Knowledge (XXG)

Nanoelectromechanical systems

Source đź“ť

751:(MD), important behaviors of NEMS devices can be predicted via computational modeling before engaging in experiments. Additionally, combining continuum and MD techniques enables engineers to efficiently analyze the stability of NEMS devices without resorting to ultra-fine meshes and time-intensive simulations. Simulations have other advantages as well: they do not require the time and expertise associated with fabricating NEMS devices; they can effectively predict the interrelated roles of various electromechanical effects; and parametric studies can be conducted fairly readily as compared with experimental approaches. For example, computational studies have predicted the charge distributions and “pull-in” electromechanical responses of NEMS devices. Using simulations to predict mechanical and electrical behavior of these devices can help optimize NEMS device design parameters. 658:
expectedly corresponds with its experimentally verified independence to relative humidity. PDMS’ adhesive forces are also independent of rest time, capable of versatilely performing under varying relative humidity conditions, and possesses a lower coefficient of friction than that of Silicon. PDMS coatings facilitate mitigation of high-velocity problems, such as preventing sliding. Thus, friction at contact surfaces remains low even at considerably high velocities. In fact, on the microscale, friction reduces with increasing velocity. The hydrophobicity and low friction coefficient of PDMS have given rise to its potential in being further incorporated within NEMS experiments that are conducted at varying relative humidities and high relative sliding velocities.
791:
material, surface films, and lubricant. In comparison to undoped Si or polysilicon films, SiC films possess the lowest frictional output, resulting in increased scratch resistance and enhanced functionality at high temperatures. Hard diamond-like carbon (DLC) coatings exhibit low friction, high hardness and wear resistance, in addition to chemical and electrical resistances. Roughness, a factor that reduces wetting and increases hydrophobicity, can be optimized by increasing the contact angle to reduce wetting and allow for low adhesion and interaction of the device to its environment.
654:
non-fluorescent, biocompatible, and nontoxic. Inherent to polymers, the Young's Modulus of PDMS can vary over two orders of magnitude by manipulating the extent of crosslinking of polymer chains, making it a viable material in NEMS and biological applications. PDMS can form a tight seal with silicon and thus be easily integrated into NEMS technology, optimizing both mechanical and electrical properties. Polymers like PDMS are beginning to gain attention in NEMS due to their comparatively inexpensive, simplified, and time-efficient prototyping and manufacturing.
795:
nano-materials are determined by using a nano indenter on a material that has undergone fabrication processes. These measurements, however, do not consider how the device will operate in industry under prolonged or cyclic stresses and strains. The theta structure is a NEMS model that exhibits unique mechanical properties. Composed of Si, the structure has high strength and is able to concentrate stresses at the nanoscale to measure certain mechanical properties of materials.
605:
comparison of performance parameters between carbon nanotube (CNT)-based NEMS switches with its counterpart CMOS revealed that CNT-based NEMS switches retained performance at lower levels of energy consumption and had a subthreshold leakage current several orders of magnitude smaller than that of CMOS switches. CNT-based NEMS with doubly clamped structures are being further studied as potential solutions for floating gate nonvolatile memory applications.
821:
demonstrated for diamond, achieving a processing level comparable to that of silicon. The focus is currently shifting from experimental work towards practical applications and device structures that will implement and profit from such novel devices. The next challenge to overcome involves understanding all of the properties of these carbon-based tools, and using the properties to make efficient and durable NEMS with low failure rates.
774:
considered by packaging design to align with the design of the MEMS or NEMS component. Delamination analysis, motion analysis, and life-time testing have been used to assess wafer-level encapsulation techniques, such as cap to wafer, wafer to wafer, and thin film encapsulation. Wafer-level encapsulation techniques can lead to improved reliability and increased yield for both micro and nanodevices.
167: 3568: 618:. Similarly, other changes to the electronic and mechanical attributes of carbon based materials must fully be explored before their implementation, especially because of their high surface area which can easily react with surrounding environments. Carbon nanotubes were also found to have varying conductivities, being either metallic or semiconducting depending on their 209: 765:
improving yield, scarcity of information, and reproducibility issues have been identified as major challenges to achieving higher levels of reliability for NEMS devices. Such challenges arise during both manufacturing stages (i.e. wafer processing, packaging, final assembly) and post-manufacturing stages (i.e. transportation, logistics, usage).
299:," there are many potential applications of machines at smaller and smaller sizes; by building and controlling devices at smaller scales, all technology benefits. The expected benefits include greater efficiencies and reduced size, decreased power consumption and lower costs of production in electromechanical systems. 550:
factor as high as 2400.  The quality factor describes the purity of tone of the resonator's vibrations. Furthermore, it has been theoretically predicted that clamping graphene membranes on all sides yields increased quality numbers. Graphene NEMS can also function as mass, force, and position sensors.
786:
Adhesion and friction can also be manipulated by nanopatterning to adjust surface roughness for the appropriate applications of the NEMS device. Researchers from Ohio State University used atomic/friction force microscopy (AFM/FFM) to examine the effects of nanopatterning on hydrophobicity, adhesion,
734:
The emerging field of bio-hybrid systems combines biological and synthetic structural elements for biomedical or robotic applications. The constituting elements of bio-nanoelectromechanical systems (BioNEMS) are of nanoscale size, for example DNA, proteins or nanostructured mechanical parts. Examples
549:
Nanomechanical resonators are frequently made of graphene. As NEMS resonators are scaled down in size, there is a general trend for a decrease in quality factor in inverse proportion to surface area to volume ratio. However, despite this challenge, it has been experimentally proven to reach a quality
478:. This allows fabrication of much smaller structures, albeit often at the cost of limited control of the fabrication process. Furthermore, while there are residue materials removed from the original structure for the top-down approach, minimal material is removed or wasted for the bottom-up approach. 764:
Reliability provides a quantitative measure of the component's integrity and performance without failure for a specified product lifetime. Failure of NEMS devices can be attributed to a variety of sources, such as mechanical, electrical, chemical, and thermal factors. Identifying failure mechanisms,
595:
since they can carry high current densities. This is a useful property as wires to transfer current are another basic building block of any electrical system. Carbon nanotubes have specifically found so much use in NEMS that methods have already been discovered to connect suspended carbon nanotubes
794:
Material properties are size-dependent. Therefore, analyzing the unique characteristics on NEMS and nano-scale material becomes increasingly important to retaining reliability and long-term stability of NEMS devices. Some mechanical properties, such as hardness, elastic modulus, and bend tests, for
636:
Graphene's mechanical and electronic properties have made it favorable for integration into NEMS accelerometers, such as small sensors and actuators for heart monitoring systems and mobile motion capture. The atomic scale thickness of graphene provides a pathway for accelerometers to be scaled down
622:
when processed. Because of this, special treatment must be given to the nanotubes during processing to assure that all of the nanotubes have appropriate conductivities. Graphene also has complicated electric conductivity properties compared to traditional semiconductors because it lacks an energy
803:
To increase reliability of structural integrity, characterization of both material structure and intrinsic stresses at appropriate length scales becomes increasingly pertinent. Effects of residual stresses include but are not limited to fracture, deformation, delamination, and nanosized structural
782:
Assessing the reliability of NEMS in early stages of the manufacturing process is essential for yield improvement. Forms of surface forces, such as adhesion and electrostatic forces, are largely dependent on surface topography and contact geometry. Selective manufacturing of nano-textured surfaces
653:
A study conducted by Ohio State researchers compared the adhesion and friction parameters of a single crystal silicon with native oxide layer against PDMS coating. PDMS is a silicone elastomer that is highly mechanically tunable, chemically inert, thermally stable, permeable to gases, transparent,
640:
By suspending a silicon proof mass on a double-layer graphene ribbon, a nanoscale spring-mass and piezoresistive transducer can be made with the capability of currently produced transducers in accelerometers. The spring mass provides greater accuracy, and the piezoresistive properties of graphene
773:
Packaging challenges often account for 75–95% of the overall costs of MEMS and NEMS. Factors of wafer dicing, device thickness, sequence of final release, thermal expansion, mechanical stress isolation, power and heat dissipation, creep minimization, media isolation, and protective coatings are
657:
Rest time has been characterized to directly correlate with adhesive force, and increased relative humidity lead to an increase of adhesive forces for hydrophilic polymers. Contact angle measurements and Laplace force calculations support the characterization of PDMS's hydrophobic nature, which
820:
Key hurdles currently preventing the commercial application of many NEMS devices include low-yields and high device quality variability. Before NEMS devices can actually be implemented, reasonable integrations of carbon based products must be created. A recent step in that direction has been
790:
Due to its large surface area to volume ratio and sensitivity, adhesion and friction can impede performance and reliability of NEMS devices. These tribological issues arise from natural down-scaling of these tools; however, the system can be optimized through the manipulation of the structural
811:
Atomic force microscopy (AFM) and Raman spectroscopy can be used to characterize the distribution of residual stresses on thin films in terms of force volume imaging, topography, and force curves. Furthermore, residual stress can be used to measure nanostructures’ melting temperature by using
604:
A major disadvantage of MEMS switches over NEMS switches are limited microsecond range switching speeds of MEMS, which impedes performance for high speed applications. Limitations on switching speed and actuation voltage can be overcome by scaling down devices from micro to nanometer scale. A
613:
Despite all of the useful properties of carbon nanotubes and graphene for NEMS technology, both of these products face several hindrances to their implementation. One of the main problems is carbon's response to real life environments. Carbon nanotubes exhibit a large change in electronic
529:
Both graphene and diamond exhibit high Young's modulus, low density, low friction, exceedingly low mechanical dissipation, and large surface area. The low friction of CNTs, allow practically frictionless bearings and has thus been a huge motivation towards practical applications of CNTs as
696:
In addition to its inherent properties discussed in the Materials section, PDMS can be used to absorb chloroform, whose effects are commonly associated with swelling and deformation of the micro-diaphragm; various organic vapors were also gauged in this study. With good aging stability and
681:(SiNWs) to detect chloroform vapor at room temperature. In the presence of chloroform vapor, the PDMS film on the micro-diaphragm absorbs vapor molecules and consequently enlarges, leading to deformation of the micro-diaphragm. The SiNWs implanted within the micro-diaphragm are linked in a 596:
to other nanostructures. This allows carbon nanotubes to form complicated nanoelectric systems. Because carbon based products can be properly controlled and act as interconnects as well as transistors, they serve as a fundamental material in the electrical components of NEMS.
