Knowledge

Interferometry

Source 📝

1103:
interference fringes. The reference flats are resting with their bottom surfaces in contact with the test flats, and they are illuminated by a monochromatic light source. The light waves reflected from both surfaces interfere, resulting in a pattern of bright and dark bands. The surface in the left photo is nearly flat, indicated by a pattern of straight parallel interference fringes at equal intervals. The surface in the right photo is uneven, resulting in a pattern of curved fringes. Each pair of adjacent fringes represents a difference in surface elevation of half a wavelength of the light used, so differences in elevation can be measured by counting the fringes. The flatness of the surfaces can be measured to millionths of an inch by this method. To determine whether the surface being tested is concave or convex with respect to the reference optical flat, any of several procedures may be adopted. One can observe how the fringes are displaced when one presses gently on the top flat. If one observes the fringes in white light, the sequence of colors becomes familiar with experience and aids in interpretation. Finally one may compare the appearance of the fringes as one moves ones head from a normal to an oblique viewing position. These sorts of maneuvers, while common in the optical shop, are not suitable in a formal testing environment. When the flats are ready for sale, they will typically be mounted in a Fizeau interferometer for formal testing and certification.
1318:
Errors in determining the location of the fringe centers provide the inherent limit to precision of the classical analysis, and any intensity variations across the interferogram will also introduce error. There is a trade-off between precision and number of data points: closely spaced fringes provide many data points of low precision, while widely spaced fringes provide a low number of high precision data points. Since fringe center data is all that one uses in the classical analysis, all of the other information that might theoretically be obtained by detailed analysis of the intensity variations in an interferogram is thrown away. Finally, with static interferograms, additional information is needed to determine the polarity of the wavefront: In Fig. 13, one can see that the tested surface on the right deviates from flatness, but one cannot tell from this single image whether this deviation from flatness is concave or convex. Traditionally, this information would be obtained using non-automated means, such as by observing the direction that the fringes move when the reference surface is pushed.
1556:(OCT) is a medical imaging technique using low-coherence interferometry to provide tomographic visualization of internal tissue microstructures. As seen in Fig. 22, the core of a typical OCT system is a Michelson interferometer. One interferometer arm is focused onto the tissue sample and scans the sample in an X-Y longitudinal raster pattern. The other interferometer arm is bounced off a reference mirror. Reflected light from the tissue sample is combined with reflected light from the reference. Because of the low coherence of the light source, interferometric signal is observed only over a limited depth of sample. X-Y scanning therefore records one thin optical slice of the sample at a time. By performing multiple scans, moving the reference mirror between each scan, an entire three-dimensional image of the tissue can be reconstructed. Recent advances have striven to combine the nanometer phase retrieval of coherent interferometry with the ranging capability of low-coherence interferometry. 711:. A precisely figured reference flat is placed on top of the flat being tested, separated by narrow spacers. The reference flat is slightly beveled (only a fraction of a degree of beveling is necessary) to prevent the rear surface of the flat from producing interference fringes. Separating the test and reference flats allows the two flats to be tilted with respect to each other. By adjusting the tilt, which adds a controlled phase gradient to the fringe pattern, one can control the spacing and direction of the fringes, so that one may obtain an easily interpreted series of nearly parallel fringes rather than a complex swirl of contour lines. Separating the plates, however, necessitates that the illuminating light be collimated. Fig 6 shows a collimated beam of monochromatic light illuminating the two flats and a beam splitter allowing the fringes to be viewed on-axis. 1197:(CGHs) have begun to supplement null correctors in test setups for complex aspheric surfaces. Fig. 15 illustrates how this is done. Unlike the figure, actual CGHs have line spacing on the order of 1 to 10 ÎŒm. When laser light is passed through the CGH, the zero-order diffracted beam experiences no wavefront modification. The wavefront of the first-order diffracted beam, however, is modified to match the desired shape of the test surface. In the illustrated Fizeau interferometer test setup, the zero-order diffracted beam is directed towards the spherical reference surface, and the first-order diffracted beam is directed towards the test surface in such a way that the two reflected beams combine to form interference fringes. The same test setup can be used for the innermost mirrors as for the outermost, with only the CGH needing to be exchanged. 1150:. Michelson pointed out that constraints on geometry forced by limited coherence length required the use of a reference mirror of equal size to the test mirror, making the Twyman–Green impractical for many purposes. Decades later, the advent of laser light sources answered Michelson's objections. (A Twyman–Green interferometer using a laser light source and unequal path length is known as a Laser Unequal Path Interferometer, or LUPI.) Fig. 14 illustrates a Twyman–Green interferometer set up to test a lens. Light from a monochromatic point source is expanded by a diverging lens (not shown), then is collimated into a parallel beam. A convex spherical mirror is positioned so that its center of curvature coincides with the focus of the lens being tested. The emergent beam is recorded by an imaging system for analysis. 1330:(PZT). Alternatively, precise phase shifts can be introduced by modulating the laser frequency. The captured images are processed by a computer to calculate the optical wavefront errors. The precision and reproducibility of PSI is far greater than possible in static interferogram analysis, with measurement repeatabilities of a hundredth of a wavelength being routine. Phase shifting technology has been adapted to a variety of interferometer types such as Twyman–Green, Mach–Zehnder, laser Fizeau, and even common path configurations such as point diffraction and lateral shearing interferometers. More generally, phase shifting techniques can be adapted to almost any system that uses fringes for measurement, such as holographic and speckle interferometry. 727:, great care must be taken to equalize the optical paths or no fringes will be visible. As illustrated in Fig. 6, a compensating cell would be placed in the path of the reference beam to match the test cell. Note also the precise orientation of the beam splitters. The reflecting surfaces of the beam splitters would be oriented so that the test and reference beams pass through an equal amount of glass. In this orientation, the test and reference beams each experience two front-surface reflections, resulting in the same number of phase inversions. The result is that light traveling an equal optical path length in the test and reference beams produces a white light fringe of constructive interference. 1368:(for high magnification objectives with limited working distance). The sample (or alternatively, the objective) is moved vertically over the full height range of the sample, and the position of maximum fringe contrast is found for each pixel. The chief benefit of coherence scanning interferometry is that systems can be designed that do not suffer from the 2 pi ambiguity of coherent interferometry, and as seen in Fig. 18, which scans a 180ÎŒm x 140ÎŒm x 10ÎŒm volume, it is well suited to profiling steps and rough surfaces. The axial resolution of the system is determined in part by the coherence length of the light source. Industrial applications include in-process 1201: 1348: 1472:
technique of speckle pattern interferometry in 1970, and since then, speckle has been exploited in a variety of other applications. A photograph is made of the speckle pattern before deformation, and a second photograph is made of the speckle pattern after deformation. Digital subtraction of the two images results in a correlation fringe pattern, where the fringes represent lines of equal deformation. Short laser pulses in the nanosecond range can be used to capture very fast transient events. A phase problem exists: In the absence of other information, one cannot tell the difference between contour lines indicating a peak
876:. Michelson interferometers have the largest field of view for a specified wavelength, and are relatively simple in operation, since tuning is via mechanical rotation of waveplates rather than via high voltage control of piezoelectric crystals or lithium niobate optical modulators as used in a Fabry–PĂ©rot system. Compared with Lyot filters, which use birefringent elements, Michelson interferometers have a relatively low temperature sensitivity. On the negative side, Michelson interferometers have a relatively restricted wavelength range and require use of prefilters which restrict transmittance. 641: 1289:, and the frequencies of the comb elements at the red end of the spectrum are doubled and heterodyned with the frequencies of the comb elements at the blue end of the spectrum, thus allowing the comb to serve as its own reference. In this manner, locking of the frequency comb output to an atomic standard can be performed in a single step. To measure an unknown frequency, the frequency comb output is dispersed into a spectrum. The unknown frequency is overlapped with the appropriate spectral segment of the comb and the frequency of the resultant heterodyne beats is measured. 227:(a partially reflecting mirror). Each of these beams travels a different route, called a path, and they are recombined before arriving at a detector. The path difference, the difference in the distance traveled by each beam, creates a phase difference between them. It is this introduced phase difference that creates the interference pattern between the initially identical waves. If a single beam has been split along two paths, then the phase difference is diagnostic of anything that changes the phase along the paths. This could be a physical change in the 899:(EIT) image of the Sun at 195 Ă…ngströms (19.5 nm), corresponding to a spectral line of multiply-ionized iron atoms. EIT used multilayer coated reflective mirrors that were coated with alternate layers of a light "spacer" element (such as silicon), and a heavy "scatterer" element (such as molybdenum). Approximately 100 layers of each type were placed on each mirror, with a thickness of around 10 nm each. The layer thicknesses were tightly controlled so that at the desired wavelength, reflected photons from each layer interfered constructively. 681: 1420: 172: 390:. Between 1816 and 1818, Fresnel and Arago performed interference experiments at the Paris Observatory. During this time, Arago designed and built the first interferometer, using it to measure the refractive index of moist air relative to dry air, which posed a potential problem for astronomical observations of star positions. The success of Fresnel's wave theory of light was established in his prize-winning memoire of 1819 that predicted and measured diffraction patterns. The Arago interferometer was later employed in 1850 by 1591: 1306:
light and high numerical apertures, and rather than looking at the phase of the fringes, as does PSI, looks for best position of maximum fringe contrast or some other feature of the overall fringe pattern. In its simplest form, CSI provides less precise measurements than PSI but can be used on rough surfaces. Some configurations of CSI, variously known as Enhanced VSI (EVSI), high-resolution SWLI or Frequency Domain Analysis (FDA), use coherence effects in combination with interference phase to enhance precision.
