Knowledge (XXG)

Optical circulator

Source 📝

122: 25: 842: 141:
entering any port exits from the next. This means that if light enters port 1 it is emitted from port 2, but if some of the emitted light is reflected back to the circulator, it does not come out of port 1 but instead exits from port 3. This is analogous to the operation of an electronic
173:
optics, which means that changes in the properties of light passing through the device are not reversed when the light passes through in the opposite direction. This can only happen when the symmetry of the system is broken, for example by an external
824: 439:
Sugimoto, N.; Shintaku, T.; Tate, A.; Terui, H.; Shimokozono, M.; Kubota, E.; Ishii, M.; Inoue, Y. (1999). "Waveguide polarization-independent optical circulator".
278: 214:
waveguide systems. In 2016, Scheucher et al. have demonstrated a fiber-integrated optical circulator whose nonreciprocal behavior originated from the
182:
is another example of a non-reciprocal optical device, and indeed it is possible to construct an optical circulator based on a Faraday rotator.
883: 494: 42: 547: 441: 108: 89: 600: 404: 61: 288: 46: 248:
Y-circulator based on three dielectric waveguides interconnected with a magneto-optical junction with plasmonic nanorods.
68: 902: 75: 294: 159: 35: 876: 57: 650: 223: 768: 358: 207: 907: 763: 146:. Fiber-optic circulators are used to separate optical signals that travel in opposite directions in an 317: 869: 787: 717: 664: 609: 596:"Microring-Based Optical Isolator and Circulator with Integrated Electromagnet for Silicon Photonics" 556: 503: 450: 413: 372: 331: 490:"Design and Simulation of Silicon Waveguide Optical Circulator Employing Nonreciprocal Phase Shift" 363: 803: 777: 741: 707: 627: 572: 519: 489: 466: 203: 163: 150:, for example to achieve bi-directional transmission over a single fiber. Because of their high 82: 357:
Hidetoshi, Iwamura; Hiroshi, Iwasaki; Kenichi, Kubodera; Yasuhiro, Torii; Juichi, Noda (1979).
733: 698: 284: 211: 853: 795: 725: 672: 655: 646: 617: 591: 564: 538: 511: 485: 458: 421: 380: 339: 257: 151: 692:
Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno (2016).
693: 231: 210:-independent optical circulators were later introduced. The concept was later extended to 195: 179: 799: 791: 721: 668: 613: 560: 507: 454: 417: 376: 335: 322: 175: 155: 134: 121: 896: 807: 759: 359:"Simple polarisation-independent optical circulator for optical transmission systems" 241: 227: 199: 147: 631: 576: 523: 470: 827: 226:
microresonator. The routing direction of the device is controlled by the internal
745: 191: 24: 595: 542: 245: 190:
In 1965, Ribbens reported an early form of optical circulator that utilized a
143: 622: 568: 399: 729: 677: 215: 737: 515: 841: 384: 694:"Quantum optical circulator controlled by a single chirally coupled atom" 219: 343: 645:
Huang, Duanni; Pintus, Paolo; Zhang, Chong; Morton, Paul; Shoji, Yuya;
462: 849: 425: 234: 712: 16:
Optical device in which light entering any port exits from the next
782: 138: 120: 18: 400:"High-isolation polarization-independent optical circulator" 651:"Dynamically reconfigurable integrated optical circulators" 590:
Pintus, Paolo; Huang, Duanni; Zhang, Chong; Shoji, Yuya;
543:"Demonstration of a Silicon Waveguide Optical Circulator" 154:
of the input and reflected optical powers and their low
857: 277:
IBM Redbooks (9 November 1998). "5.4.6 Circulators".
49:. Unsourced material may be challenged and removed. 158:, optical circulators are widely used in advanced 877: 8: 230:of the atom and the device is able to route 884: 870: 781: 711: 676: 621: 109:Learn how and when to remove this message 269: 7: 838: 836: 280:Understanding Optical Communications 47:adding citations to reliable sources 495:Japanese Journal of Applied Physics 856:. You can help Knowledge (XXG) by 14: 548:IEEE Photonics Technology Letters 442:IEEE Photonics Technology Letters 222:atom and the confined light in a 840: 764:"Nanoscale plasmonic circulator" 23: 601:Journal of Lightwave Technology 405:Journal of Lightwave Technology 34:needs additional citations for 1: 800:10.1088/1367-2630/15/8/083054 218:interaction between a single 537:Mitsuya, Kota; Shoji, Yuya; 316:Ribbens, William B. (1965). 825:US Patent 5,909,310 (USPTO) 206:, waveguide-integrable and 924: 835: 649:; Bowers, John E. (2017). 594:; Bowers, John E. (2017). 762:; Engheta, Nader (2013). 133:is a three- or four-port 125:Optical Circulator symbol 623:10.1109/JLT.2016.2644626 569:10.1109/LPT.2013.2247995 169:Optical circulators are 730:10.1126/science.aaj2118 678:10.1364/OPTICA.4.000023 318:"An Optical Circulator" 224:whispering-gallery mode 852:-related article is a 769:New Journal of Physics 516:10.1143/JJAP.49.052203 126: 244:proposed a nanoscale 240:In 2013, Davoyan and 198:. With the advent of 160:communication systems 124: 58:"Optical circulator" 43:improve this article 792:2013NJPh...15h3054D 722:2016Sci...354.1577S 706:(6319): 1577–1580. 669:2017Optic...4...23H 614:2017JLwT...35.1429P 561:2013IPTL...25..721M 508:2010JaJAP..49e2203T 455:1999IPTL...11..355S 418:1991JLwT....9.1238F 385:10.1049/el:19790590 377:1979ElL....15..830H 364:Electronics Letters 344:10.1364/AO.4.001037 336:1965ApOpt...4.1037R 283:. IBM Corporation. 137:designed such that 903:Optical components 760:Davoyan, Arthur R. 204:guided-wave optics 164:fiber-optic sensor 131:optical circulator 127: 865: 864: 776:(83054): 083054. 647:Mizumoto, Tetsuya 592:Mizumoto, Tetsuya 539:Mizumoto, Tetsuya 502:(52203): 052203. 486:Mizumoto, Tetsuya 463:10.1109/68.748233 412:(10): 1238–1243. 398:Fuji, Y. (1991). 119: 118: 111: 93: 915: 886: 879: 872: 844: 837: 828:(Google Patents) 812: 811: 785: 756: 750: 749: 715: 689: 683: 682: 680: 642: 636: 635: 625: 608:(8): 1429–1437. 587: 581: 580: 534: 528: 527: 481: 475: 474: 436: 430: 429: 426:10.1109/50.90921 395: 389: 388: 354: 348: 347: 330:(8): 1037–1038. 313: 307: 306: 304: 302: 293:. Archived from 274: 258:Optical isolator 212:silicon photonic 114: 107: 103: 100: 94: 92: 51: 27: 19: 923: 922: 918: 917: 916: 914: 913: 912: 893: 892: 891: 890: 833: 821: 816: 815: 758: 757: 753: 691: 690: 686: 644: 643: 639: 589: 588: 584: 536: 535: 531: 484:Takei, Ryohei; 483: 482: 478: 438: 437: 433: 397: 396: 392: 371:(25): 830–831. 356: 355: 351: 315: 314: 310: 300: 298: 291: 276: 275: 271: 266: 254: 196:Faraday rotator 188: 180:Faraday rotator 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 921: 919: 911: 910: 905: 895: 894: 889: 888: 881: 874: 866: 863: 862: 845: 831: 830: 820: 819:External links 817: 814: 813: 751: 684: 637: 582: 555:(8): 721–723. 529: 476: 449:(3): 355–357. 431: 390: 349: 323:Applied Optics 308: 289: 268: 267: 265: 262: 261: 260: 253: 250: 187: 184: 176:magnetic field 171:non-reciprocal 166:applications. 