Knowledge

Optomotor response

Source πŸ“

183:
display pattern, the periodic contrast and the spatial organization of the stimulus, e.g. rotation or expansion. Typically, low spatial-period patterns (i.e. narrow stripes) produce weaker steering responses than high spatial-period patterns (i.e. wide stripes). The strength of the optomotor response to different temporal frequencies for are state-dependent: stationary flies have a peak temporal frequency optima around 1 Hz, while walking flies have a peak behavior response to optic flow between 1–4 Hz and the optimal frequency during flight is much faster, between 3–12 Hz
75: 113:
patterns are elicited by distinct flight maneuvers; for instance, rotational optic flow is generated by body rotation during hovering, whereas expansion optic flow is elicited by body translation during straight flight. As such, flies respond to panoramic retinal patterns of visual expansion with
182:
Both behavioral and physiological optomotor responses have distinct tuning curves for the temporal, spatial and contrast structure of moving images. The magnitude and time-course of the optomotor response to optic flow depends on the temporal frequency of image motion, the spatial period of the
63:. The optomotor response has algorithmic properties such that the direction of the whole-field coherent motion dictates the direction of the behavioral output (e.g., leftward visual stimuli lead to turning left, and rightward visual stimuli lead to turning right). For instance, when 94:
to correct unplanned course perturbations while navigating through their environment, such as current shifts around a swimming fish or air gusts around flying insects. The response is rapid and
174:
large-field rotation or expansion stimuli alternating with periods of closed-loop stripe fixation in which the animal has control of the position of a single vertical bar.
105:
The optomotor response is a central feature of a fly's flight control system: flies subject to unplanned apparent self-motion move to minimize the resultant
158:
transformations underlying that behavior. To describe the physiological or behavioral properties of the optomotor response, researchers typically vary the
114:
robust steering maneuvers away from the expansion point (mimicking an approaching object) to avoid collisions and maintain upwind flight postures.
246:
Borst, A; Bahde, S (1993). "Comparison between the movement detection systems underlying the optomotor and the landing response in the housefly".
634:
Collett, TS (1980). "Angular tracking and the optomotor response an analysis of visual reflex interaction in a hoverfly".
669:
Gotz, Karl G.; Wehrhahn, Christian (November 1984). "Optomotor control of the force of flight in Drosophila and Musca".
591:
Reichardt, W; Poggio, T (1976). "Visual control of orientation behaviour in the fly: Part I. A quantitative analysis".
1040:
GΓΆtz, Karl Georg; Wenking, Hans (1 September 1973). "Visual control of locomotion in the walking fruitflyDrosophila".
109:(retinal movement patterns) and correct involuntary deviations from course. In their natural environments, full-field 911:
Warrant, E. J.; Bidweii, N. J.; O'Carroll, D. C. (July 1996). "Insect motion detectors matched to visual ecology".
772:"The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila" 1143: 1138: 79: 155: 71:
black and white grating pattern, the larvae will turn and swim in the direction of the perceived motion.
167: 988: 920: 868:
GΓΆtz, Karl Georg (1 September 1975). "The optomotor equilibrium of theDrosophila navigation system".
464:
Lehrer, M. (1993). "Spatial vision in the honeybee: the use of different cues in different tasks".
1065: 975:
Chiappe, M. Eugenia; Seelig, Johannes D.; Reiser, Michael B.; Jayaraman, Vivek (24 August 2010).
952: 893: 694: 651: 616: 489: 446: 403: 263: 228: 32: 20: 378:
Schmitt, EA; Dowling, JE (1994). "Early eye morphogenesis in the zebrafish, Brachydanio rerio".
1114: 1106: 1057: 1022: 1004: 944: 936: 885: 850: 842: 801: 793: 743: 735: 686: 608: 573: 524: 481: 438: 395: 322: 220: 135: 48: 36: 283:
Proceedings of the International Symposium on the Functional Organization of the Compound Eye
203:
GΓΆtz, Karl Georg (June 1968). "Flight control in Drosophila by visual perception of motion".
1096: 1083:
Dickinson, Michael H.; Straw, Andrew D.; Rohrseitz, Nicola; Fry, Steven N. (15 April 2009).
1049: 1012: 996: 928: 877: 832: 783: 770:
Frye, Mark A.; Condro, Michael; Chow, Dawnis M.; Duistermars, Brian J. (15 September 2007).