1487:, exploited the low coherence length of white light. Initially, white light was split in two, with the reference beam "folded", bouncing back-and-forth six times between a mirror pair spaced precisely 1 m apart. Only if the test path was precisely 6 times the reference path would fringes be seen. Repeated applications of this procedure allowed precise measurement of distances up to 864 meters. Baselines thus established were used to calibrate geodetic distance measurement equipment, leading to a 783:, experimentalists struggled with continual fringe drift even though the interferometer might be set up in a basement. Since the fringes would occasionally disappear due to vibrations by passing horse traffic, distant thunderstorms and the like, it would be easy for an observer to "get lost" when the fringes returned to visibility. The advantages of white light, which produced a distinctive colored fringe pattern, far outweighed the difficulties of aligning the apparatus due to its low 1075: 1334: 820:. Fig 7 illustrates a resonator experiment performed by MĂŒller et al. in 2003. Two optical resonators constructed from crystalline sapphire, controlling the frequencies of two lasers, were set at right angles within a helium cryostat. A frequency comparator measured the beat frequency of the combined outputs of the two resonators. As of 2009, the precision by which anisotropy of the speed of light can be excluded in resonator experiments is at the 10 level. 828: 1563: 1258: 1091: 1535: 801: 1458:
from earthquakes, volcanoes and landslides, and also has uses in structural engineering, in particular for the monitoring of subsidence and structural stability. Fig 20 shows Kilauea, an active volcano in Hawaii. Data acquired using the space shuttle Endeavour's X-band Synthetic Aperture Radar on April 13, 1994 and October 4, 1994 were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea.
937: 544: 744:
emitted from point A on the source is traced. As the ray passes through the paired flats, it is multiply reflected to produce multiple transmitted rays which are collected by the focusing lens and brought to point A' on the screen. The complete interference pattern takes the appearance of a set of concentric rings. The sharpness of the rings depends on the reflectivity of the flats. If the reflectivity is high, resulting in a high
180: 5972: 1432: 1521: 1138: 914:. In this application, the Fabry–PĂ©rot cavity is used to store photons for almost a millisecond while they bounce up and down between the mirrors. This increases the time a gravitational wave can interact with the light, which results in a better sensitivity at low frequencies. Smaller cavities, usually called mode cleaners, are used for spatial filtering and frequency stabilization of the main laser. The 5984: 976: 1643:.) It has become an important method for visualizing cellular and histological structures in a wide range of biological and medical studies. There are several technologies being used for x-ray phase-contrast imaging, all utilizing different principles to convert phase variations in the x-rays emerging from an object into intensity variations. These include propagation-based phase contrast, 33: 1310: 5926: 5948: 5960: 40:. The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the three mirrors. 449:). The phase difference between the two beams results in a change in the intensity of the light on the detector. The resulting intensity of the light after mixing of these two beams is measured, or the pattern of interference fringes is viewed or recorded. Most of the interferometers discussed in this article fall into this category. 1189:, will be of segmented design. Their primary mirrors will be built from hundreds of hexagonal mirror segments. Polishing and figuring these highly aspheric and non-rotationally symmetric mirror segments presents a major challenge. Traditional means of optical testing compares a surface against a spherical reference with the aid of a 1513:
partially-coherent forward-scattered light propagation through the micro aberrations and heterogeneity of tissue structure provides opportunities to use phase-sensitive gating (optical coherence tomography) as well as phase-sensitive fluctuation spectroscopy to image subtle structural and dynamical properties.
1464:(ESPI), also known as TV holography, uses video detection and recording to produce an image of the object upon which is superimposed a fringe pattern which represents the displacement of the object between recordings. (see Fig. 21) The fringes are similar to those obtained in holographic interferometry. 1651:-based far-field interferometry, refraction-enhanced imaging, and x-ray interferometry. These methods provide higher contrast compared to normal absorption-contrast x-ray imaging, making it possible to see smaller details. A disadvantage is that these methods require more sophisticated equipment, such as 1575: 1457:
images of a geographic feature are taken on separate days, and changes that have taken place between radar images taken on the separate days are recorded as fringes similar to those obtained in holographic interferometry. The technique can monitor centimeter- to millimeter-scale deformation resulting
1065:
Interferometers are used in atmospheric physics for high-precision measurements of trace gases via remote sounding of the atmosphere. There are several examples of interferometers that utilize either absorption or emission features of trace gases. A typical use would be in continual monitoring of the
671:
generates interference fringes by combining direct light from a source (blue lines) and light from the source's reflected image (red lines) from a mirror held at grazing incidence. The result is an asymmetrical pattern of fringes. The band of equal path length, nearest the mirror, is dark rather than
1507:
Optical interferometry, applied to biology and medicine, provides sensitive metrology capabilities for the measurement of biomolecules, subcellular components, cells and tissues. Many forms of label-free biosensors rely on interferometry because the direct interaction of electromagnetic fields with
1405:
Double- and multi- exposure holography is one of three methods used to create holographic interferograms. A first exposure records the object in an unstressed state. Subsequent exposures on the same photographic plate are made while the object is subjected to some stress. The composite image depicts
1393:
Holographic interferometry was discovered by accident as a result of mistakes committed during the making of holograms. Early lasers were relatively weak and photographic plates were insensitive, necessitating long exposures during which vibrations or minute shifts might occur in the optical system.
1292:
One of the most common industrial applications of optical interferometry is as a versatile measurement tool for the high precision examination of surface topography. Popular interferometric measurement techniques include Phase Shifting Interferometry (PSI), and Vertical Scanning Interferometry(VSI),
1145:
The Twyman–Green interferometer, invented by Twyman and Green in 1916, is a variant of the Michelson interferometer widely used to test optical components. The basic characteristics distinguishing it from the Michelson configuration are the use of a monochromatic point light source and a collimator.
1102:
Newton (test plate) interferometry is frequently used in the optical industry for testing the quality of surfaces as they are being shaped and figured. Fig. 13 shows photos of reference flats being used to check two test flats at different stages of completion, showing the different patterns of
1013:
with the MIRC instrument. The brighter component is the primary star, or the mass donor. The fainter component is the thick disk surrounding the secondary star, or the mass gainer. The two components are separated by 1 milli-arcsecond. Tidal distortions of the mass donor and the mass gainer are
357:
overlap, the fringes near the axis will be straight, parallel, and equally spaced. If S is an extended source rather than a point source as illustrated, the fringes of Fig. 2a must be observed with a telescope set at infinity, while the fringes of Fig. 2b will be localized on the mirrors.
1275:
would be used to produce a harmonic of the frequency of that step, which would be compared by heterodyne detection with the next step (the output of a microwave source, far infrared laser, infrared laser, or visible laser). Each measurement of a single spectral line required several years of effort
207:
difference between the two waves—waves that are in phase will undergo constructive interference while waves that are out of phase will undergo destructive interference. Waves which are not completely in phase nor completely out of phase will have an intermediate intensity pattern, which can be used
1317:
Phase Shifting Interferometry addresses several issues associated with the classical analysis of static interferograms. Classically, one measures the positions of the fringe centers. As seen in Fig. 13, fringe deviations from straightness and equal spacing provide a measure of the aberration.