538:, and high-frequency oscillators. Carbon nanotubes and graphene's physical strength allows carbon based materials to meet higher stress demands, when common materials would normally fail and thus further support their use as a major materials in NEMS technological development. 787:
and friction for hydrophilic polymers with two types of patterned asperities (low aspect ratio and high aspect ratio). Roughness on hydrophilic surfaces versus hydrophobic surfaces are found to have inversely correlated and directly correlated relationships respectively.
559: 627:
and essentially changes all the rules for how electrons move through a graphene based device. This means that traditional constructions of electronic devices will likely not work and completely new architectures must be designed for these new electronic devices.
541:
Along with the mechanical benefits of carbon based materials, the electrical properties of carbon nanotubes and graphene allow it to be used in many electrical components of NEMS. Nanotransistors have been developed for both carbon nanotubes as well as graphene.
641:
converts the strain from acceleration to electrical signals for the accelerometer. The suspended graphene ribbon simultaneously forms the spring and piezoresistive transducer, making efficient use of space in while improving performance of NEMS accelerometers.
2259:
Fan, X.; Fischer, A.C.; Forsberg, F.; Lemme, M.C.; Niklaus, F.; Östling, M.; Rödjegård, H.; Schröder, S.; Smith, A.D.; Wagner, S. (September 2019). "Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers".
469:
approaches, in contrast, use the chemical properties of single molecules to cause single-molecule components to self-organize or self-assemble into some useful conformation, or rely on positional assembly. These approaches utilize the concepts of molecular
649:
Failures arising from high adhesion and friction are of concern for many NEMS. NEMS frequently utilize silicon due to well-characterized micromachining techniques; however, its intrinsic stiffness often hinders the capability of devices with moving parts.
685:, which translates the deformation into a quantitative output voltage. In addition, the micro-diaphragm sensor also demonstrates low-cost processing at low power consumption. It possesses great potential for scalability, ultra-compact footprint, and 807:
Residual stresses can influence electrical and optical properties. For instance, in various photovoltaic and light emitting diodes (LED) applications, the band gap energy of semiconductors can be tuned accordingly by the effects of residual stress.
426:
tips. The increased sensitivity achieved by NEMS leads to smaller and more efficient sensors to detect stresses, vibrations, forces at the atomic level, and chemical signals. AFM tips and other detection at the nanoscale rely heavily on NEMS.
783:
reduces contact area, improving both adhesion and friction performance for NEMS. Furthermore, the implementation of nanopost to engineered surfaces increase hydrophobicity, leading to a reduction in both adhesion and friction.
216:
SiT8008, a programmable oscillator reaching quartz precision with high reliability and low g-sensitivity. The nanoscale transistors and nanoscale mechanical components (on a separate die) are integrated on the same chip
2783:
Loh, O; Wei, X; Ke, C; Sullivan, J; Espinosa, HD (2011). "Robust carbon-nanotube-based nano-electromechanical devices: Understanding and eliminating prevalent failure modes using alternative electrode materials".
414:). Further devices have been described by Stefan de Haan. In 2007, the International Technical Roadmap for Semiconductors (ITRS) contains NEMS memory as a new entry for the Emerging Research Devices section. 3011:
Baek, C. W.; Bhushan, B.; Kim, Y. K.; Li, X.; Takashima, K. (October–November 2003). "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques".
454:
and thermal treatments, to manufacture devices. While being limited by the resolution of these methods, it allows a large degree of control over the resulting structures. In this manner devices such as
2916:
Zou, M.; Cai, L.; Wang, H.; Yang, D.; Wyrobek, T. (2005). "Adhesion and friction studies of a selectively micro/nano-textured surface produced by UV assisted crystallization of amorphous silicon".
1493:
Bunch, J. S.; Van Der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. (2007). "Electromechanical Resonators from Graphene Sheets".
1060:
Davari, Bijan; Ting, Chung-Yu; Ahn, Kie Y.; Basavaiah, S.; Hu, Chao-Kun; Taur, Yuan; Wordeman, Matthew R.; Aboelfotoh, O.; Krusin-Elbaum, L.; Joshi, Rajiv V.; Polcari, Michael R. (1987).
769:
Packaging                                                  
410:(VLSI) NEMS device was demonstrated by researchers at IBM. Its premise was an array of AFM tips which can heat/sense a deformable substrate in order to function as a memory device ( 895:. Further capabilities of NEMS-based cantilevers have been exploited for the applications of sensors, scanning probes, and devices operating at very high frequency (100 MHz). 735:
include the facile top-down nanostructuring of thiol-ene polymers to create cross-linked and mechanically robust nanostructures that are subsequently functionalized with proteins.
546:
are one of the basic building blocks for all electronic devices, so by effectively developing usable transistors, carbon nanotubes and graphene are both very crucial to NEMS.
1237:
Despont, M; Brugger, J.; Drechsler, U.; Dürig, U.; Häberle, W.; Lutwyche, M.; Rothuizen, H.; Stutz, R.; Widmer, R. (2000). "VLSI-NEMS chip for parallel AFM data storage".
1182: 693:
process compatibility. By switching the vapor-absorption polymer layer, similar methods can be applied that should theoretically be able to detect other organic vapors.
1617:
Hermann, S; Ecke, R; Schulz, S; Gessner, T (2008). "Controlling the formation of nanoparticles for definite growth of carbon nanotubes for interconnect applications".
514:. This is mainly because of the useful properties of carbon based materials which directly meet the needs of NEMS. The mechanical properties of carbon (such as large 3322: 848: 1550: 3135:"Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro-and nano-electromechanical (M/NEMS) applications" 2060:
Yousif, M.Y.A.; Lundgren, P.; Ghavanini, F.; Enoksson, P.; Bengtsson, S. (2008). "CMOS considerations in nanoelectromechanical carbon nanotube-based switches".
1141:
Hisamoto, D.; Kaga, T.; Kawamoto, Y.; Takeda, E. (December 1989). "A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET".
481:
A combination of these approaches may also be used, in which nanoscale molecules are integrated into a top-down framework. One such example is the carbon
1378:
Tao, Y.; Boss, J. M.; Moores, B. A.; Degen, C. L. (2014). "Single-crystal diamond nanomechanical resonators with quality factors exceeding one million".
994: 2440:
Chaudhry, A.N.; Billingham, N.C. (2001). "Characterisation and oxidative degradation of a room-temperature vulcanised poly (dimethylsiloxane) rubber".
