453: 1414: 1413: 1409: 1391: 1390: 1386: 1381: 1376: 1318: 1280:Batchelor scale 1257: 1225: 1212: 1211: 1194: 1178: 1174: 1162: 1141: 1136: 1135: 1130: 1129: 1123: 1119: 1118: 1112: 1108: 1104: 1100: 1096: 1070: 1059: 1055: 1043: 1025: 1012: 1001: 997: 985: 967: 951: 946: 945: 940: 914: 903: 899: 887: 869: 853: 848: 847: 814: 801: 796: 795: 788: 781: 767: 735: 719: 714: 713: 685: 674: 670: 652: 641: 637: 630: 629: 624: 620: 594: 578: 573: 572: 569: 562: 558: 551: 524: 513: 509: 494: 478: 473: 472: 464: 460: 456: 452: 446: 398:brownian motion 384: 351: 310:isotopic effect 271: 218: 198: 146: 128: 124: 112: 108: 92: 88: 24: 17: 12: 11: 5: 1592: 1590: 1582: 1581: 1576: 1571: 1561: 1560: 1557: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1519: 1518:External links 1516: 1513: 1512: 1451: 1407: 1383: 1382: 1380: 1377: 1375: 1374: 1368: 1362: 1357: 1351: 1345: 1339: 1333: 1327: 1321: 1312: 1306: 1303:Drag (physics) 1300: 1294: 1288: 1286:Bohm diffusion 1283: 1277: 1271: 1265: 1258: 1256: 1253: 1249: 1248: 1232: 1228: 1224: 1219: 1215: 1209: 1204: 1201: 1197: 1193: 1188: 1185: 1181: 1177: 1168: 1165: 1161: 1156: 1153: 1148: 1144: 1127: 1125: 1121: 1116: 1114: 1110: 1106: 1102: 1098: 1094: 1091: 1090: 1076: 1073: 1066: 1062: 1058: 1049: 1046: 1042: 1035: 1032: 1028: 1024: 1018: 1015: 1008: 1004: 1000: 991: 988: 984: 977: 974: 970: 966: 963: 958: 954: 938: 935: 934: 920: 917: 910: 906: 902: 893: 890: 886: 879: 876: 872: 868: 865: 860: 856: 841: 840: 829: 826: 821: 817: 813: 808: 804: 786: 779: 765: 762: 761: 750: 747: 742: 738: 734: 731: 726: 722: 707: 706: 691: 688: 681: 677: 673: 667: 664: 658: 655: 648: 644: 640: 622: 618: 601: 597: 593: 590: 585: 581: 568: 565: 560: 556: 549: 546: 545: 530: 527: 520: 516: 512: 504: 501: 497: 493: 490: 485: 481: 462: 458: 454: 450: 445: 442: 441: 440: 425: 383: 380: 350: 347: 338: 337: 330: 314:self-diffusion 306:self-diffusion 298:Self-diffusion 270: 267: 263:carbon dioxide 217: 214: 197: 194: 193: 192: 189:semiconductors 182: 176: 170: 164: 145: 142: 126: 122: 110: 106: 90: 86: 76:self-diffusion 15: 13: 10: 9: 6: 4: 3: 2: 1591: 1580: 1577: 1575: 1572: 1570: 1567: 1566: 1564: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1521: 1517: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1475: 1470: 1466: 1462: 1455: 1452: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1411: 1408: 1403: 1398: 1397: 1388: 1385: 1378: 1372: 1369: 1366: 1363: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1324:Mass transfer 1322: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1291:Diffusion MRI 1289: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1259: 1254: 1252: 1230: 1226: 1222: 1217: 1213: 1202: 1199: 1195: 1191: 1186: 1183: 1179: 1166: 1163: 1159: 1154: 1151: 1146: 1142: 1134: 1133: 1132: 1074: 1071: 1064: 1060: 1056: 1047: 1044: 1040: 1033: 1030: 1026: 1022: 1016: 1013: 1006: 1002: 998: 989: 986: 982: 975: 972: 968: 964: 961: 956: 952: 944: 943: 942: 918: 915: 908: 904: 900: 891: 888: 884: 877: 874: 870: 866: 863: 858: 854: 846: 845: 844: 827: 824: 819: 815: 811: 806: 802: 794: 793: 792: 790: 782: 775: 771: 748: 745: 740: 736: 732: 729: 724: 720: 712: 711: 710: 689: 686: 679: 675: 671: 665: 662: 656: 653: 646: 642: 638: 628: 627: 626: 615: 599: 595: 591: 588: 583: 579: 566: 564: 553: 528: 525: 518: 514: 510: 502: 499: 495: 491: 488: 483: 479: 471: 470: 469: 468: 443: 438: 437:precipitation 434: 433:precipitation 