879:
Fig. 8 illustrates the operation of a Fourier transform spectrometer, which is essentially a Michelson interferometer with one mirror movable. (A practical Fourier transform spectrometer would substitute corner cube reflectors for the flat mirrors of the conventional Michelson interferometer,
743:
of a collimating lens. A focusing lens produces what would be an inverted image of the source if the paired flats were not present, i.e., in the absence of the paired flats, all light emitted from point A passing through the optical system would be focused at point A'. In Fig. 6, only one ray
718:
is a more versatile instrument than the Michelson interferometer. Each of the well separated light paths is traversed only once, and the fringes can be adjusted so that they are localized in any desired plane. Typically, the fringes would be adjusted to lie in the same plane as the test object, so
416:, to search for effects of the motion of the Earth on the speed of light. Michelson's null results performed in the basement of the Potsdam Observatory outside of Berlin (the horse traffic in the center of Berlin created too many vibrations), and his later more-accurate null results observed with 183:
Figure 3. Colored and monochromatic fringes in a Michelson interferometer: (a) White light fringes where the two beams differ in the number of phase inversions; (b) White light fringes where the two beams have experienced the same number of phase inversions; (c) Fringe pattern using
1409:
Real-time holography is a second method of creating holographic interferograms. A holograph of the unstressed object is created. This holograph is illuminated with a reference beam to generate a hologram image of the object directly superimposed over the original object itself while the object is
1305:
to extend the range of capabilities for interference microscopy. These techniques are widely used in micro-electronic and micro-optic fabrication. PSI uses monochromatic light and provides very precise measurements; however it is only usable for surfaces that are very smooth. CSI often uses white
1261:
Figure 16. Frequency comb of a mode-locked laser. The dashed lines represent an extrapolation of the mode frequencies towards the frequency of the carrier–envelope offset (CEO). The vertical grey line represents an unknown optical frequency. The horizontal black lines indicate the two lowest beat
1631:
nuclei. This allows interferometry depth measurements to be combined with density measurements. Various correlations have been found between the state of tissue health and the measurements of subcellular objects. For example, it has been found that as tissue changes from normal to cancerous, the
1471:
was considered to be a severe drawback in using lasers to illuminate objects, particularly in holographic imaging because of the grainy image produced. It was later realized that speckle patterns could carry information about the object's surface deformations. Butters and Leendertz developed the
378:
in his 1803 Bakerian Lecture to the Royal Society of London. In preparation for the lecture, Young performed a double-aperture experiment that demonstrated interference fringes. His interpretation in terms of the interference of waves was rejected by most scientists at the time because of the
1512:
markers. At a larger scale, cellular interferometry shares aspects with phase-contrast microscopy, but comprises a much larger class of phase-sensitive optical configurations that rely on optical interference among cellular constituents through refraction and diffraction. At the tissue scale,
992:
has had to overcome a number of technical issues not shared by radio telescope interferometry. The short wavelengths of light necessitate extreme precision and stability of construction. For example, spatial resolution of 1 milliarcsecond requires 0.5 ÎŒm stability in a 100 m baseline.
883:
Fig. 9 shows a doppler image of the solar corona made using a tunable Fabry-PĂ©rot interferometer to recover scans of the solar corona at a number of wavelengths near the FeXIV green line. The picture is a color-coded image of the doppler shift of the line, which may be associated with the
1266:
Optical heterodyne detection is an essential technique used in high-accuracy measurements of the frequencies of optical sources, as well as in the stabilization of their frequencies. Until a relatively few years ago, lengthy frequency chains were needed to connect the microwave frequency of a
1039:
is an imaging technique that photographically records the electron interference pattern of an object, which is then reconstructed to yield a greatly magnified image of the original object. This technique was developed to enable greater resolution in electron microscopy than is possible using
963:
illustrated in Fig 11, used arrays of telescopes arranged in a pattern on the ground. A limited number of baselines will result in insufficient coverage. This was alleviated by using the rotation of the Earth to rotate the array relative to the sky. Thus, a single baseline could measure
841: 3481:
Zhao, M.; Gies, D.; Monnier, J. D.; Thureau, N.; Pedretti, E.; Baron, F.; Merand, A.; Ten Brummelaar, T.; McAlister, H.; Ridgway, S. T.; Turner, N.; Sturmann, J.; Sturmann, L.; Farrington, C.; Goldfinger, P. J. (2008). "First Resolved Images of the Eclipsing and Interacting Binary ÎČ Lyrae".
779:, used monochromatic light only for initially setting up their equipment, always switching to white light for the actual measurements. The reason is that measurements were recorded visually. Monochromatic light would result in a uniform fringe pattern. Lacking modern means of 656:
corresponding to equal path length from the two slits, surrounded by a symmetrical pattern of colored fringes of diminishing intensity. In addition to continuous electromagnetic radiation, Young's experiment has been performed with individual photons, with electrons, and with
424:
in Cleveland, Ohio, contributed to the growing crisis of the luminiferous ether. Einstein stated that it was Fizeau's measurement of the speed of light in moving water using the Arago interferometer that inspired his theory of the relativistic addition of velocities.
198:
Interferometry makes use of the principle of superposition to combine waves in a way that will cause the result of their combination to have some meaningful property that is diagnostic of the original state of the waves. This works because when two waves with the same
361:
Use of white light will result in a pattern of colored fringes (see Fig. 3). The central fringe representing equal path length may be light or dark depending on the number of phase inversions experienced by the two beams as they traverse the optical system. (See
1055:: Unlike macroscopic objects, when fermions are rotated by 360° about any axis, they do not return to their original state, but develop a minus sign in their wave function. In other words, a fermion needs to be rotated 720° before returning to its original state. 1372:, roughness measurement, 3D surface metrology in hard-to-reach spaces and in hostile environments, profilometry of surfaces with high aspect ratio features (grooves, channels, holes), and film thickness measurement (semi-conductor and optical industries, etc.). 1359:, interference is only achieved when the path length delays of the interferometer are matched within the coherence time of the light source. CSI monitors the fringe contrast rather than the phase of the fringes. Fig. 17 illustrates a CSI microscope using a 1574: 1616:
the specimens, but staining procedures are time-consuming and kill the cells. As seen in Figs. 24 and 25, phase contrast and DIC microscopes allow unstained, living cells to be studied. DIC also has non-biological applications, for example in the
5059:
W. J. Walecki et al. "Non-contact fast wafer metrology for ultra-thin patterned wafers mounted on grinding and dicing tapes" Electronics Manufacturing Technology Symposium, 2004. IEEE/CPMT/SEMI 29th International Volume, Issue, July 14–16, 2004 Page(s):
1498:
Other uses of interferometers have been to study dispersion of materials, measurement of complex indices of refraction, and thermal properties. They are also used for three-dimensional motion mapping including mapping vibrational patterns of structures.
4534:
ISO. (2013). 25178-604:2013(E): Geometrical product specification (GPS) – Surface texture: Areal – Nominal characteristics of non-contact (coherence scanning interferometric microscopy) instruments (2013(E) ed.). Geneva: International Organization for
1397:
Eventually, several independent groups of experimenters in the mid-60s realized that the fringes encoded important information about dimensional changes occurring in the subject, and began intentionally producing holographic double exposures. The main
1223:
ring, and rotation of the system then causes a relative phase shift between those beams. In a RLG, the observed phase shift is proportional to the accumulated rotation, while in a FOG, the observed phase shift is proportional to the angular velocity.
5557:
Wax, A.; Pyhtila, J. W.; Graf, R. N.; Nines, R.; Boone, C. W.; Dasari, R. R.; Feld, M. S.; Steele, V. E.; Stoner, G. D. (2005). "Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry".
880:
but for simplicity, the illustration does not show this.) An interferogram is generated by making measurements of the signal at many discrete positions of the moving mirror. A Fourier transform converts the interferogram into an actual spectrum.
1363:
in the objective; other forms of interferometer used with white light include the Michelson interferometer (for low magnification objectives, where the reference mirror in a Mirau objective would interrupt too much of the aperture) and the
1280:
have provided a much simpler method of measuring optical frequencies. If a mode-locked laser is modulated to form a train of pulses, its spectrum is seen to consist of the carrier frequency surrounded by a closely spaced comb of optical
496:. Typically only one of the new frequencies is desired, and the other signal is filtered out of the output of the mixer. The output signal will have an intensity proportional to the product of the amplitudes of the input signals. 5611:
Pyhtila, J. W.; Chalut, K. J.; Boyer, J. D.; Keener, J.; d'Amico, T.; Gottfried, M.; Gress, F.; Wax, A. (2007). "In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry".
1419: 1165:
to vary their relative phase. A slight tilt of one of the beam splitters will result in a path difference and a change in the interference pattern. Mach–Zehnder interferometers are the basis of a wide variety of devices, from
998: 997:, the turbulence that causes stars to twinkle, introduces rapid, random phase changes in the incoming light, requiring data collection rates to be faster than the rate of turbulence. Despite these technical difficulties, 1389:
to monitor small deformations in single wavelength implementations. In multi-wavelength implementations, it is used to perform dimensional metrology of large parts and assemblies and to detect larger surface defects.
925:
in wind tunnels, and for flow visualization studies in general. It is frequently used in the fields of aerodynamics, plasma physics and heat transfer to measure pressure, density, and temperature changes in gases.
286:. The characteristics of the interference pattern depend on the nature of the light source and the precise orientation of the mirrors and beam splitter. In Fig. 2a, the optical elements are oriented so that 748:(i.e., high finesse), monochromatic light produces a set of narrow bright rings against a dark background. In Fig. 6, the low-finesse image corresponds to a reflectivity of 0.04 (i.e., unsilvered surfaces) 4436:
Schmit, J. (1993). "Spatial and temporal phase-measurement techniques: a comparison of major error sources in one dimension". In Brown, Gordon M.; Kwon, Osuk Y.; Kujawinska, Malgorzata; Reid, Graeme T. (eds.).
2668:
White light fringes were chosen for the observations because they consist of a small group of fringes having a central, sharply defined black fringe which forms a permanent zero reference mark for all readings.
1130:, the technology that enables the use of multiple wavelengths of light through a single optical fiber, depends on filtering devices that are thin-film etalons. Single-mode lasers employ etalons to suppress all 1608:(DIC) microscopy are important tools in biology and medicine. Most animal cells and single-celled organisms have very little color, and their intracellular organelles are almost totally invisible under simple 738:
uses a transparent plate with two parallel reflecting surfaces.) As with the Fizeau interferometer, the flats are slightly beveled. In a typical system, illumination is provided by a diffuse source set at the
154:. In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In 162:
consists of two or more separate telescopes that combine their signals, offering a resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements.