195: 585:") angles, and the combination of the rolling angle and radius decides whether the nanotube has a bandgap (semiconducting) or no bandgap (metallic). 1208: 3262:
Li, M.; Tang, H.X.; Roukes, M.L. (2007). "Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications".
2201:
Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. (1996). "Electrical conductivity of individual carbon nanotubes".
296: 466: 3422: 879:
facilitates unambiguous and efficient nanodevice readout. The functionalization of the device's surface using a thin polymer coating with high
3117: 2867: 2354: 1361: 1335: 943: 712: 121: 3046:
Osborn, W. A., Mclean, M., Smith, D. T., Gerbig, Y. (2017, November). Nanoscale Strength Measurements and Standards. NIST. Retrieved from
1172: 3511: 3315: 824:
Carbon-based materials have served as prime materials for NEMS use, because of their exceptional mechanical and electrical properties.
2953:
Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems
1983: 1091: 860: 666:
PDMS is frequently used within NEMS technology. For instance, PDMS coating on a diaphragm can be used for chloroform vapor detection.
379: 2518: 2968: 2900: 2559: 1125: 1044: 1011: 592: 331: 2158:
Collins, PG; Bradley, K; Ishigami, M; Zettl, A (2000). "Extreme oxygen sensitivity of electronic properties of carbon nanotubes".
1644:
Dekker, Cees; Tans, Sander J.; Verschueren, Alwin R. M. (1998). "Room-temperature transistor based on a single carbon nanotube".
670: 116: 2370:
Tambe, N.S.; Bhushan, B. (2005). "Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications".
2609:"Numerical Analysis of Nanotube Based NEMS Devices — Part II: Role of Finite Kinematics, Stretching and Charge Concentrations" 3308: 2112: 1442:
Tao, Ye; Degen, Christian (2013). "Facile Fabrication of Single-Crystal-Diamond Nanostructures with Ultrahigh Aspect Ratio".
233: 2649:
Garcia, J. C.; Justo, J. F. (2014). "Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice".
3572: 3538: 831:
have shown to be a key platform to design tunable NEMS owing to the availability of active modulation of Young's modulus.
439: 188: 2702:
Keblinski, P.; Nayak, S.; Zapol, P.; Ajayan, P. (2002). "Charge Distribution and Stability of Charged Carbon Nanotubes".
2745:
Ke, C; Espinosa, HD (2006). "In situ electron microscopy electromechanical characterization of a bistable NEMS device".
2397:
Guo, H.; Lou, L.; Chen, X.; Lee, C. (2012). "PDMS-coated piezoresistive NEMS diaphragm for chloroform vapor detection".
407: 2300:
McDonald, J.C.; Whitesides, G.M. (2002). "Poly (dimethylsiloxane) as a material for fabricating microfluidic devices".
2560:"Numerical Analysis of Nanotube-Based NEMS Devices—Part I: Electrostatic Charge Distribution on Multiwalled Nanotubes" 1597: 1086: 843: 257: 53: 2984:
Bhushan, B. (March 2007). "Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices".
435:
Two complementary approaches to fabrication of NEMS can be found, the top-down approach and the bottom-up approach.
3543: 3479: 3387: 1177: 463:
layers. For top-down approaches, increasing surface area to volume ratio enhances the reactivity of nanomaterials.
302:
The first silicon dioxide field effect transistors were built by Frosch and Derick in 1957 at Bell Labs. In 1960,
3599: 3526: 3486: 451: 286: 1786:
Barton, R.A.; Ilic, B.; Van Der Zande, A.M.; Whitney, W.S.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G. (2011).
3594: 2855: 2025:
Huang, X.M.H.; Zorman, C.A.; Mehregany, M.; Roukes, M.L. (2003). "Nanodevice motion at microwave frequencies".
181: 1787: 1737: 743:
Computer simulations have long been important counterparts to experimental studies of NEMS devices. Through
697:
appropriate packaging, the degradation rate of PDMS in response to heat, light, and radiation can be slowed.
3491: 3464: 423: 3501: 3496: 3469: 929: 3060: 2819:
Arab, A.; Feng, Q. (2014). "Reliability research on micro-and nano-electromechanical systems: a review".
1844:
Ekinci, K.L.; Huang, X.M.H.; Roukes, M.L. (2004). "Ultrasensitive nanoelectromechanical mass detection".
3427: 3372: 3331: 880: 872: 475: 2467:
Shafagh, Reza; Vastesson, Alexander; Guo, Weijin; van der Wijngaart, Wouter; Haraldsson, Tommy (2018).
911: 871:
up to very high frequencies (VHF). It is incorporation of electronic displacement transducers based on
260:, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include 3474: 3437: 3417: 3362: 3271: 3196: 3149: 2711: 2668: 2623: 2574: 2406: 2210: 2167: 2124: 2069: 1995: 1940: 1898: 1863: 1802: 1752: 1653: 1565: 1502: 1451: 1397: 868: 674: 577:(CNTs) are allotropes of carbon with a cylindrical nanostructure. They can be considered a rolled up 58: 3531: 3506: 2608: 2245: 744: 1307: 391: 3548: 3165: 2933: 2836: 2684: 2658: 2496: 2422: 2325: 2269: 2226: 2093: 1964: 1853: 1826: 1768: 1715: 1669: 1589: 1526: 1475: 1421: 1387: 1154: 1028: 828: 748: 720: 706: 690: 482: 265: 253: 171: 3134: 2951:
Fowler, J.; Moon, H.; Kim, C.J. (2002). "Enhancement of mixing by droplet-based microfluidics".
515: 1186: 3287: 3230: 3212: 3113: 3029: 2964: 2896: 2863: 2801: 2762: 2727: 2488: 2350: 2317: 2183: 2140: 2085: 2042: 1956: 1818: 1707: 1581: 1518: 1467: 1413: 1331: 1287: 1121: 1040: 1007: 1003: 939: 682: 619: 303: 1889:
Mamin, H.J.; Rugar, D. (2001). "Sub-attonewton force detection at millikelvin temperatures".
1115: 3516: 3432: 3279: 3220: 3204: 3157: 3107: 3085: 3021: 2993: 2956: 2925: 2888: 2828: 2793: 2754: 2719: 2676: 2631: 2582: 2533: 2480: 2449: 2414: 2379: 2344: 2309: 2279: 2218: 2175: 2132: 2077: 2034: 2003: 1948: 1906: 1871: 1810: 1760: 1699: 1661: 1626: 1573: 1510: 1459: 1405: 1277: 1246: 1146: 1082: 972: 804:
changes, which can result in failure of operation and physical deterioration of the device.
728: 724: 678: 574: 456: 447: 443: 411: 359: 245: 229: 111: 17: 2011: 812:
differential scanning calorimetry (DSC) and temperature dependent X-ray Diffraction (XRD).
459:, nanorods, and patterned nanostructures are fabricated from metallic thin films or etched 3357: 2541: 2468: 1311: 888: 507: 327: 292: 237: 91: 38: 2081: 3275: 3200: 3153: 2715: 2672: 2627: 2578: 2410: 2214: 2171: 2128: 2073: 1999: 1944: 1902: 1867: 1806: 1756: 1657: 1569: 1506: 1455: 1401: 3521: 3225: 960: 935:
Introduction to Nanoscale Science and Technology (Nanostructure Science and Technology)
363: 282: 106: 63: 3089: 3025: 2453: 2111:
Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G.Y.; Cheung, C.L.; Lieber, C.M. (2000).
1250: 558: 3588: 3553: 3169: 2937: 2840: 2688: 2590: 1968: 1158: 884: 563: 519: 471: 460: 367: 347: 261: 252:
range, leading to low mass, high mechanical resonance frequencies, potentially large
149: 144: 81: 3076:
Van Spengen, W.M. (2003). "MEMS reliability from a failure mechanisms perspective".
2680: 2500: 2426: 2329: 1984:"Direct wiring of carbon nanotubes for integration in nanoelectromechanical systems" 1925: 1772: 1593: 1530: 1425: 358:
research team that demonstrated the first MOSFET with a 10 nm oxide thickness.
228:) are a class of devices integrating electrical and mechanical functionality on the 212:
A die shot (after metallization/ IC interconnect removal) of the digital die of the
3457: 2383: 2230: 2097: 1788:"High, size-dependent quality factor in an array of graphene mechanical resonators" 1719: 1673: 1479: 711: 351: 2723: 2469:"E-Beam Nanostructuring and Direct Click Biofunctionalization of Thiol–Ene Resist" 2179: 1830: 637:
from micro to nanoscale while retaining the system's required sensitivity levels.