725: 678: 643: 600: 563: 555: 516: 473: 430: 387: 312: 255: 212: 147: 281:
Reichardt, W (1966). "Detection of single quanta by the compound eye of the fly Mollusca".
992: 924: 1017: 976: 568: 543: 434: 301:"Retinal neurogenesis: the formation of the initial central patch of postmitotic cells" 159: 151: 837: 820: 150:. In flies, the optomotor response is used to understand the functional properties of 134:
as it can be reliably evoked from 7 days post fertilization throughout adulthood. The
1132: 477: 143: 142:(color) of the stripes can be manipulated to assess the specific properties of their 131: 99: 1069: 897: 698: 655: 620: 493: 450: 407: 267: 232: 956: 74: 1000: 604: 544:"Dynamics of optomotor responses in drosophila to perturbations in optic flow" 139: 110: 106: 68: 1110: 1061: 1008: 940: 889: 846: 797: 739: 690: 821:"Wavelength dependence of the optomotor response in zebrafish (Danio rerio)" 714:"The free-flight response of Drosophila to motion of the visual environment" 171: 127: 64: 1118: 1026: 948: 854: 805: 747: 577: 528: 520: 326: 317: 300: 485: 442: 399: 391: 224: 612: 163: 95: 52: 28: 1101: 1084: 1053: 881: 788: 771: 730: 713: 682: 647: 559: 345:
Buchner, E (1984). "Behavioral analysis of spatial vision in insects".
259: 216: 91: 56: 44: 932: 60: 507:
Fleisch, VC; Neuhauss, SCF (2006). "Visual Behavior in Zebrafish".
123: 73: 977:"Walking Modulates Speed Sensitivity in Drosophila Motion Vision" 40: 1085:"Visual control of flight speed in Drosophila melanogaster" 130:, the optomotor response is frequently used as a metric of 154:
in the context of a specific behavior and examine the
16:
Innate orienting behavior common in fish and insects
712:Lehmann, Fritz-Olaf; Mronz, Markus (1 July 2008). 819:Krauss, Andrea; Neumeyer, Christa (1 May 2003). 421:Arnold, G. P. (1974). "Rheotropism in fishes". 146:, such as testing the contribution of color to 122:The optomotor response is frequently used as a 970: 968: 966: 373: 371: 340: 338: 336: 8: 542:Theobald, JC; Ringach, DL; Frye, MA (2010). 98:, with pure delay times of just 20-40ms for 765: 763: 761: 759: 757: 364:. Oxford: Pergamon Press. pp. 673–684. 347:Photoreception and Vision in Invertebrates 198: 196: 1100: 1016: 836: 787: 729: 567: 316: 294: 292: 90:The optomotor response is essential for 192: 162:of projected visual patterns and their 362:Visual guidance of flies during flight 7: 435:10.1111/j.1469-185X.1974.tb01173.x 14: 1042:Journal of Comparative Physiology 870:Journal of Comparative Physiology 636:Journal of Comparative Physiology 170:is often composed of periods of 1089:Journal of Experimental Biology 776:Journal of Experimental Biology 718:Journal of Experimental Biology 593:Quarterly Reviews of Biophysics 548:Journal of Experimental Biology 1: 838:10.1016/S0042-6989(03)00090-7 478:10.1016/0042-6989(94)90282-8 67:larvae are presented with a 1160: 299:Hu, M; Easter, SS (1999). 1001:10.1016/j.cub.2010.06.072 605:10.1017/S0033583500002523 80:Drosophila melanogaster 671:Biological Cybernetics 521:10.1089/zeb.2006.3.191 318:10.1006/dbio.1998.9031 82: 78:Optomotor response in 35:evoked by whole-field 392:10.1002/cne.903440404 118:Research Applications 77: 360:Wehrhahn, C (1985). 