1325:
image sensor. As seen in Fig. 17, multiple interferograms (at least three) are analyzed with the reference optical surface shifted by a precise fraction of a wavelength between each exposure using a
4549: 3645:
Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Mayor, Marcel; TĂŒxen, Jens (2013-08-14). "Matter–wave interference of particles selected from a molecular library with masses exceeding 10000 amu".
529:
is an extension of the heterodyne technique to higher (visible) frequencies. While optical heterodyne interferometry is usually done at a single point it is also possible to perform this widefield.
4216: 4180:
Nieradko, Ɓ.; Gorecki, C.; JóZwik, M.; Sabac, A.; Hoffmann, R.; Bertz, A. (2006). "Fabrication and optical packaging of an integrated Mach–Zehnder interferometer on top of a movable micromirror".
1413:
The third method, time-average holography, involves creating a holograph while the object is subjected to a periodic stress or vibration. This yields a visual image of the vibration pattern.
1410:
being subjected to some stress. The object waves from this hologram image will interfere with new waves coming from the object. This technique allows real time monitoring of shape changes.
1635:
Phase-contrast X-ray imaging (Fig. 26) refers to a variety of techniques that use phase information of a coherent x-ray beam to image soft tissues. (For an elementary discussion, see
567:. After being perturbed by interaction with the sample under test, the sample beam is recombined with the reference beam to create an interference pattern which can then be interpreted. 1227:
In telecommunication networks, heterodyning is used to move frequencies of individual signals to different channels which may share a single physical transmission line. This is called
3592:
Hornberger, Klaus; Gerlich, Stefan; Haslinger, Philipp; Nimmrichter, Stefan; Arndt, Markus (2012-02-08). "\textit{Colloquium} : Quantum interference of clusters and molecules".
1146:
Michelson (1918) criticized the Twyman–Green configuration as being unsuitable for the testing of large optical components, since the light sources available at the time had limited
1590: 921:
The Mach–Zehnder interferometer's relatively large and freely accessible working space, and its flexibility in locating the fringes has made it the interferometer of choice for
734:
is a pair of partially silvered glass optical flats spaced several millimeters to centimeters apart with the silvered surfaces facing each other. (Alternatively, a Fabry–PĂ©rot
4727: 4847:
P. de Groot, J., "Interference Microscopy for Surface Structure Analysis", in Handbook of Optical Metrology, edited by T. Yoshizawa, chapt.31, pp. 791-828, (CRC Press, 2015).
1040:
conventional imaging techniques. The resolution of conventional electron microscopy is not limited by electron wavelength, but by the large aberrations of electron lenses.
1219:. The distinction between RLGs and FOGs is that in a RLG, the entire ring is part of the laser while in a FOG, an external laser injects counter-propagating beams into an 1239:
system can carry 500 television channels at the same time because each one is given a different frequency, so they don't interfere with one another. Continuous wave (CW)
868:
When used as a tunable narrow band filter, Michelson interferometers exhibit a number of advantages and disadvantages when compared with competing technologies such as
2792:
Herrmann, S.; Senger, A.; Möhle, K.; Nagel, M.; Kovalchuk, E.; Peters, A. (2009). "Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level".
4664: 4119:
Oliver, W. D.; Yu, Y.; Lee, J. C.; Berggren, K. K.; Levitov, L. S.; Orlando, T. P. (2005). "Mach–Zehnder Interferometry in a Strongly Driven Superconducting Qubit".
700:
An amplitude splitting interferometer uses a partial reflector to divide the amplitude of the incident wave into separate beams which are separated and recombined.
1883:
T.Young, “The Bakerian Lecture:Experiments and Calculations Relative to Physical Optics,” Philosophical Transactions of the Royal Society of London 94 (1804): 1–16.
1321:
Phase shifting interferometry overcomes these limitations by not relying on finding fringe centers, but rather by collecting intensity data from every point of the
515:
signal from the antenna is mixed with a signal from a local oscillator (LO) and converted by the heterodyne technique to a lower fixed frequency signal called the
1562: 625:
spatially coherent light) and, after allowing the two parts of the wavefront to travel through different paths, allows them to recombine. Fig. 5 illustrates
4598: 1618: 1605: 5008:
Hitzenberger, C. K.; Sticker, M.; Leitgeb, R.; Fercher, A. F. (2001). "Differential phase measurements in low-coherence interferometry without 2pi ambiguity".
2845:
Scherrer, P.H.; Bogart, R.S.; Bush, R.I.; Hoeksema, J.; Kosovichev, A.G.; Schou, J. (1995). "The Solar Oscillations Investigation – Michelson Doppler Imager".
652:
played a major role in the general acceptance of the wave theory of light. If white light is used in Young's experiment, the result is a white central band of
1431: 633:. Other examples of wavefront splitting interferometer include the Fresnel biprism, the Billet Bi-Lens, diffraction-grating Michelson interferometer, and the 404:
developed the first single-beam interferometer (not requiring a splitting aperture as the Arago interferometer did) in 1856. In 1881, the American physicist
1624: 5399:
Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; Fujimoto, J.G. (1991).
3377:
Malbet, F.; Kern, P.; Schanen-Duport, I.; Berger, J.-P.; Rousselet-Perraut, K.; Benech, P. (1999). "Integrated optics for astronomical interferometry".
456:
technique is used for (1) shifting an input signal into a new frequency range as well as (2) amplifying a weak input signal (assuming use of an active
138:
changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different
134:
are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements,
5840:
Davis, T J; Gao, D; Gureyev, T E; Stevenson, A W & Wilkins, S W (1995). "Phase-contrast imaging of weakly absorbing materials using hard X-rays".
5467: 4074:
Heideman, R. G.; Kooyman, R. P. H.; Greve, J. (1993). "Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor".
1461: 719:
that fringes and test object can be photographed together. If it is decided to produce fringes in white light, then, since white light has a limited
1442: 915: 755:
Fig. 6 illustrates the Fizeau, Mach–Zehnder, and Fabry–PĂ©rot interferometers. Other examples of amplitude splitting interferometer include the
2680:
MĂŒller, H.; Herrmann, S.; Braxmaier, C.; Schiller, S.; Peters, A. (2003). "Modern Michelson–Morley experiment using cryogenic optical resonators".
1927:
J. Lequeux, François Arago A 19th Century French Humanist and Pioneer in Astrophysics (Springer International Publishing: Imprint: Springer, 2015).
1250:
measurements capable of detecting very weak light scattered in the atmosphere and monitoring wind speeds with high accuracy. It has application in
4469: 2005: 929:
Mach–Zehnder interferometers are also used to study one of the most counterintuitive predictions of quantum mechanics, the phenomenon known as
5383: 5151: 4874: 4800: 4341: 3977: 3944: 3776: 2554: 2388: 2335: 2120: 2093: 1912: 1819: 1765: 896: 775:
Michelson and Morley (1887) and other early experimentalists using interferometric techniques in an attempt to measure the properties of the
887:
Fabry–PĂ©rot thin-film etalons are used in narrow bandpass filters capable of selecting a single spectral line for imaging; for example, the
4387: 1309: 1285:
frequencies with a spacing equal to the pulse repetition frequency (Fig. 16). The pulse repetition frequency is locked to that of the
5883:
Momose, A; Takeda, T; Itai, Y & Hirano, K (1996). "Phase-contrast X-ray computed tomography for observing biological soft tissues".
2571: 989: 5070: 1254:, in various high resolution spectroscopic techniques, and the self-heterodyne method can be used to measure the linewidth of a laser. 1200: 993:
Optical interferometric measurements require high sensitivity, low noise detectors that did not become available until the late 1990s.
1948: 1347: 649: 626: 5740:
Wilkins, S W; Gureyev, T E; Gao, D; Pogany, A & Stevenson, A W (1996). "Phase-contrast imaging using polychromatic hard X-rays".
4952:"2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low-coherence interferometer" 4689:
de Groot, Peter; Deck, Leslie (1995). "Surface Profiling by Analysis of White-light Interferograms in the Spatial Frequency Domain".
907: 869: 731: 337:
are tilted with respect to each other, the interference fringes will generally take the shape of conic sections (hyperbolas), but if
5532: 4731: 1723: 1677: 1356: 1298: 969: 593: 3002: 5050:
Wojtek J. Walecki, Kevin Lai, Vitalij Souchkov, Phuc Van, SH Lau, Ann Koo Physica Status Solidi C Volume 2, Issue 3, Pages 984–989
3535:
Gerlich, S.; Eibenberger, S.; Tomandl, M.; Nimmrichter, S.; Hornberger, K.; Fagan, P. J.; TĂŒxen, J.; Mayor, M.; Arndt, M. (2011).
3092:
Chevalerias, R.; Latron, Y.; Veret, C. (1957). "Methods of Interferometry Applied to the Visualization of Flows in Wind Tunnels".