1325: 933: 3452: 3447: 3392: 3382: 3248: 3184: 2136: 2113:"Carbon nanotube-based nonvolatile random access memory for molecular computing" 387: 307: 3208: 3183:
Ali, Utku Emre; Modi, Gaurav; Agarwal, Ritesh; Bhaskaran, Harish (2022-03-18).
2960: 1061: 166: 3412: 3352: 3185:"Real-time nanomechanical property modulation as a framework for tunable NEMS" 2997: 2929: 2892: 2832: 2283: 1630: 1282: 1265: 876: 864: 543: 523: 343: 335: 319: 139: 101: 3216: 2418: 1291: 570:, metallic), (10,2) CNT (semiconducting) and (10,10) CNT (armchair, metallic) 3442: 3367: 2484: 1952: 1703: 1514: 1150: 1036: 990: 531: 311: 249: 3291: 3283: 3234: 3033: 2805: 2797: 2766: 2758: 2731: 2492: 2321: 2187: 2144: 2089: 2046: 1982:
Bauerdick, S.; Linden, A.; Stampfer, C.; Helbling, T.; Hierold, C. (2006).
1960: 1822: 1711: 1585: 1577: 1522: 1471: 1463: 1417: 1266:"NEMS—emerging products and applications of nano-electromechanical systems" 912:"SiTime SiT8008 - MEMS oscillator : Weekend die-shot : ZeptoBars" 208: 3161: 834:
The global market of NEMS is projected to reach $ 108.88 million by 2022.
1858: 892: 716: 624: 578: 511: 241: 86: 3300: 1738:"Fabrication and performance of graphene nanoelectromechanical systems" 1690:
Westervelt, R. M. (2008). "APPLIED PHYSICS: Graphene Nanoelectronics".
1409: 503: 375: 2635: 2586: 2537: 2313: 2007: 1910: 1875: 1814: 1764: 1362:"Difference Between Top Down and Bottom Up Approach in Nanotechnology" 976: 961:"Surface Protection and Selective Masking during Diffusion in Silicon" 3109:
Nanotechnology research: new nanostructures, nanotubes and nanofibers
2222: 615: 582: 567: 535: 499: 371: 323: 315: 213: 2038: 1324:
Massimiliano Ventra; Stephane Evoy; James R. Heflin (30 June 2004).
2274: 883:
for the targeted species enables NEMS-based cantilevers to provide
677:(PDMS)-coated nanoelectromechanical system diaphragm embedded with 522:
conductivities of carbon based materials allow them to function as
244:, pumps, or motors, and may thereby form physical, biological, and 2883:
Pieters, P. (2005). "Wafer level packaging of micro/nanosystems".
2663: 1665: 1392: 1215: 710: 662:
PDMS-coated piezoresistive nanoelectromechanical systems diaphragm
588: 557: 518:) are fundamental to the stability of NEMS while the metallic and 498:
Many of the commonly used materials for NEMS technology have been
207: 232:. NEMS form the next logical miniaturization step from so-called 686: 383: 339: 3304: 2519:"Static and Dynamic Analysis of Carbon Nanotube-Based Switches" 1209:"The Breakthrough Advantage for FPGAs with Tri-Gate Technology" 2821:
The International Journal of Advanced Manufacturing Technology
374:. The FinFET originates from the research of Digh Hisamoto at 355: 3133:
Gupta, S.; Williams, O. A.; Patel, R. J.; Haenen, K. (2006).
1926:"Approaching the quantum limit of a nanomechanical resonator" 1066:
1987 Symposium on VLSI Technology. Digest of Technical Papers
3062:
Residual stress evaluation and modelling at the micron scale
591:
carbon nanotubes have also been proposed for nanoelectronic
236:, or MEMS devices. NEMS typically integrate transistor-like 2778: 2776: 2607:
Ke, Changhong; Espinosa, Horacio D.; Pugno, Nicola (2005).
1924:
LaHaye, M.D.; Buu, O.; Camarota, B.; Schwab, K.C. (2004).
1143:
International Technical Digest on Electron Devices Meeting
1033:
Handbook of Nanophysics: Nanoelectronics and Nanophotonics
248:. The name derives from typical device dimensions in the 3047: 1304: 1062:"Submicron Tungsten Gate MOSFET with 10 nm Gate Oxide" 2512: 2510: 1120:. Springer Science & Business Media. p. 11. 3405: 3345: 3338: 1736:Barton, R.A.; Parpia, J.; Craighead, H.G. (2011). 2860:Springer Handbook of Experimental Solid Mechanics 2517:Dequesnes, Marc; Tang, Zhi; Aluru, N. R. (2004). 1685: 1683: 1558:Philosophical Transactions of the Royal Society A 1183:Institute of Electrical and Electronics Engineers 1327:Introduction to Nanoscale Science and Technology 2526:Journal of Engineering Materials and Technology 849:Nanoelectromechanical systems mass spectrometer 1612: 1610: 3316: 1437: 1435: 1356: 1354: 1029:"Chapter 13: Metal Nanolayer-Base Transistor" 996:Semiconductor Devices: Physics and Technology 189: 8: 2558:Ke, Changhong; Espinosa, Horacio D. (2005). 1745:Journal of Vacuum Science & Technology B 923: 921: 27:Class of devices for nanoscale functionality 2295: 2293: 1731: 1729: 1373: 1371: 1095:. Symposium on VLSI Technology Short Course 3567: 3342: 3323: 3309: 3301: 1988:Journal of Vacuum Science and Technology B 1544: 1542: 1540: 1087:"FinFET: History, Fundamentals and Future" 196: 182: 29: 3224: 2662: 2273: 1857: 1391: 1281: 581:. When rolled at specific and discrete (" 326:. In 1962, Atalla and Kahng fabricated a 3101: 3099: 2346:Principles and applications of tribology 1117:FinFETs and Other Multi-Gate Transistors 2856:"A brief introduction to MEMS and NEMS" 1173:"IEEE Andrew S. Grove Award Recipients" 903: 855:Nanoelectromechanical-based cantilevers 530:constitutive elements in NEMS, such as 158: 130: 72: 44: 37: 3423:Differential technological development 965:Journal of The Electrochemical Society 887:measurements at room temperature with 2885:5th IEEE Conference on Nanotechnology 2246:"A Nano-Scale Graphene Accelerometer" 1077: 1075: 7: 1314:. Itrs.net. Retrieved on 2012-11-24. 297:There's Plenty of Room at the Bottom 122:List of semiconductor scale examples 3512:Future-oriented technology analysis 1551:"Nanomechanics of carbon nanotubes" 632:Nanoelectromechanical accelerometer 376:Hitachi Central Research Laboratory 3249:"Global Market of NEMS projection" 1092:University of California, Berkeley 861:California Institute of Technology 755:Reliability and Life Cycle of NEMS 390:fabricated FinFET devices down to 370:channel length, starting with the 25: 2442:Polymer Degradation and Stability 1239:Sensors and Actuators A: Physical 959:Frosch, C. J.; Derick, L (1957). 3566: 671:National University of Singapore 165: 117:Semiconductor device fabrication 562:Band structures computed using 33:Part of a series of articles on 2862:. Springer. pp. 203–228. 