430: 429:concentration 426: 422: 418: 417: 416: 414: 411:the speed of 410: 406: 401: 399: 394: 392: 388: 381: 379: 376: 371: 367: 364: 355: 348: 346: 343: 334: 331: 327: 323: 319: 315: 311: 307: 303: 299: 295: 292: 291: 290: 283: 275: 268: 266: 264: 260: 256: 253: 249: 245: 241: 237: 235: 231: 227: 223: 215: 213: 211: 202: 195: 190: 186: 183: 180: 177: 174: 171: 168: 165: 162: 158: 154: 151: 150: 149: 143: 141: 139: 134: 132: 120: 116: 104: 100: 96: 83: 81: 77: 72: 68: 64: 63:absolute zero 60: 56: 52: 45: 41: 37: 33: 28: 22: 1464: 1460: 1454: 1421: 1417: 1410: 1395: 1387: 1250: 1092: 936: 842: 784: 783:is equal to 777: 773: 772:in a volume 769: 763: 708: 616: 570: 554: 547: 453:/dx, where C 447: 420: 408: 402: 396:Contrary to 395: 386: 385: 372: 368: 360: 339: 336:equilibrium. 332: 297: 293: 288: 238: 222:cell biology 219: 207: 196:Significance 147: 144:Applications 135: 93:at the same 84: 59:temperatures 54: 50: 49: 43: 39: 35: 1371:Rigid rotor 363:equilibrium 244:respiration 226:amino acids 95:temperature 1563:Categories 1379:References 1342:Permeation 791:therefore 467:Fick's Law 424:increases. 240:Metabolism 1574:Diffusion 1499:1063-651X 1446:1463-9076 1365:Viscosity 1330:Mass flux 1262:Diffusion 1223:− 1192:− 1155:− 965:− 867:− 666:− 592:− 559:/dx or dC 492:− 413:diffusion 326:spin echo 252:mammalian 153:Sintering 99:particles 67:viscosity 55:diffusion 21:Diffusion 1507:11304296 1255:See also 173:Catalyst 161:ceramics 1479:Bibcode 1426:Bibcode 1336:Osmosis 1097:/dx=-dP 937:where D 764:where n 391:solvent 375:entropy 248:alveoli 234:osmosis 216:Biology 131:entropy 44:Bottom: 40:Middle: 1505:  1497:  1444:  320:(PFG) 259:oxygen 185:Doping 169:design 119:energy 113:(μ is 61:above 32:solute 1469:arXiv 1402:66–67 1120:and x 255:lungs 179:Steel 117:) an 109:>μ 89:and S 80:phase 1503:PMID 1495:ISSN 1442:ISSN 1124:is P 1113:is P 340:The 296:and 242:and 125:to S 71:flux 36:Top: 1487:doi 1434:doi 789:/ V 322:NMR 250:of 220:In 1565:: 1501:. 1493:. 1485:. 1477:. 1465:63 1463:. 1440:. 1432:. 1420:. 1107:BA 1105:=D 1103:AB 939:AB 614:. 439:). 393:. 236:. 140:. 133:. 1509:. 1489:: 1481:: 1471:: 1448:. 1436:: 1428:: 1422:2 1404:. 1231:1 1227:x 1218:2 1214:x 1208:) 1203:1 1200:A 1196:P 1187:2 1184:A 1180:P 1176:( 1167:T 1164:R 1160:D 1152:= 1147:A 1143:N 1128:2 1126:A 1122:2 1117:1 1115:A 1111:1 1099:B 1095:A 1075:x 1072:d 1065:A 1061:P 1057:d 1048:T 1045:R 1041:1 1034:B 1031:A 1027:D 1023:= 1017:x 1014:d 1007:B 1003:P 999:d 990:T 987:R 983:1 976:A 973:B 969:D 962:= 957:B 953:N 919:x 916:d 909:A 905:P 901:d 892:T 889:R 885:1 878:B 875:A 871:D 864:= 859:A 855:N 828:T 825:R 820:A 816:C 812:= 807:A 803:P 787:A 785:n 780:A 778:C 774:V 770:A 766:A 749:T 746:R 741:A 737:n 733:= 730:V 725:A 721:P 705:. 690:x 687:d 680:B 676:P 672:d 663:= 657:x 654:d 647:A 643:P 639:d 623:B 619:A 600:B 596:N 589:= 584:A 580:N 561:B 557:A 550:A 529:x 526:d 519:A 515:C 511:d 503:B 500:A 496:D 489:= 484:A 480:N 463:A 459:B 455:A 451:A 421:D 409:D 191:. 163:) 127:2 123:1 111:2 107:1 91:2 87:1 23:.

Index

Diffusion

solute
temperatures
absolute zero
viscosity
flux
self-diffusion
phase
temperature
particles
potential energy
Chemical potential
energy
entropy
Fick's laws of diffusion
Sintering
powder metallurgy
ceramics
Chemical reactor
Catalyst
Steel
Doping
semiconductors

transport phenomena
cell biology
amino acids
semipermeable membrane
osmosis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.