993:2010CBio...20.1470C 925:1996Natur.382...63O 1102:10.1242/jeb.020768 1054:10.1007/BF00694232 882:10.1007/BF00613835 789:10.1242/jeb.007807 731:10.1242/jeb.008268 683:10.1007/BF00357926 648:10.1007/BF00606306 560:10.1242/jeb.037945 423:Biological Reviews 260:10.1007/BF00365216 217:10.1007/BF00272517 132:visual performance 83: 33:orienting behavior 25:optomotor response 21:behavioral biology 987:(16): 1470–1475. 831:(11): 1275–1284. 782:(18): 3218–3227. 724:(13): 2026–2045. 472:(18): 2363–2385. 39:and is common to 1151: 1123: 1122: 1104: 1095:(8): 1120–1130. 1080: 1074: 1073: 1037: 1031: 1030: 1020: 972: 961: 960: 933:10.1038/382063a0 908: 902: 901: 865: 859: 858: 840: 816: 810: 809: 791: 767: 752: 751: 733: 709: 703: 702: 666: 660: 659: 631: 625: 624: 588: 582: 581: 571: 554:(8): 1366–1375. 539: 533: 532: 504: 498: 497: 461: 455: 454: 418: 412: 411: 375: 366: 365: 357: 351: 350: 342: 331: 330: 320: 296: 287: 286: 278: 272: 271: 243: 237: 236: 200: 148:motion detection 124:behavioral assay 1159: 1158: 1154: 1153: 1152: 1150: 1149: 1148: 1144:Insect behavior 1139:Fish physiology 1129: 1128: 1127: 1126: 1082: 1081: 1077: 1039: 1038: 1034: 981:Current Biology 974: 973: 964: 919:(6586): 63–66. 910: 909: 905: 867: 866: 862: 825:Vision Research 818: 817: 813: 769: 768: 755: 711: 710: 706: 668: 667: 663: 633: 632: 628: 590: 589: 585: 541: 540: 536: 506: 505: 501: 466:Vision Research 463: 462: 458: 420: 419: 415: 377: 376: 369: 359: 358: 354: 344: 343: 334: 298: 297: 290: 280: 279: 275: 245: 244: 240: 202: 201: 194: 189: 180: 178:Characteristics 168:stimulus regime 152:neural circuits 120: 88: 17: 12: 11: 5: 1157: 1155: 1147: 1146: 1141: 1131: 1130: 1125: 1124: 1075: 1048:(3): 235–266. 1032: 962: 903: 876:(3): 187–210. 860: 811: 753: 704: 677:(2): 129–134. 661: 642:(2): 145–158. 626: 599:(3): 211–275. 583: 534: 515:(2): 191–201. 499: 456: 429:(4): 515–576. 413: 367: 352: 332: 288: 273: 254:(4): 217–224. 238: 211:(6): 199–208. 191: 190: 188: 185: 179: 176: 160:spatial period 119: 116: 87: 84: 15: 13: 10: 9: 6: 4: 3: 2: 1156: 1145: 1142: 1140: 1137: 1136: 1134: 1120: 1116: 1112: 1108: 1103: 1098: 1094: 1090: 1086: 1079: 1076: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1033: 1028: 1024: 1019: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 971: 969: 967: 963: 958: 954: 950: 946: 942: 938: 934: 930: 926: 922: 918: 914: 907: 904: 899: 895: 891: 887: 883: 879: 875: 871: 864: 861: 856: 852: 848: 844: 839: 834: 830: 826: 822: 815: 812: 807: 803: 799: 795: 790: 785: 781: 777: 773: 766: 764: 762: 760: 758: 754: 749: 745: 741: 737: 732: 727: 723: 719: 715: 708: 705: 700: 696: 692: 688: 684: 680: 676: 672: 665: 662: 657: 653: 649: 645: 641: 637: 630: 627: 622: 618: 614: 610: 606: 602: 598: 594: 587: 584: 579: 575: 570: 565: 561: 557: 553: 549: 545: 538: 535: 530: 526: 522: 518: 514: 510: 503: 500: 495: 491: 487: 483: 479: 475: 471: 467: 460: 457: 452: 448: 444: 440: 436: 432: 428: 424: 417: 414: 409: 405: 401: 397: 393: 389: 386:(4): 532–42. 385: 381: 380:J Comp Neurol 374: 372: 368: 363: 356: 353: 348: 341: 339: 337: 333: 328: 324: 319: 314: 311:(2): 309–21. 