2384:10.1016/j.ultramic.2005.06.050 2082:10.1088/0957-4484/19/28/285204 442:approach uses the traditional 382:, a group led by Hisamoto and 234:microelectromechanical systems 1: 3539:Technology in science fiction 3378:Nanoelectromechanical systems 3142:Journal of Materials Research 3090:10.1016/S0026-2714(03)00119-7 3026:10.1016/S0304-3991(03)00077-9 2724:10.1103/PhysRevLett.89.255503 2454:10.1016/S0141-3910(01)00139-2 2302:Accounts of Chemical Research 2244:Grolms, M. (September 2019). 2180:10.1126/science.287.5459.1801 1251:10.1016/S0924-4247(99)00254-X 566:approximation for (6,0) CNT ( 431:Approaches to miniaturization 422:A key application of NEMS is 295:in his famous talk in 1959, " 222:Nanoelectromechanical systems 3078:Microelectronics Reliability 3065:(PhD). University of Oxford. 2616:Journal of Applied Mechanics 2567:Journal of Applied Mechanics 2399:IEEE Electron Device Letters 1027:Pasa, AndrĂ© Avelino (2010). 408:very-large-scale integration 332:metal–semiconductor junction 18:Nanoelectromechanical system 2986:Microelectronic Engineering 2681:10.1209/0295-5075/108/36006 2137:10.1126/science.289.5476.94 1619:Microelectronic Engineering 1549:Kis, A.; Zettl, A. (2008). 844:Nanoelectromechanical relay 645:Polydimethylsiloxane (PDMS) 614:properties when exposed to 73:Solid-state nanoelectronics 54:Molecular scale electronics 45:Single-molecule electronics 3616: 3544:Technology readiness level 3480:Technological unemployment 3388:Thermal copper pillar bump 3209:10.1038/s41467-022-29117-7 2961:10.1109/MEMSYS.2002.984099 1270:Nanotechnology Perceptions 1178:IEEE Andrew S. Grove Award 760:Reliability and Challenges 704: 280: 3562: 3527:Technological singularity 3487:Technological convergence 2998:10.1016/j.mee.2006.10.059 2955:. IEEE. pp. 97–100. 2930:10.1007/s11249-005-7791-3 2893:10.1109/NANO.2005.1500710 2858:. In Sharpe, W.N. (ed.). 2833:10.1007/s00170-014-6095-x 2284:10.1038/s41928-019-0287-1 1631:10.1016/j.mee.2008.06.019 1283:10.4024/N14HA06.ntp.02.03 932:; Evoy, Stephane (2004). 554:Metallic carbon nanotubes 452:electron-beam lithography 287:History of nanotechnology 2887:. IEEE. pp. 130–3. 2419:10.1109/LED.2012.2195152 2248:. Advanced Science News. 398:channel length in 1998. 3492:Technological evolution 3465:Exploratory engineering 2704:Physical Review Letters 2485:10.1021/acsnano.8b03709 2349:(2nd ed.). Wiley. 1953:10.1126/science.1094419 1891:Applied Physics Letters 1846:Applied Physics Letters 1704:10.1126/science.1156936 1515:10.1126/science.1136836 1151:10.1109/IEDM.1989.74182 1039:. pp. 13–1, 13–4. 930:Ventra, Massimiliano Di 827:Recently, nanowires of 600:CNT-based NEMS switches 424:atomic force microscope 418:Atomic force microscopy 3502:Technology forecasting 3497:Technological paradigm 3470:Proactionary principle 3284:10.1038/nnano.2006.208 2798:10.1002/smll.201001166 2759:10.1002/smll.200600271 1578:10.1098/rsta.2007.2174 1464:10.1002/adma.201301343 1114:Colinge, J.P. (2008). 928:Hughes, James E. Jr.; 863:developed a NEM-based 731: 571: 264:and sensors to detect 218: 172:Electronics portal 3428:Disruptive innovation 3373:Molecular electronics 3332:Emerging technologies 3264:Nature Nanotechnology 3189:Nature Communications 3162:10.1557/jmr.2006.0372 1380:Nature Communications 881:partition coefficient 869:mechanical resonances 859:Researchers from the 714: 669:Researchers from the 561: 476:molecular recognition 281:Further information: 211: 3475:Technological change 3418:Collingridge dilemma 3363:Flexible electronics 3106:Huang, X.J. (2008). 3059:Salvati, E. (2017). 3048:https://www.nist.gov 2854:Crone, W.C. (2008). 2343:Bhushan, B. (2013). 1264:de Haan, S. (2006). 1189:on September 9, 2018 1145:. pp. 833–836. 938:. Berlin: Springer. 829:chalcogenide glasses 675:polydimethylsiloxane 502:based, specifically 346:with a thickness of 59:Molecular logic gate 3532:Technology scouting 3507:Accelerating change 3276:2007NatNa...2..114L 3201:2022NatCo..13.1464A 3154:2006JMatR..21.3037G 2716:2002PhRvL..89y5503K 2673:2014EL....10836006G 2628:2005JAM....72..726K 2579:2005JAM....72..721K 2411:2012IEDL...33.1078G 2215:1996Natur.382...54E 2172:2000Sci...287.1801C 2129:2000Sci...289...94R 2074:2008Nanot..19B5204Y 2000:2006JVSTB..24.3144B 1945:2004Sci...304...74L 1903:2001ApPhL..79.3358M 1868:2004ApPhL..84.4469E 1807:2011NanoL..11.1232B 1757:2011JVSTB..29e0801B 1658:1998Natur.393...49T 1570:2008RSPTA.366.1591K 1564:(1870): 1591–1611. 1507:2007Sci...315..490B 1456:2013AdM....25.3962T 1402:2014NatCo...5.3638T 745:continuum mechanics 406:In 2000, the first 266:chemical substances 3549:Technology roadmap 2262:Nature Electronics 1444:Advanced Materials 1410:10.1038/ncomms4638 1310:2015-12-28 at the 749:molecular dynamics 732: 721:biological machine 707:Biological machine 572: 483:nanotube nanomotor 360:Multi-gate MOSFETs 254:quantum mechanical 219: 131:Related approaches 3582: 3581: 3401: 3400: 3119:978-1-60021-902-3 2918:Tribology Letters 2869:978-0-387-26883-5 2827:(9–12): 1679–90. 2636:10.1115/1.1985435 2587:10.1115/1.1985434 2538:10.1115/1.1751180 2479:(10): 9940–9946. 2356:978-1-118-40301-3 2314:10.1021/ar010110q 2008:10.1116/1.2388965 1911:10.1063/1.1418256 1876:10.1063/1.1755417 1815:10.1021/nl1042227 1765:10.1116/1.3623419 1698:(5874): 324–325. 1625:(10): 1979–1983. 1501:(5811): 490–493. 1337:978-1-4020-7720-3 1085:(June 11, 2012). 1083:Tsu-Jae King, Liu 1068:. pp. 61–62. 977:10.1149/1.2428650 945:978-1-4020-7720-3 891:at less than one 799:Residual stresses 683:Wheatstone bridge 679:silicon nanowires 494:Carbon allotropes 258:zero point motion 206: 205: 16:(Redirected from 3607: 3600:Applied sciences 3570: 3569: 3517:Horizon scanning 3433:Ephemeralization 3343: 3325: 3318: 3311: 3302: 3296: 3295: 3259: 3253: 3252: 3245: 3239: 3238: 3228: 3180: 3174: 3173: 3139: 3130: 3124: 3123: 3112:. Nova Science. 3103: 3094: 3093: 3073: 3067: 3066: 3056: 3050: 3044: 3038: 3037: 3020:(1–4): 481–494. 3008: 3002: 3001: 2981: 2975: 2974: 2948: 2942: 2941: 2913: 2907: 2906: 2880: 2874: 2873: 2851: 2845: 2844: 2816: 2810: 2809: 2780: 2771: 2770: 2742: 2736: 2735: 2699: 2693: 2692: 2666: 2646: 2640: 2639: 2613: 2604: 2598: 2597: 2595: 2589:. Archived from 2564: 2555: 2549: 2548: 2546: 2540:. Archived from 2523: 2514: 2505: 2504: 2464: 2458: 2457: 2437: 2431: 2430: 2394: 2388: 2387: 2378:(1–4): 238–247. 