2459: 2211: 1703: 1127: 816:. Recent repetitions of the Michelson–Morley experiment perform heterodyne measurements of beat frequencies of crossed cryogenic 585: 576:
is a class of interferometer in which the reference beam and sample beam travel along the same path. Fig. 4 illustrates the
1376: 809: 760: 715: 564: 560: 5173: 3154: 1228: 983: 672:
bright. In 1834, Humphrey Lloyd interpreted this effect as proof that the phase of a front-surface reflected beam is inverted.
601: 421: 193: 49: 4916:
Plucinski, J.; Hypszer, R.; Wierzba, P.; Strakowski, M.; Jedrzejewska-Szczerska, M.; Maciejewski, M.; Kosmowski, B.B. (2008).
2404: 1476:
contour lines indicating a trough. To resolve the issue of phase ambiguity, ESPI may be combined with phase shifting methods.
1094:
How interference fringes are formed by an optical flat resting on a reflective surface. The gap between the surfaces and the
4890: 2487:
The design and construction of a Mach–Zehnder interferometer for use with the GALCIT Transonic Wind Tunnel. Engineer's thesis
979: 862: 155: 1009:
system, a binary star system approximately 960 light-years (290 parsecs) away in the constellation Lyra, as observed by the
952:, mixing signals from a cluster of comparatively small telescopes rather than a single very expensive monolithic telescope. 640: 693: 4891:"HDVSI – Introducing High Definition Vertical Scanning Interferometry for Nanotechnology Research from Veeco Instruments" 3833:
Dimopoulos, S.; Graham, P.W.; Hogan, J.M.; Kasevich, M.A. (2008). "General Relativistic Effects in Atom Interferometry".
6009: 4857:
Schmit, J.; Creath, K.; Wyant, J. C. (2007). "Surface Profilers, Multiple Wavelength, and White Light Intereferometry".
3228:
Haack, G. R.; Förster, H.; BĂŒttiker, M. (2010). "Parity detection and entanglement with a Mach–Zehnder interferometer".
2948: 2741:
Eisele, C.; Nevsky, A.; Schiller, S. (2009). "Laboratory Test of the Isotropy of Light Propagation at the 10-17 Level".
1640: 1553: 1402:
article covers the disputes over priority of discovery that occurred during the issuance of the patent for this method.
526: 158:
they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An
5400: 1425:
Figure 20. InSAR Image of Kilauea, Hawaii showing fringes caused by deformation of the terrain over a six-month period.
6014: 1940:
Interference: The History of Optical Interferometry and the Scientists Who Tamed Light (Oxford University Press, 2023)
1194: 689: 605: 159: 2185: 2328:
Fundamental Physics – Heisenberg and Beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics"
306:
are in line with the observer, and the resulting interference pattern consists of circles centered on the normal to
5938: 1693: 1682: 1541: 1399: 1382: 1294: 1154: 597: 572: 538: 3051: 2634:
Miller, Dayton C. (1933). "The Ether-Drift Experiment and the Determination of the Absolute Motion of the Earth".
1018: 5930: 4052: 2980: 2436: 1601: 1251: 1186: 1178: 1052: 808:
In physics, one of the most important experiments of the late 19th century was the famous "failed experiment" of
653: 2890:"Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers" 1044: 1002: 861:
Michelson interferometers are used in tunable narrow band optical filters and as the core hardware component of
680: 262:. The fringes can be interpreted as the result of interference between light coming from the two virtual images 171: 1698: 1454: 1047:, to examine the effects of gravity acting on an elementary particle, and to demonstrate a strange behavior of 756: 556: 500: 413: 375: 363: 37: 5783:
Miao, Houxun; Panna, Alireza; Gomella, Andrew A.; Bennett, Eric E.; Znati, Sami; Chen, Lei; Wen, Han (2016).
1484: 386:, unaware of Young's results, began working on a wave theory of light and interference and was introduced to 6004: 2510: 1718: 1609: 1394:
The resultant holograms, which showed the holographic subject covered with fringes, were considered ruined.
1022: 634: 589: 54: 5506: 5232:
Butters, J. N.; Leendertz, J. A. (1971). "A double exposure technique for speckle pattern interferometry".
4510: 4492: 4091: 2207: 1713: 1636: 1182: 1123: 1026: 516: 504: 5295:"Comparative Phase-Shifting Digital Speckle Pattern Interferometry Using Single Reference Beam Technique" 4365: 3430:
Baldwin, J.E.; Haniff, C.A. (2002). "The application of interferometry to optical astronomical imaging".
3285: 1708: 1365: 1322: 1212: 959:
interferometers used a single baseline for measurement. Later astronomical interferometers, such as the
764: 704: 685: 581: 577: 409: 383: 58: 5269:"Dynamic Electronic Speckle Pattern Interferometry in Application to Measure Out-Of-Plane Displacement" 4623:
De Groot, P (2015). "Principles of interference microscopy for the measurement of surface topography".
621:
A wavefront splitting interferometer divides a light wavefront emerging from a point or a narrow slit (
555:
is one in which the reference beam and sample beam travel along divergent paths. Examples include the
5337: 2889: 1074: 5849: 5796: 5749: 5712: 5660: 5567: 5482: 5415: 5371: 5241: 5017: 4966: 4698: 4632: 4564: 4484: 4297: 4227: 4189: 4138: 4083: 4006: 3899: 3852: 3805: 3723: 3664: 3611: 3548: 3501: 3439: 3396: 3310: 3247: 3179: 3101: 2904: 2854: 2811: 2750: 2699: 2643: 2586: 2542: 2296: 2253: 2149: 2040: 1938: 1848: 1360: 1272: 1208: 930: 213: 4497: 4096: 1058:
Atom interferometry techniques are reaching sufficient precision to allow laboratory-scale tests of
543: 2028: 1836: 1672: 1333: 1302: 1243:
detectors are basically heterodyne detection devices that compare transmitted and reflected beams.
1036: 1030: 994: 776: 662: 405: 228: 220: 151: 147: 840: 179: 5908: 5865: 5765: 5678: 4990: 4450: 4331: 4255: 4243: 4162: 4128: 3868: 3842: 3747: 3696: 3654: 3627: 3601: 3517: 3491: 3463: 3412: 3386: 3334: 3300: 3263: 3237: 3195: 3169: 3067: 2870: 2827: 2801: 2774: 2723: 2689: 2659: 2602: 2269: 1339: 1286: 1107: 1059: 949: 922: 911: 813: 442: 4391: 3005:. NASA/Goddard Space Flight Center Scientific Visualization Studio. 2 April 2008. Archived from 1982: 5222:
Jones R & Wykes C, Holographic and Speckle Interferometry, 1989, Cambridge University Press
5988: 5900: 5822: 5629: 5593: 5498: 5441: 5379: 5147: 5141: 5033: 4982: 4870: 4796: 4590: 4337: 4154: 4034: 3973: 3940: 3772: 3739: 3688: 3680: 3574: 3455: 2766: 2715: 2550: 2384: 2378: 2331: 2244:
Jönsson, C (1961). "Elektroneninterferenzen an mehreren kĂŒnstlich hergestellten Feinspalten".
2167: 2116: 2089: 2058: 1944: 1908: 1866: 1815: 1761: 1728: 1369: 1137: 827: 817: 668: 630: 476:(LO). The nonlinear combination of the input signals creates two new signals, one at the sum f 446: 219:
Typically (see Fig. 1, the well-known Michelson configuration) a single incoming beam of
93: 4827:"Optical wavefront measurement using a novel phase-shifting point-diffraction interferometer" 2536: 2323: 2110: 1215:(FOGs) are interferometers used in navigation systems. They operate on the principle of the 1021:
can be exploited to build interferometers. The first examples of matter interferometers were
5952: 5892: 5857: 5812: 5804: 5757: 5720: 5668: 5621: 5583: 5575: 5490: 5431: 5423: 5309: 5249: 5074: 5025: 4974: 4862: 4788: 4706: 4640: 4580: 4572: 4502: 4442: 4305: 4235: 4197: 4193: 4146: 4101: 4024: 4014: 3965: 3932: 3907: 3888:"Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers" 3860: 3813: 3731: 3672: 3619: 3564: 3556: 3509: 3447: 3404: 3400: 3326: 3318: 3255: 3187: 3109: 3059: 2920: 2912: 2862: 2819: 2758: 2707: 2651: 2610: 2594: 2491: 2304: 2261: 2157: 2081: 2048: 1900: 1856: 1648: 1534: 1492: 1327: 1236: 1147: 1119: 1066:
column concentration of trace gases such as ozone and carbon monoxide above the instrument.
960: 948:
An astronomical interferometer achieves high-resolution observations using the technique of
941: 800: 787:. This was an early example of the use of white light to resolve the "2 pi ambiguity". 784: 780: 720: 520: 473: 457: 433:
Interferometers and interferometric techniques may be categorized by a variety of criteria:
417: 395: 391: 232: 185: 143: 135: 101: 3128: 2352: 1894: 1257: 1090: 5964: 4267: 1757: 956: 936: 512: 465: 97: 5338:"Traceability, stability and use of the Kyviskes calibration baseline–the first 10 years" 4951: 4217:"Measurement of aspheric mirror segments using Fizeau interferometry with CGH correction" 3927:
Mantravadi, M. V.; Malacara, D. (2007). "Newton, Fizeau, and Haidinger Interferometers".