156:insertion loss 135:optical device 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 920: 909: 906: 904: 901: 900: 898: 887: 882: 880: 875: 873: 868: 867: 861: 859: 855: 851: 846: 843: 839: 834: 829: 826: 823: 822: 818: 809: 805: 801: 797: 793: 789: 784: 779: 775: 771: 770: 765: 761: 755: 752: 747: 743: 739: 735: 731: 727: 723: 719: 714: 709: 705: 701: 700: 695: 688: 685: 679: 674: 670: 666: 662: 658: 657: 652: 648: 641: 638: 633: 629: 624: 619: 615: 611: 607: 603: 602: 597: 593: 586: 583: 578: 574: 570: 566: 562: 558: 554: 550: 549: 544: 540: 533: 530: 525: 521: 517: 513: 509: 505: 501: 497: 496: 491: 487: 480: 477: 472: 468: 464: 460: 456: 452: 448: 444: 443: 435: 432: 427: 423: 419: 415: 411: 407: 406: 401: 394: 391: 386: 382: 378: 374: 370: 366: 365: 360: 353: 350: 345: 341: 337: 333: 329: 325: 324: 319: 312: 309: 297:on 2015-07-10 296: 292: 286: 282: 281: 273: 270: 263: 259: 256: 255: 251: 249: 247: 243: 238: 236: 233: 229: 228:quantum state 225: 221: 217: 213: 209: 205: 201: 197: 193: 185: 183: 181: 177: 172: 167: 165: 161: 157: 153: 149: 148:optical fiber 145: 140: 136: 132: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 908:Optics stubs 858:expanding it 847: 832: 773: 767: 754: 703: 697: 687: 663:(1): 23–30. 660: 654: 640: 605: 599: 585: 552: 546: 532: 499: 493: 479: 446: 440: 434: 409: 403: 393: 368: 362: 352: 327: 321: 311: 299:. Retrieved 295:the original 279: 272: 239: 208:polarization 189: 170: 168: 130: 128: 105: 99:October 2015 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 192:Nicol prism 897:Categories 713:1609.02492 290:0738400580 264:References 232:individual 144:circulator 69:newspapers 808:119232939 783:1302.5300 246:plasmonic 152:isolation 738:27940579 632:32824770 577:31886457 541:(2013). 524:19254463 488:(2010). 471:35722016 252:See also 788:Bibcode 718:Bibcode 699:Science 665:Bibcode 610:Bibcode 557:Bibcode 504:Bibcode 451:Bibcode 414:Bibcode 373:Bibcode 332:Bibcode 301:10 July 242:Engheta 235:photons 194:with a 186:History 83:scholar 850:optics 806:  744:  736:  656:Optica 630:  575:  522:  469:  287:  216:chiral 85:  78:  71:  64:  56:  848:This 804:S2CID 778:arXiv 746:47714 742:S2CID 708:arXiv 628:S2CID 573:S2CID 520:S2CID 467:S2CID 200:fiber 139:light 90:JSTOR 76:books 854:stub 734:PMID 303:2015 285:ISBN 202:and 178:. A 162:and 62:news 796:doi 726:doi 704:354 673:doi 618:doi 565:doi 512:doi 459:doi 422:doi 381:doi 340:doi 129:An 45:by 899:: 802:. 794:. 786:. 774:15 772:. 766:. 740:. 732:. 724:. 716:. 702:. 696:. 671:. 659:. 653:. 626:. 616:. 606:35 604:. 598:. 571:. 563:. 553:25 551:. 545:. 518:. 510:. 500:49 498:. 492:. 465:. 457:. 447:11 445:. 420:. 408:. 402:. 379:. 369:15 367:. 361:. 338:. 326:. 320:. 237:. 220:Rb 885:e 878:t 871:v 860:. 810:. 798:: 790:: 780:: 748:. 728:: 720:: 710:: 681:. 675:: 667:: 661:4 634:. 620:: 612:: 579:. 567:: 559:: 526:. 514:: 506:: 473:. 461:: 453:: 428:. 424:: 416:: 410:9 387:. 383:: 375:: 346:. 342:: 334:: 328:4 305:. 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Optical circulator"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

optical device
light
circulator
optical fiber
isolation
insertion loss
communication systems
fiber-optic sensor
magnetic field
Faraday rotator
Nicol prism
Faraday rotator
fiber
guided-wave optics
polarization
silicon photonic
chiral
Rb

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.