2367: 2361: 2360: 2340: 2334: 2333: 2297: 2288: 2287: 2277: 2256: 2250: 2249: 2241: 2235: 2234: 2223:10.1038/382054a0 2198: 2192: 2191: 2166:(5459): 1801–4. 2155: 2149: 2148: 2108: 2102: 2101: 2057: 2051: 2050: 2022: 2016: 2015: 2010:. Archived from 1979: 1973: 1972: 1930: 1921: 1915: 1914: 1886: 1880: 1879: 1861: 1859:cond-mat/0402528 1841: 1835: 1834: 1792: 1783: 1777: 1776: 1742: 1733: 1724: 1723: 1687: 1678: 1677: 1641: 1635: 1634: 1614: 1605: 1604: 1602: 1596:. Archived from 1555: 1546: 1535: 1534: 1490: 1484: 1483: 1439: 1430: 1429: 1395: 1375: 1366: 1365: 1358: 1349: 1348: 1346: 1344: 1321: 1315: 1302: 1296: 1295: 1285: 1261: 1255: 1254: 1234: 1228: 1227: 1225: 1223: 1213: 1205: 1199: 1198: 1196: 1194: 1185:. Archived from 1169: 1163: 1162: 1138: 1132: 1131: 1111: 1105: 1104: 1102: 1100: 1079: 1070: 1069: 1057: 1051: 1050: 1024: 1018: 1017: 1002:(2nd ed.). 1001: 987: 981: 980: 956: 950: 949: 925: 916: 915: 908: 725:protein dynamics 575:Carbon nanotubes 508:carbon nanotubes 444:microfabrication 412:Millipede memory 395: 256:effects such as 246:chemical sensors 240:with mechanical 198: 191: 184: 170: 169: 112:Multigate device 30: 21: 3615: 3614: 3610: 3609: 3608: 3606: 3605: 3604: 3595:Nanoelectronics 3585: 3584: 3583: 3578: 3558: 3397: 3358:Electronic nose 3334: 3329: 3299: 3261: 3260: 3256: 3247: 3246: 3242: 3182: 3181: 3177: 3148:(12): 3037–46. 3137: 3132: 3131: 3127: 3120: 3105: 3104: 3097: 3075: 3074: 3070: 3058: 3057: 3053: 3045: 3041: 3014:Ultramicroscopy 3010: 3009: 3005: 2983: 2982: 2978: 2971: 2950: 2949: 2945: 2915: 2914: 2910: 2903: 2882: 2881: 2877: 2870: 2853: 2852: 2848: 2818: 2817: 2813: 2782: 2781: 2774: 2744: 2743: 2739: 2701: 2700: 2696: 2648: 2647: 2643: 2611: 2606: 2605: 2601: 2593: 2562: 2557: 2556: 2552: 2544: 2521: 2516: 2515: 2508: 2466: 2465: 2461: 2439: 2438: 2434: 2396: 2395: 2391: 2372:Ultramicroscopy 2369: 2368: 2364: 2357: 2342: 2341: 2337: 2299: 2298: 2291: 2258: 2257: 2253: 2243: 2242: 2238: 2209:(6586): 54–56. 2200: 2199: 2195: 2157: 2156: 2152: 2123:(5476): 94–97. 2110: 2109: 2105: 2059: 2058: 2054: 2039:10.1038/421496a 2024: 2023: 2019: 1981: 1980: 1976: 1939:(5667): 74–77. 1928: 1923: 1922: 1918: 1897:(20): 3358–60. 1888: 1887: 1883: 1852:(22): 4469–71. 1843: 1842: 1838: 1790: 1785: 1784: 1780: 1740: 1735: 1734: 1727: 1689: 1688: 1681: 1652:(6680): 49–52. 1643: 1642: 1638: 1616: 1615: 1608: 1600: 1553: 1548: 1547: 1538: 1492: 1491: 1487: 1441: 1440: 1433: 1377: 1376: 1369: 1360: 1359: 1352: 1342: 1340: 1338: 1323: 1322: 1318: 1312:Wayback Machine 1303: 1299: 1263: 1262: 1258: 1236: 1235: 1231: 1221: 1219: 1211: 1207: 1206: 1202: 1192: 1190: 1171: 1170: 1166: 1140: 1139: 1135: 1128: 1113: 1112: 1108: 1098: 1096: 1081: 1080: 1073: 1059: 1058: 1054: 1047: 1026: 1025: 1021: 1014: 999: 989: 988: 984: 958: 957: 953: 946: 927: 926: 919: 910: 909: 905: 901: 889:mass resolution 857: 840: 818: 801: 780: 771: 762: 757: 741: 709: 703: 664: 647: 634: 611: 602: 556: 516:Young's modulus 496: 491: 433: 420: 404: 393: 334:(M–S junction) 293:Richard Feynman 289: 279: 274: 238:nanoelectronics 202: 164: 154: 126: 92:Nanolithography 68: 64:Molecular wires 39:Nanoelectronics 28: 23: 22: 15: 12: 11: 5: 3613: 3611: 3603: 3602: 3597: 3587: 3586: 3580: 3579: 3577: 3576: 3563: 3560: 3559: 3557: 3556: 3551: 3546: 3541: 3536: 3535: 3534: 3529: 3524: 3519: 3514: 3509: 3499: 3494: 3489: 3484: 3483: 3482: 3472: 3467: 3462: 3461: 3460: 3455: 3450: 3445: 3435: 3430: 3425: 3420: 3415: 3409: 3407: 3403: 3402: 3399: 3398: 3396: 3395: 3390: 3385: 3380: 3375: 3370: 3365: 3360: 3355: 3349: 3347: 3340: 3336: 3335: 3330: 3328: 3327: 3320: 3313: 3305: 3298: 3297: 3270:(2): 114–120. 3254: 3240: 3175: 3125: 3118: 3095: 3084:(7): 1049–60. 3068: 3051: 3039: 3003: 2992:(3): 387–412. 2976: 2969: 2943: 2908: 2901: 2875: 2868: 2846: 2811: 2772: 2753:(12): 1484–9. 2737: 2710:(25): 255503. 2694: 2651:Europhys. Lett 2641: 2599: 2596:on 2011-07-13. 2550: 2547:on 2012-12-18. 2506: 2459: 2448:(3): 505–510. 2432: 2405:(7): 1078–80. 2389: 2362: 2355: 2335: 2289: 2268:(9): 394–404. 2251: 2236: 2193: 2150: 2103: 2068:(28): 285204. 2062:Nanotechnology 2052: 2017: 2014:on 2012-03-23. 1974: 1916: 1881: 1836: 1778: 1725: 1679: 1636: 1606: 1603:on 2011-09-27. 1536: 1485: 1450:(29): 3962–7. 1431: 1367: 1350: 1336: 1316: 1297: 1276:(3): 267–275. 1256: 1245:(2): 100–107. 1229: 1200: 1164: 1133: 1126: 1106: 1071: 1052: 1045: 1019: 1012: 982: 951: 944: 917: 902: 900: 897: 873:piezoresistive 856: 853: 852: 851: 846: 839: 836: 817: 814: 800: 797: 779: 776: 770: 767: 761: 758: 756: 753: 740: 737: 723:that utilizes 705:Main article: 702: 701:Biohybrid NEMS 699: 663: 660: 646: 643: 633: 630: 610: 607: 601: 598: 555: 552: 495: 492: 490: 487: 446:methods, i.e. 432: 429: 419: 416: 403: 400: 283:Nanotechnology 278: 275: 273: 270: 262:accelerometers 204: 203: 201: 200: 193: 186: 178: 175: 174: 161: 160: 156: 155: 153: 152: 147: 142: 136: 133: 132: 128: 127: 125: 124: 119: 114: 109: 104: 99: 94: 89: 84: 78: 75: 74: 70: 69: 67: 66: 61: 56: 50: 47: 46: 42: 41: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3612: 3601: 3598: 3596: 3593: 3592: 3590: 3575: 3574: 3565: 3564: 3561: 3555: 3554:Transhumanism 3552: 3550: 3547: 3545: 3542: 3540: 3537: 3533: 3530: 3528: 3525: 3523: 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3504: 3503: 3500: 3498: 3495: 3493: 3490: 3488: 3485: 3481: 3478: 3477: 3476: 3473: 3471: 3468: 3466: 3463: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3440: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3410: 3408: 3404: 3394: 3391: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3350: 3348: 3344: 3341: 3337: 3333: 3326: 3321: 3319: 3314: 3312: 3307: 3306: 3303: 3293: 3289: 3285: 3281: 3277: 3273: 3269: 3265: 3258: 3255: 3251:. 2012-10-24. 