1204:
Figure 15. Optical testing with a Fizeau interferometer and a computer generated hologram
964:
information in multiple orientations by taking repeated measurements, a technique called
394:
to measure the speed of light in air relative to water, and it was used again in 1851 by
5853: 5800: 5753: 5716: 5664: 5571: 5486: 5419: 5375: 5245: 5021: 4970: 4702: 4636: 4568: 4488: 4301: 4231: 4142: 4087: 4010: 3903: 3856: 3809: 3727: 3668: 3615: 3552: 3505: 3443: 3314: 3251: 3183: 3105: 3006: 2908: 2858: 2815: 2754: 2703: 2647: 2590: 2546: 2300: 2257: 2153: 2044: 1852: 5976: 5817: 5784: 5436: 4029: 3994: 3569: 3536: 1628: 1450: 1277: 1190: 1171: 1131: 1001:
are now in operation offering resolutions down to the fractional milliarcsecond range.
508: 387: 105: 17: 5998: 5682: 4282: 4105: 3872: 3322: 3267: 3071: 2916: 2874: 2831: 2606: 2273: 2138:"Fully symmetric dispersionless stable transmission-grating Michelson interferometer" 1644: 1468: 1247: 1240: 1232: 1220: 1216: 499:
The most important and widely used application of the heterodyne technique is in the
224: 204: 113: 66: 5912: 5253: 5201: 5184: 4470:"Efficient nonlinear algorithm for envelope detection in white light interferometry" 4454: 4247: 4166: 3751: 3631: 3521: 3467: 3416: 3203: 3199: 2778: 2727: 1627:(a/LCI) uses scattered light to measure the sizes of subcellular objects, including 5971: 5869: 5769: 4994: 4414: 3714:
Lehmann, M; Lichte, H (December 2002). "Tutorial on off-axis electron holography".
3700: 2762: 2663: 1660: 1520: 1509: 1268: 1167: 1115: 708: 379:
dominance of Isaac Newton's corpuscular theory of light proposed a century before.
139: 85: 77: 4894: 3338: 2711: 2411: 975: 3766: 1750: 5294: 2949:"Additional Notes Concerning the Selection of a Multiple-Etalon System for ATST" 2029:"Widefield heterodyne interferometry using a custom CMOS modulated light camera" 1652: 1010: 873: 740: 401: 117: 109: 70: 4866: 4792: 3999:
Proceedings of the National Academy of Sciences of the United States of America
3864: 3352: 3259: 2823: 5983: 5625: 5268: 5118: 4710: 3969: 3936: 3735: 3623: 3063: 2598: 2324:"Heisenberg's Uncertainty and Matter Wave Interferometry with Large Molecules" 2085: 1904: 1688: 1656: 1386: 1162: 1095: 1006: 724: 453: 146:
sources can also be made to interfere under some circumstances. The resulting
81: 5314: 4441:. Interferometry: Techniques and Analysis. Vol. 1755. pp. 202–201. 4224:
Modern Technologies in Space- and Ground-based Telescopes and Instrumentation
3684: 3191: 2955: 2655: 1568:
Figure 24. Spyrogira cell (detached from algal filament) under phase contrast
398:
to measure the effect of Fresnel drag on the speed of light in moving water.
5427: 4506: 4150: 3155:"Entanglement and visibility at the output of a Mach–Zehnder interferometer" 1488: 1158: 658: 200: 121: 89: 73: 62: 32: 5826: 5701:"Differential x-ray phase contrast imaging using a shearing interferometer" 5633: 5597: 5502: 5037: 4986: 4594: 4158: 4038: 3912: 3887: 3743: 3692: 3578: 3459: 3451: 3129:"Flow visualization techniques in wind tunnels – optical methods (Part II)" 3113: 2770: 2719: 2485: 2171: 2062: 1870: 1508:
local molecular polarizability eliminates the need for fluorescent tags or
1351:
Figure 19. Twyman–Green interferometer set up as a white light scanner
5925: 5904: 5785:"A universal moiré effect and application in X-ray phase-contrast imaging" 5445: 4918:"Optical low-coherence interferometry for selected technical applications" 4756: 3818: 3793: 3408: 1437:
Figure 21. ESPI fringes showing a vibration mode of a clamped square plate
1033:
were demonstrated, later followed by interferometers employing molecules.
5029: 4978: 4644: 4576: 4133: 4019: 3391: 3330: 3305: 3174: 2925: 2053: 1861: 1613: 1495:
measured by these instruments. (This method has been superseded by GPS.)
1282: 1048: 804:
Interferometry is used in radio astronomy, with timing offsets of D sin Ξ
745: 125: 5588: 4585: 2694: 5896: 5096: 4917: 4783:
Schreiber, H.; Bruning, J. H. (2007). "Phase Shifting Interferometry".
4728:"Phase-Shifting Interferometry for Determining Optical Surface Quality" 3676: 3560: 2866: 2265: 1480: 1446: 892: 888: 445:, the interference occurs between two beams at the same wavelength (or 208:
to determine their relative phase difference. Most interferometers use
5808: 5725: 5700: 5673: 5648: 5579: 5494: 4446: 4239: 4201: 2495: 2308: 2162: 2137: 2136:
Kolesnichenko, Pavel; Wittenbecher, Lukas; Zigmantas, Donatas (2020).
5861: 5761: 1111: 4309: 1276:
in the construction of a custom frequency chain. Currently, optical
412:
in Berlin, invented the interferometer that is named after him, the
238:
As seen in Fig. 2a and 2b, the observer has a direct view of mirror
3513: 884:
coronal plasma velocity towards or away from the satellite camera.
523:
which extracts the audio signal, which is sent to the loudspeaker.
519:(IF). This IF is amplified and filtered, before being applied to a 3847: 3659: 3606: 3496: 3242: 2806: 1136: 1089: 974: 935: 799: 209: 2076:
Mallick, S.; Malacara, D. (2007). "Common-Path Interferometers".
1596:
Figure 26. High resolution phase-contrast x-ray image of a spider
2572:"On the Relative Motion of the Earth and the Luminiferous Ether" 1313:
Figure 17. Phase shifting and Coherence scanning interferometers
903: 3028: 2405:"Guideline for Use of Fizeau Interferometer in Optical Testing" 1005:
shows a movie assembled from aperture synthesis images of the
203:
combine, the resulting intensity pattern is determined by the
2287:
Jönsson, C (1974). "Electron diffraction at multiple slits".
968:. Baselines thousands of kilometers long were achieved using 142:, which are then combined again to produce interference; two 61:
and is an important investigative technique in the fields of
5347:. Vilnius Gediminas Technical University. pp. 1274–1280 4826: 4283:""Sagnac effect" A century of Earth-rotated interferometers" 175:
Figure 2. Formation of fringes in a Michelson interferometer
5345:
Environmental Engineering, The 7th International Conference
3050:
Castelvecchi, Davide; Witze, Alexandra (11 February 2016).
2027:
Patel, R.; Achamfuo-Yeboah, S.; Light R.; Clark M. (2011).
1835:
Patel, R.; Achamfuo-Yeboah, S.; Light R.; Clark M. (2014).
1406:
the difference between the stressed and unstressed states.
592:. Other examples of common path interferometer include the 245:
seen through the beam splitter, and sees a reflected image
5699:
David, C; Nohammer, B; Solak, H H & Ziegler E (2002).
3029:"LIGO-Laser Interferometer Gravitational-Wave Observatory" 3003:"Halloween 2003 Solar Storms: SOHO/EIT Ultraviolet, 195 Ã" 1379:
set up for white light scanning of a macroscopic object.
484:
of the two frequencies, and the other at the difference f
5533:"Nomarski Differential Interference-Contrast Microscopy" 3886:
Mariani, Z.; Strong, K.; Wolff, M.; et al. (2012).
1343:
visualized by Scanning White Light Interferometry (SWLI)
1043:
Neutron interferometry has been used to investigate the
1584:
unsporulated oocyst, differential interference contrast
4950:
Yang, C.-H.; Wax, A; Dasari, R.R.; Feld, M.S. (2002).
4053:"Interferential Devices – Twyman–Green Interferometer" 2380:
Principles of physics: a calculus-based text, Volume 1
1805: 1803: 1801: 1799: 1797: 1157:, in which light interferes between two branches of a 547:
Figure 4. Four examples of common-path interferometers
57:
to extract information. Interferometry typically uses
5936: 2954:. Advanced Technology Solar Telescope. Archived from 1795: 1793: 1791: 1789: 1787: 1785: 1783: 1781: 1779: 1777: 1271:
to optical frequencies. At each step of the chain, a
684:
Figure 6. Three amplitude-splitting interferometers:
3960:
Malacara, D. (2007). "Twyman–Green Interferometer".