310: 306: 302: 295: 293: 289: 284: 277: 274: 269: 265: 261: 257: 253: 249: 242: 239: 234: 230: 226: 222: 218: 214: 210: 206: 199: 197: 193: 186: 184: 177: 175: 173: 169: 165: 161: 157: 153: 149: 145: 144:visual system 141: 137: 133: 129: 125: 117: 115: 112: 108: 103: 101: 97: 93: 85: 81: 76: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 37:visual motion 34: 30: 26: 22: 1092: 1088: 1078: 1045: 1041: 1035: 984: 980: 916: 912: 906: 873: 869: 863: 828: 824: 814: 779: 775: 721: 717: 707: 674: 670: 664: 639: 635: 629: 596: 592: 586: 551: 547: 537: 512: 508: 502: 469: 465: 459: 426: 422: 416: 383: 379: 361: 355: 346: 308: 304: 282: 276: 251: 248:Biol. Cybern 247: 241: 208: 204: 181: 156:sensorimotor 121: 104: 89: 24: 18: 102:in flight. 100:fruit flies 96:instinctual 1133:Categories 349:: 522–561. 285:: 267–289. 205:Kybernetik 187:References 140:wavelength 111:optic flow 107:optic flow 69:sinusoidal 51:, such as 49:locomotion 1111:0022-0949 1062:1432-1351 1009:0960-9822 941:1476-4687 890:1432-1351 847:0042-6989 798:0022-0949 740:0022-0949 691:1432-0770 509:Zebrafish 172:open-loop 128:zebrafish 65:zebrafish 1119:19329746 1070:12552378 1027:20655222 949:21638927 898:23177851 855:12726833 806:17766299 748:18552291 699:33981643 656:44050294 621:45258548 578:20348349 529:18248260 494:40688546 451:30755969 408:29909206 327:10068465 305:Dev Biol 268:44797496 233:24070951 164:velocity 136:contrast 53:swimming 1018:4435946 989:Bibcode 957:4303068 921:Bibcode 569:2846167 486:7975277 443:4616732 400:7929890 225:5731498 92:animals 86:Purpose 57:walking 47:during 45:insects 1117:  1109:  1068:  1060:  1025:  1015:  1007:  955:  947:  939:  913:Nature 896:  888:  853:  845:  804:  796:  746:  738:  697:  689:  654:  619:  613:790441 611:  576:  566:  527:  492:  484:  449:  441:  406:  398:  325:  266:  231:  223:  166:. The 61:flying 29:innate 27:is an 23:, the 1066:S2CID 953:S2CID 894:S2CID 695:S2CID 652:S2CID 617:S2CID 490:S2CID 447:S2CID 404:S2CID 264:S2CID 229:S2CID 126:. In 1115:PMID 1107:ISSN 1058:ISSN 1023:PMID 1005:ISSN 945:PMID 937:ISSN 886:ISSN 851:PMID 843:ISSN 802:PMID 794:ISSN 744:PMID 736:ISSN 687:ISSN 609:PMID 574:PMID 525:PMID 482:PMID 439:PMID 396:PMID 323:PMID 221:PMID 138:and 59:and 43:and 41:fish 1097:doi 1093:212 1050:doi 1013:PMC 997:doi 929:doi 917:382 878:doi 833:doi 784:doi 780:210 726:doi 722:211 679:doi 644:doi 640:140 601:doi 564:PMC 556:doi 552:213 517:doi 474:doi 431:doi 388:doi 384:344 313:doi 309:207 256:doi 213:doi 19:In 1135:: 1113:. 1105:. 1091:. 1087:. 1064:. 1056:. 1046:85 1044:. 1021:. 1011:. 1003:. 995:. 985:20 983:. 979:. 965:^ 951:. 943:. 935:. 927:. 915:. 892:. 884:. 874:99 872:. 849:. 841:. 829:43 827:. 823:. 800:. 792:. 778:. 774:. 756:^ 742:. 734:. 720:. 716:. 693:. 685:. 675:51 673:. 650:. 638:. 615:. 607:. 595:. 572:. 562:. 550:. 546:. 523:. 511:. 488:. 480:. 470:34 468:. 445:. 437:. 427:49 425:. 402:. 394:. 382:. 370:^ 335:^ 321:. 307:. 303:. 291:^ 262:. 252:56 250:. 227:. 219:. 207:. 195:^ 55:, 31:, 1121:. 1099:: 1072:. 1052:: 1029:. 999:: 991:: 959:. 931:: 923:: 900:. 880:: 857:. 835:: 808:. 786:: 750:. 728:: 701:. 681:: 658:. 646:: 623:. 603:: 597:9 580:. 558:: 531:. 519:: 513:3 496:. 476:: 453:. 433:: 410:. 390:: 329:. 315:: 270:. 258:: 235:. 215:: 209:4

Index

behavioral biology
innate
orienting behavior
visual motion
fish
insects
locomotion
swimming
walking
flying
zebrafish
sinusoidal

Drosophila melanogaster
animals
instinctual
fruit flies
optic flow
optic flow
behavioral assay
zebrafish
visual performance
contrast
wavelength
visual system
motion detection
neural circuits
sensorimotor
spatial period
velocity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