3250: 3244: 3241: 3236: 3232: 3227: 3222: 3218: 3214: 3210: 3206: 3202: 3198: 3194: 3190: 3186: 3179: 3176: 3171: 3167: 3163: 3159: 3155: 3151: 3147: 3143: 3136: 3129: 3126: 3121: 3115: 3111: 3110: 3102: 3100: 3096: 3091: 3087: 3083: 3079: 3072: 3069: 3064: 3063: 3055: 3052: 3049: 3043: 3040: 3035: 3031: 3027: 3023: 3019: 3015: 3007: 3004: 2999: 2995: 2991: 2987: 2980: 2977: 2972: 2970:0-7803-7185-2 2966: 2962: 2958: 2954: 2947: 2944: 2939: 2935: 2931: 2927: 2923: 2919: 2912: 2909: 2904: 2902:0-7803-9199-3 2898: 2894: 2890: 2886: 2879: 2876: 2871: 2865: 2861: 2857: 2850: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2815: 2812: 2807: 2803: 2799: 2795: 2791: 2787: 2779: 2777: 2773: 2768: 2764: 2760: 2756: 2752: 2748: 2741: 2738: 2733: 2729: 2725: 2721: 2717: 2713: 2709: 2705: 2698: 2695: 2690: 2686: 2682: 2678: 2674: 2670: 2665: 2660: 2656: 2652: 2645: 2642: 2637: 2633: 2629: 2625: 2621: 2617: 2610: 2603: 2600: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2561: 2554: 2551: 2543: 2539: 2535: 2531: 2527: 2520: 2513: 2511: 2507: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2463: 2460: 2455: 2451: 2447: 2443: 2436: 2433: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2393: 2390: 2385: 2381: 2377: 2373: 2366: 2363: 2358: 2352: 2348: 2347: 2339: 2336: 2331: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2296: 2294: 2290: 2285: 2281: 2276: 2271: 2267: 2263: 2255: 2252: 2247: 2240: 2237: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2197: 2194: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2154: 2151: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2107: 2104: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2056: 2053: 2048: 2044: 2040: 2036: 2033:(6922): 496. 2032: 2028: 2021: 2018: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1978: 1975: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1927: 1920: 1917: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1882: 1877: 1873: 1869: 1865: 1860: 1855: 1851: 1847: 1840: 1837: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1804: 1801:(3): 1232–6. 1800: 1796: 1789: 1782: 1779: 1774: 1770: 1766: 1762: 1758: 1754: 1751:(5): 050801. 1750: 1746: 1739: 1732: 1730: 1726: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1686: 1684: 1680: 1675: 1671: 1667: 1666:10.1038/29954 1663: 1659: 1655: 1651: 1647: 1640: 1637: 1632: 1628: 1624: 1620: 1613: 1611: 1607: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1552: 1545: 1543: 1541: 1537: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1489: 1486: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1438: 1436: 1432: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1394: 1389: 1385: 1381: 1374: 1372: 1368: 1363: 1357: 1355: 1351: 1339: 1333: 1329: 1328: 1320: 1317: 1313: 1309: 1306: 1301: 1298: 1293: 1289: 1284: 1279: 1275: 1271: 1267: 1260: 1257: 1252: 1248: 1244: 1240: 1233: 1230: 1217: 1210: 1204: 1201: 1188: 1184: 1180: 1179: 1174: 1168: 1165: 1160: 1156: 1152: 1148: 1144: 1137: 1134: 1129: 1127:9780387717517 1123: 1119: 1118: 1110: 1107: 1094: 1093: 1088: 1084: 1078: 1076: 1072: 1067: 1063: 1056: 1053: 1048: 1046:9781420075519 1042: 1038: 1034: 1030: 1023: 1020: 1015: 1013:0-471-33372-7 1009: 1006:. p. 4. 1005: 998: 997: 992: 991:Sze, Simon M. 986: 983: 978: 974: 970: 966: 962: 955: 952: 947: 941: 937: 936: 931: 924: 922: 918: 913: 907: 904: 898: 896: 894: 890: 886: 885:chemisorption 882: 878: 874: 870: 866: 862: 854: 850: 847: 845: 842: 841: 837: 835: 832: 830: 825: 822: 815: 813: 809: 805: 798: 796: 792: 788: 784: 778:Manufacturing 777: 775: 768: 766: 759: 754: 752: 750: 746: 738: 736: 730: 726: 722: 718: 713: 708: 700: 698: 694: 692: 688: 684: 680: 676: 672: 667: 661: 659: 655: 651: 644: 642: 638: 631: 629: 626: 621: 617: 608: 606: 599: 597: 594: 593:interconnects 590: 586: 584: 580: 576: 569: 565: 564:tight binding 560: 553: 551: 547: 545: 539: 537: 533: 527: 525: 521: 520:semiconductor 517: 513: 509: 505: 501: 493: 488: 486: 484: 479: 477: 473: 472:self-assembly 468: 464: 462: 461:semiconductor 458: 453: 449: 445: 441: 436: 430: 428: 425: 417: 415: 413: 409: 401: 399: 397: 389: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 322:thickness of 321: 317: 314:fabricated a 313: 309: 305: 300: 298: 294: 288: 284: 276: 271: 269: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 215: 210: 199: 194: 192: 187: 185: 180: 179: 177: 176: 173: 168: 163: 162: 157: 151: 150:Nanomechanics 148: 146: 145:Nanophotonics 143: 141: 138: 137: 135: 134: 129: 123: 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 82:Nanocircuitry 80: 79: 77: 76: 71: 65: 62: 60: 57: 55: 52: 51: 49: 48: 43: 40: 36: 32: 31: 19: 3571: 3458:Robot ethics 3377: 3267: 3263: 3257: 3243: 3192: 3188: 3178: 3145: 3141: 3128: 3108: 3081: 3077: 3071: 3061: 3054: 3042: 3017: 3013: 3006: 2989: 2985: 2979: 2952: 2946: 2924:(1): 43–52. 2921: 2917: 2911: 2884: 2878: 2859: 2849: 2824: 2820: 2814: 2792:(1): 79–86. 2789: 2785: 2750: 2746: 2740: 2707: 2703: 2697: 2657:(3): 36006. 2654: 2650: 2644: 2619: 2615: 2602: 2591:the original 2570: 2566: 2553: 2542:the original 2529: 2525: 2476: 2472: 2462: 2445: 2441: 2435: 2402: 2398: 2392: 2375: 2371: 2365: 2345: 2338: 2308:(7): 491–9. 2305: 2301: 2265: 2261: 2254: 2239: 2206: 2202: 2196: 2163: 2159: 2153: 2120: 2116: 2106: 2065: 2061: 2055: 2030: 2026: 2020: 2012:the original 1991: 1987: 1977: 1936: 1932: 1919: 1894: 1890: 1884: 1849: 1845: 1839: 1798: 1795:Nano Letters 1794: 1781: 1748: 1744: 1695: 1691: 1649: 1645: 1639: 1622: 1618: 1598:the original 1561: 1557: 1498: 1494: 1488: 1447: 1443: 1383: 1379: 1364:. July 2011. 1341:. Retrieved 1330:. Springer. 1326: 1319: 1300: 1273: 1269: 1259: 1242: 1238: 1232: 1220:. Retrieved 1203: 1191:. Retrieved 1187:the original 1176: 1167: 1142: 1136: 1116: 1109: 1097:. Retrieved 1090: 1065: 1055: 1032: 1022: 995: 985: 968: 964: 954: 934: 906: 858: 838:Applications 833: 826: 823: 819: 810: 806: 802: 793: 789: 785: 781: 772: 763: 742: 733: 695: 668: 665: 656: 652: 648: 639: 635: 612: 609:Difficulties 603: 587: 573: 548: 540: 528: 497: 480: 465: 437: 434: 421: 405: 378:in 1989. At 352:Bijan Davari 301: 291:As noted by 290: 268:in the air. 225: 221: 220: 96: 3522:Moore's law 3453:Neuroethics 3448:Cyberethics 3393:Twistronics 3383:Spintronics 3346:Electronics 3195:(1): 1464. 1994:(6): 3144. 1343:24 November 739:Simulations 673:invented a 544:Transistors 524:transistors 388:Chenming Hu 380:UC Berkeley 350:. In 1987, 324:100 nm 107:Moore's law 3589:Categories 3413:Automation 3353:E-textiles 2622:(5): 726. 2573:(5): 721. 2532:(3): 230. 2275:2003.07115 971:(9): 547. 