3794:"Neutron interferometry: A tale of three continents" 1526:
Figure 22. Typical optical setup of single point OCT
4390:. National Research Council, Canada. Archived from 1748:Bunch, Bryan H; Hellemans, Alexander (April 2004). 1619:
analysis of planar silicon semiconductor processing
904:
Laser Interferometer Gravitational-Wave Observatory
752:a reflectivity of 0.95 for the high-finesse image. 4281:Anderson, R.; Bilger, H.R.; Stedman, G.E. (1994). 1749: 1246:Optical heterodyne detection is used for coherent 374:The law of interference of light was described by 223:light will be split into two identical beams by a 5174:"Holographic Interferometry: Nondestructive tool" 4182:Journal of Micro/Nanolithography, MEMS, and MOEMS 3537:"Quantum interference of large organic molecules" 1896:History of the Principle of Interference of Light 1118:to control and measure the wavelengths of light. 644:Figure 5. Two wavefront splitting interferometers 503:(superhet), invented in 1917-18 by U.S. engineer 5202:"PIA01762: Space Radar Image of Kilauea, Hawaii" 4778: 4776: 4774: 2465:. Physics Department, Westminster School, London 2437:"Interferential devices – Fizeau Interferometer" 2006:"The superhet or superheterodyne radio receiver" 895:line of the Sun or stars. Fig. 10 shows an 5368:Optical Interferometry for Biology and Medicine 4548:Harasaki, A.; Schmit, J.; Wyant, J. C. (2000). 4543: 4541: 2538:Optical Interferometry for Biology and Medicine 2115:. Discovery Publishing House. pp. 97–110. 1153:Mach–Zehnder interferometers are being used in 4815:Sommargren, G. E. (1986). US Patent 4,594,003. 3052:"Einstein's gravitational waves found at last" 2460:"How does a Mach–Zehnder interferometer work?" 1078:Figure 13. Optical flat interference fringes. 852:Figure 9. A picture of the solar corona taken 612:Wavefront splitting versus amplitude splitting 27:Measurement method using interference of waves 5267:DvoƙákovĂĄ, P.; Bajgar, V.; Trnka, J. (2007). 5146:. Dover Publications, Inc. pp. 229–230. 4825:Ferraro, P.; Paturzo, M.; Grilli, S. (2007). 4665:"Interferometry: Technology and Applications" 982:is an astronomical interferometer located in 8: 5234:Journal of Physics E: Scientific Instruments 2490:(engd). California Institute of Technology. 5167: 5165: 5163: 4550:"Improved vertical-scanning interferometry" 2516:. Fachbereich Physik, UniversitĂ€t OsnabrĂŒck 1637:Phase-contrast x-ray imaging (introduction) 1625:Angle-resolved low-coherence interferometry 1515: 1098:of the light waves are greatly exaggerated. 833:Figure 7. Michelson–Morley experiment with 822: 661:molecules large enough to be seen under an 4925:Bulletin of the Polish Academy of Sciences 4722: 4720: 4215:Burge, J. H.; Zhao, C.; Dubin, M. (2010). 2358:. American Association of Physics Teachers 1612:. These structures can be made visible by 707:is shown as it might be set up to test an 5816: 5724: 5694: 5692: 5672: 5587: 5435: 5313: 4751: 4749: 4658: 4656: 4654: 4584: 4496: 4477:Journal of the Optical Society of America 4333:RF and Microwave Applications and Systems 4132: 4095: 4028: 4018: 3911: 3846: 3817: 3658: 3605: 3568: 3495: 3390: 3304: 3241: 3173: 3094:Journal of the Optical Society of America 2924: 2805: 2693: 2458:Zetie, K.P.; Adams, S.F.; Tocknell, R.M. 2161: 2052: 1976: 1974: 1972: 1970: 1860: 1462:Electronic speckle pattern interferometry 1134:modes except the single one of interest. 150:give information about the difference in 3279: 3277: 2326:. In Buschhorn, G. W.; Wess, J. (eds.). 2212:"Interference Fringes with Feeble Light" 1443:Interferometric synthetic aperture radar 1346: 1332: 1308: 1256: 1199: 1073: 916:first observation of gravitational waves 846:Figure 8. Fourier transform spectroscopy 679: 639: 542: 178: 170: 116:, mechanical stress/strain measurement, 31: 5943: 4663:Olszak, A.G.; Schmit, J.; Heaton, M.G. 4366:"Self-heterodyne Linewidth Measurement" 3995:"On the Correction of Optical Surfaces" 2888:Stroke, G.W.; Funkhouser, A.T. (1965). 2186:"Interferential Devices – Introduction" 1740: 1558: 1415: 1179:extremely large astronomical telescopes 1106:Fabry-PĂ©rot etalons are widely used in 4263: 4253: 3134:. Military Technical Institute, Serbia 2570:Michelson, A.A.; Morley, E.W. (1887). 1663:, or high resolution x-ray detectors. 1141:Figure 14. Twyman–Green Interferometer 5293:Moustafa, N. A.; Hendawi, N. (2003). 4730:. Newport Corporation. Archived from 3286:"Optical interferometry in astronomy" 1756:. Houghton Mifflin Harcourt. p.  1752:The History of Science and Technology 1445:(InSAR) is a radar technique used in 908:Michelson–Fabry–PĂ©rot interferometers 897:Extreme ultraviolet Imaging Telescope 460:). A weak input signal of frequency f 437:Homodyne versus heterodyne detection 7: 1837:"Widefield two laser interferometry" 1632:average cell nuclei size increases. 5336:Buga, A.; Jokela, J.; Putrimas, R. 5097:"Typical profilometry measurements" 3647:Physical Chemistry Chemical Physics 2981:"Spectrometry by Fourier transform" 2377:Serway, R.A.; Jewett, J.W. (2010). 990:Astronomical optical interferometry 492:. These new frequencies are called 468:with a strong reference frequency f 36:Figure 1. The light path through a 4336:. CRC Press. pp. 14.1–14.17. 4226:. Vol. 7739. p. 773902. 2947:Gary, G.A.; Balasubramaniam, K.S. 1639:. For a more in-depth review, see 1606:differential interference contrast 1269:cesium or other atomic time source 25: 4076:Sensors and Actuators B: Chemical 2322:Arndt, M.; Zeilinger, A. (2004). 1724:Very-long-baseline interferometry 1678:Coherence scanning interferometry 1479:A method of establishing precise 1467:When lasers were first invented, 1357:coherence scanning interferometry 1299:coherence scanning interferometry 970:very long baseline interferometry 781:environmental temperature control 594:Zernike phase-contrast microscope 5982: 5970: 5958: 5946: 5924: 5073:. Lumetrics, Inc. Archived from 4757:"How Phase Interferometers work" 4625:Advances in Optics and Photonics 4055:. OPI – Optique pour l'IngĂ©nieur 2983:. OPI – Optique pour l'IngĂ©nieur 2188:. OPI – Optique pour l'IngĂ©nieur 1704:List of types of interferometers 1589: 1573: 1561: 1533: 1519: 1430: 1418: 1128:wavelength-division multiplexing 1126:etalons. In telecommunications, 918:occurred on September 14, 2015. 839: 826: 676:Amplitude-splitting inferometers 617:Wavefront splitting inferometers 586:point diffraction interferometer 511:. In this circuit, the incoming 5649:"Phase-sensitive x-ray imaging" 5071:"Coating Thickness Measurement" 1530:      1229:frequency division multiplexing 1070:Engineering and applied science 863:Fourier transform spectrometers 650:Young's interference experiment 627:Young's interference experiment 590:lateral shearing interferometer 194:Interference (wave propagation) 5468:"Optical Coherence Tomography" 5401:"Optical Coherence Tomography" 5143:Laser, Light of a Million Uses 4759:. Graham Optical Systems. 2011 3293:Reports on Progress in Physics 2763:10.1103/PhysRevLett.103.090401 1985:. RP Photonics Consulting GmbH 1983:"Optical Heterodyne Detection" 533:Double path versus common path 156:Fourier transform spectroscopy 47:is a technique which uses the 1: 3379:Astron. Astrophys. Suppl. Ser 2712:10.1103/PhysRevLett.91.020401 1685:(HST FGS are interferometers) 854:with the LASCO C1 coronagraph 5647:Fitzgerald, Richard (2000). 5560:Journal of Biomedical Optics 5475:Journal of Biomedical Optics 5119:"Holographic interferometry" 4106:10.1016/0925-4005(93)87008-D 3432:Phil. Trans. R. Soc. Lond. A 2917:10.1016/0031-9163(65)90846-2 2541:. Springer. pp. 17–26. 2511:"Fabry–Perot Interferometer" 2383:. Brooks Cole. p. 905. 2330:. Springer. pp. 35–52. 