899:References 877:metal film 865:cantilever 729:nanoscales 532:nanomotors 368:20 nm 348:10 nm 344:thin films 338:that used 336:transistor 320:gate oxide 277:Background 140:Nanoionics 102:Nanosensor 3443:Bioethics 3368:Memristor 3217:2041-1723 3170:136894526 2938:135754653 2841:253682814 2689:118792981 2664:1411.0375 1969:262262236 1393:1212.1347 1305:ITRS Home 1292:1660-6795 1159:114072236 1037:CRC Press 489:Materials 467:Bottom-up 457:nanowires 328:nanolayer 312:Bell Labs 250:nanometer 242:actuators 230:nanoscale 87:Nanowires 3292:18654230 3235:35304454 3034:12801705 2806:21104780 2767:17193010 2732:12484896 2501:52271550 2493:30212184 2473:ACS Nano 2427:40641941 2330:41310254 2322:12118988 2188:10710305 2145:10884232 2090:21828728 2047:12556880 1961:15064412 1823:21294522 1773:20385091 1712:18420920 1594:10224625 1586:18192169 1531:17754057 1523:17255506 1472:23798476 1426:20377068 1418:24710311 1386:: 3638. 1308:Archived 993:(2002). 893:attogram 717:ribosome 625:band gap 620:helicity 589:Metallic 579:graphene 536:switches 512:graphene 440:top-down 362:enabled 217:package. 3272:Bibcode 3226:8933423 3197:Bibcode 3150:Bibcode 2712:Bibcode 2669:Bibcode 2624:Bibcode 2575:Bibcode 2407:Bibcode 2231:4332194 2211:Bibcode 2168:Bibcode 2160:Science 2125:Bibcode 2117:Science 2098:2228946 2070:Bibcode 1996:Bibcode 1941:Bibcode 1933:Science 1899:Bibcode 1864:Bibcode 1803:Bibcode 1753:Bibcode 1720:9585810 1692:Science 1674:4403144 1654:Bibcode 1566:Bibcode 1503:Bibcode 1495:Science 1480:5089294 1452:Bibcode 1398:Bibcode 504:diamond 474:and/or 448:optical 364:scaling 354:led an 318:with a 272:History 159:Portals 3438:Ethics 3406:Topics 3339:Fields 3290:  3233:  3223:  3215:  3168:  3116:  3032:  2967:  2936:  2899:  2866:  2839:  2804:  2765:  2730:  2687:  2499:  2491:  2425:  2353:  2328:  2320:  2229:  2203:Nature 2186:  2143:  2096:  2088:  2045:  2027:Nature 1967:  1959:  1831:996449 1829:  1821:  1771:  1718:  1710:  1672:  1646:Nature 1592:  1584:  1529:  1521:  1478:  1470:  1424:  1416:  1334:  1290:  1222:4 July 1218:. 2014 1193:4 July 1157:  1124:  1099:9 July 1043:  1010:  942:  816:Future 616:oxygen 583:chiral 568:zigzag 500:carbon 394:  372:FinFET 366:below 330:-base 316:MOSFET 304:Atalla 214:SiTime 3166:S2CID 3138:(PDF) 2934:S2CID 2837:S2CID 2786:Small 2747:Small 2685:S2CID 2659:arXiv 2612:(PDF) 2594:(PDF) 2563:(PDF) 2545:(PDF) 2522:(PDF) 2497:S2CID 2423:S2CID 2326:S2CID 2270:arXiv 2227:S2CID 2094:S2CID 1965:S2CID 1929:(PDF) 1854:arXiv 1827:S2CID 1791:(PDF) 1769:S2CID 1741:(PDF) 1716:S2CID 1670:S2CID 1601:(PDF) 1590:S2CID 1554:(PDF) 1527:S2CID 1476:S2CID 1422:S2CID 1388:arXiv 1216:Intel 1212:(PDF) 1155:S2CID 1004:Wiley 1000:(PDF) 875:thin 867:with 719:is a 342:(Au) 308:Kahng 3573:List 3288:PMID 3231:PMID 3213:ISSN 3114:ISBN 3030:PMID 2965:ISBN 2897:ISBN 2864:ISBN 2802:PMID 2763:PMID 2728:PMID 2489:PMID 2351:ISBN 2318:PMID 2184:PMID 2141:PMID 2086:PMID 2043:PMID 1957:PMID 1819:PMID 1708:PMID 1582:PMID 1519:PMID 1468:PMID 1414:PMID 1345:2012 1332:ISBN 1288:ISSN 1224:2019 1195:2019 1122:ISBN 1101:2019 1041:ISBN 1008:ISBN 940:ISBN 747:and 687:CMOS 510:and 438:The 402:NEMS 384:TSMC 340:gold 306:and 285:and 226:NEMS 97:NEMS 3280:doi 3221:PMC 3205:doi 3158:doi 3086:doi 3022:doi 2994:doi 2957:doi 2926:doi 2889:doi 2829:doi 2794:doi 2755:doi 2720:doi 2677:doi 2655:108 2632:doi 2583:doi 2534:doi 2530:126 2481:doi 2450:doi 2415:doi 2380:doi 2376:105 2310:doi 2280:doi 2219:doi 2207:382 2176:doi 2164:287 2133:doi 2121:289 2078:doi 2035:doi 2031:421 2004:doi 1949:doi 1937:304 1907:doi 1872:doi 1811:doi 1761:doi 1700:doi 1696:320 1662:doi 1650:393 1627:doi 1574:doi 1562:366 1511:doi 1499:315 1460:doi 1406:doi 1278:doi 1247:doi 1147:doi 973:doi 969:104 727:on 386:'s 356:IBM 310:at 3591:: 3286:. 3278:. 3266:. 3229:. 3219:. 3211:. 3203:. 3193:13 3191:. 3187:. 3164:. 3156:. 3146:21 3144:. 3140:. 3098:^ 3082:43 3080:. 3028:. 3018:97 3016:. 2990:84 2988:. 2963:. 2932:. 2922:20 2920:. 2895:. 2835:. 2825:74 2823:. 2800:. 2788:. 2775:^ 2761:. 2749:. 2726:. 2718:. 2708:89 2706:. 2683:. 2675:. 2667:. 2653:. 2630:. 2620:72 2618:. 2614:. 2581:. 2571:72 2569:. 2565:. 2528:. 2524:. 2509:^ 2495:. 2487:. 2477:12 2475:. 2471:. 2446:73 2444:. 2421:. 2413:. 2403:33 2401:. 2374:. 2324:. 2316:. 2306:35 2304:. 2292:^ 2278:. 2264:. 2225:. 2217:. 2205:. 2182:. 2174:. 2162:. 2139:. 2131:. 2119:. 2115:. 2092:. 2084:. 2076:. 2066:19 2064:. 2041:. 2029:. 2002:. 1992:24 1990:. 1986:. 1963:. 1955:. 1947:. 1935:. 1931:. 1905:. 1895:79 1893:. 1870:. 1862:. 1850:84 1848:. 1825:. 1817:. 1809:. 1799:11 1797:. 1793:. 1767:. 1759:. 1749:29 1747:. 1743:. 1728:^ 1714:. 1706:. 1694:. 1682:^ 1668:. 1660:. 1648:. 1623:85 1621:. 1609:^ 1588:. 1580:. 1572:. 1560:. 1556:. 1539:^ 1525:. 1517:. 1509:. 1497:. 1474:. 1466:. 1458:. 1448:25 1446:. 1434:^ 1420:. 1412:. 1404:. 1396:. 1382:. 1370:^ 1353:^ 1286:. 1272:. 1268:. 1243:80 1241:. 1214:. 1181:. 1175:. 1153:. 1089:. 1074:^ 1064:. 1035:. 1031:. 967:. 963:. 920:^ 715:A 691:IC 534:, 526:. 506:, 485:. 450:, 396:nm 392:17 3324:e 3317:t 3310:v 3294:. 3282:: 3274:: 3268:2 3237:. 3207:: 3199:: 3172:. 3160:: 3152:: 3122:. 3092:. 3088:: 3036:. 3024:: 3000:. 2996:: 2973:. 2959:: 2940:. 2928:: 2905:. 2891:: 2872:. 2843:. 2831:: 2808:. 2796:: 2790:7 2769:. 2757:: 2751:2 2734:. 2722:: 2714:: 2691:. 2679:: 2671:: 2661:: 2638:. 2634:: 2626:: 2585:: 2577:: 2536:: 2503:. 2483:: 2456:. 2452:: 2429:. 2417:: 2409:: 2386:. 2382:: 2359:. 2332:. 2312:: 2286:. 2282:: 2272:: 2266:2 2233:. 2221:: 2213:: 2190:. 2178:: 2170:: 2147:. 2135:: 2127:: 2100:. 2080:: 2072:: 2049:. 2037:: 2006:: 1998:: 1971:. 1951:: 1943:: 1913:. 1909:: 1901:: 1878:. 1874:: 1866:: 1856:: 1833:. 1813:: 1805:: 1775:. 1763:: 1755:: 1722:. 1702:: 1676:. 1664:: 1656:: 1633:. 1629:: 1576:: 1568:: 1533:. 1513:: 1505:: 1482:. 1462:: 1454:: 1428:. 1408:: 1400:: 1390:: 1384:5 1347:. 1294:. 1280:: 1274:2 1253:. 1249:: 1226:. 1197:. 1161:. 1149:: 1130:. 1103:. 1049:. 1016:. 979:. 975:: 948:. 914:. 689:- 224:( 197:e 190:t 183:v 20:)

Index

Nanoelectromechanical system
Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e

SiTime
nanoscale
microelectromechanical systems
nanoelectronics
actuators
chemical sensors
nanometer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