1641:Phase-contrast X-ray imaging 1554:Optical coherence tomography 1546:optical coherence tomography 1252:optical fiber communications 1195:computer-generated holograms 1051:that is at the basis of the 835:cryogenic optical resonators 812:which provided evidence for 527:Optical heterodyne detection 5099:. Novacam Technologies, Inc 2579:American Journal of Science 2484:Ashkenas, Harry I. (1950). 2289:American Journal of Physics 2208:Ingram Taylor, Sir Geoffrey 1943:. Oxford University Press. 1377:Twyman–Green interferometer 1375:Fig. 19 illustrates a 1337:Figure 18. Lunate cells of 1155:integrated optical circuits 870:Fabry–PĂ©rot interferometers 716:Mach–Zehnder interferometer 606:scatterplate interferometer 565:Mach–Zehnder interferometer 561:Twyman–Green interferometer 366:for a discussion of this.) 160:astronomical interferometer 6031: 5614:Gastrointestinal Endoscopy 5172:Fein, H (September 1997). 4867:10.1002/9780470135976.ch15 4793:10.1002/9780470135976.ch14 3865:10.1103/PhysRevD.78.042003 3771:(2nd ed.). Springer. 3323:10.1088/0034-4885/66/5/203 3260:10.1103/PhysRevB.82.155303 2824:10.1103/PhysRevD.80.105011 2439:. Optique pour l'IngĂ©nieur 1964:Nolte, Interference,pg.111 1694:Interferometric visibility 1683:Fine Guidance Sensor (HST) 1542:Central serous retinopathy 1400:Holographic interferometry 1385:is a technique which uses 1383:Holographic interferometry 1297:(SWLI) or by the ISO term 1295:white light interferometry 763:, Laser Unequal Path, and 732:Fabry–PĂ©rot interferometer 573:common-path interferometer 553:double-path interferometer 539:Common-path interferometer 536: 320:. If, as in Fig. 2b, 231:itself or a change in the 191: 5626:10.1016/j.gie.2006.10.016 5254:10.1088/0022-3735/4/4/004 4711:10.1080/09500349514550341 3993:Michelson, A. A. (1918). 3970:10.1002/9780470135976.ch2 3937:10.1002/9780470135976.ch1 3736:10.1017/S1431927602029938 3624:10.1103/RevModPhys.84.157 3594:Reviews of Modern Physics 3484:The Astrophysical Journal 3064:10.1038/nature.2016.19361 2636:Reviews of Modern Physics 2599:10.2475/ajs.s3-34.203.333 2086:10.1002/9780470135976.ch3 1905:10.1007/978-3-0348-8652-9 1610:bright field illumination 1187:Extremely Large Telescope 1053:Pauli exclusion principle 654:constructive interference 110:biomolecular interactions 88:(and its applications to 5538:. Carl Zeiss, Oberkochen 5366:Nolte, David D. (2012). 5315:10.21608/ejs.2003.150160 5181:The Industrial Physicist 4691:Journal of Modern Optics 4388:"Optical Frequency Comb" 3284:Monnier, John D (2003). 3192:10.1103/PhysRevA.59.1615 2656:10.1103/RevModPhys.5.203 2535:Nolte, David D. (2012). 1937:Nolte, David D. (2023). 1812:Basics of Interferometry 1699:Interference lithography 1455:synthetic aperture radar 1328:piezoelectric transducer 1029:. Around 1990 the first 1023:electron interferometers 1019:wave character of matter 966:Earth-rotation synthesis 557:Michelson interferometer 501:superheterodyne receiver 414:Michelson Interferometer 364:Michelson interferometer 38:Michelson interferometer 5705:Applied Physics Letters 5428:10.1126/science.1957169 5183:: 37–39. Archived from 4893:. Veeco. Archived from 4507:10.1364/JOSAA.13.000832 4194:2006JMM&M...5b3009N 4151:10.1126/science.1119678 3401:1999A&AS..138..135M 2743:Physical Review Letters 2353:"Simple Lloyd's Mirror" 2008:. Radio-Electronics.com 1719:Superposition principle 1483:baselines, invented by 1293:also known as scanning 1262:frequency measurements. 1027:neutron interferometers 635:Rayleigh interferometer 282:of the original source 5466:Fercher, A.F. (1996). 3913:10.5194/amt-5-329-2012 3452:10.1098/rsta.2001.0977 3153:Paris, M.G.A. (1999). 3114:10.1364/JOSA.47.000703 2410:. NASA. Archived from 2246:Zeitschrift fĂŒr Physik 1893:Kipnis, Nahum (1991). 1810:Hariharan, P. (2007). 1714:Seismic interferometry 1352: 1344: 1314: 1263: 1231:(FDM). For example, a 1213:fibre optic gyroscopes 1205: 1183:Thirty Meter Telescope 1142: 1099: 1087: 1014:both clearly visible. 999:three major facilities 986: 945: 805: 697: 645: 548: 517:intermediate frequency 505:Edwin Howard Armstrong 212:or some other form of 189: 176: 41: 18:Optical interferometry 5276:Engineering Mechanics 4468:Larkin, K.G. (1996). 3765:Tonomura, A. (1999). 3541:Nature Communications 2219:Proc. Camb. Phil. Soc 1709:Ramsey interferometry 1366:Linnik interferometer 1350: 1336: 1312: 1260: 1209:Ring laser gyroscopes 1203: 1140: 1093: 1077: 995:Astronomical "seeing" 978: 939: 910:for the detection of 906:(LIGO) uses two 4-km 803: 796:Physics and astronomy 765:Linnik interferometer 705:Fizeau interferometer 683: 643: 582:fibre optic gyroscope 578:Sagnac interferometer 546: 410:Hermann von Helmholtz 384:Augustin-Jean Fresnel 192:Further information: 184:monochromatic light ( 182: 174: 112:, surface profiling, 76:, optical metrology, 59:electromagnetic waves 35: 5933:at Wikimedia Commons 5512:on 25 September 2018 5140:Hecht, Jeff (1998). 5030:10.1364/ol.26.001864 4979:10.1364/OL.27.000077 4859:Optical Shop Testing 4785:Optical Shop Testing 4645:10.1364/AOP.7.000001 4577:10.1364/AO.39.002107 4413:Paschotta, RĂŒdiger. 4364:Paschotta, RĂŒdiger. 4330:Golio, Mike (2007). 4020:10.1073/pnas.4.7.210 3962:Optical Shop Testing 3929:Optical Shop Testing 3353:"Cosmic Calibration" 3209:on 10 September 2016 2417:on 25 September 2018 2109:Verma, R.K. (2008). 2078:Optical Shop Testing 2054:10.1364/OE.19.024546 1981:Paschotta, RĂŒdiger. 1862:10.1364/OE.22.027094 1503:Biology and medicine 1491:traceable scale for 1361:Mirau interferometer 1301:(CSI), CSI exploits 1273:frequency multiplier 1177:The latest proposed 1161:that are externally 1045:Aharonov–Bohm effect 1031:atom interferometers 1025:, later followed by 931:quantum entanglement 810:Michelson and Morley 507:and French engineer 382:The French engineer 214:electromagnetic wave 152:optical path lengths 148:interference fringes 6010:Optical instruments 5854:1995Natur.373..595D 5801:2016NatPh..12..830M 5754:1996Natur.384..335W 5717:2002ApPhL..81.3287D 5665:2000PhT....53g..23F 5572:2005JBO....10e1604W 5487:1996JBO.....1..157F 5420:1991Sci...254.1178H 5376:2012oibm.book.....N 5246:1971JPhE....4..277B 5022:2001OptL...26.1864H 4971:2002OptL...27...77Y 4703:1995JMOp...42..389D 4637:2015AdOP....7....1D 4569:2000ApOpt..39.2107H 4489:1996JOSAA..13..832L 4439:Proceedings of SPIE 4302:1994AmJPh..62..975A 4232:2010SPIE.7739E..02B 4143:2005Sci...310.1653O 4127:(5754): 1653–1657. 4088:1993SeAcB..10..209H 4011:1918PNAS....4..210M 3904:2012AMT.....5..329M 3857:2008PhRvD..78d2003D 3819:10.1051/epn/2009802 3810:2009ENews..40f..24K 3768:Electron Holography 3728:2002MiMic...8..447L 3669:2013PCCP...1514696E 3616:2012RvMP...84..157H 3553:2011NatCo...2..263G 3506:2008ApJ...684L..95Z 3444:2002RSPTA.360..969B 3409:10.1051/aas:1999496 3315:2003RPPh...66..789M 3252:2010PhRvB..82o5303H 3184:1999PhRvA..59.1615P 3106:1957JOSA...47..703C 2909:1965PhL....16..272S 2859:1995SoPh..162..129S 2816:2009PhRvD..80j5011H 2755:2009PhRvL.103i0401E 2704:2003PhRvL..91b0401M 2648:1933RvMP....5..203M 2591:1887AmJS...34..333M 2547:2012oibm.book.....N 2301:1974AmJPh..42....4J 2258:1961ZPhy..161..454J 2154:2020OExpr..2837752K 2148:(25): 37752–37757. 2045:2011OExpr..1924546P 2039:(24): 24546–24556. 1853:2014OExpr..2227094P 1847:(22): 27094–27101. 1193:. In recent years, 1122:are multiple layer 1037:Electron holography 912:gravitational waves 777:luminiferous aether 663:electron microscope 406:Albert A. Michelson 6015:Plasma diagnostics 5897:10.1038/nm0496-473 5077:on 29 October 2013 4734:on 7 November 2012 3964:. pp. 46–96. 3792:Klein, T. (2009). 3716:Microsc. Microanal 3677:10.1039/C3CP51500A 3561:10.1038/ncomms1263 2867:10.1007/BF00733429 2266:10.1007/BF01342460 1353: 1345: 1340:Nepenthes khasiana 1315: 1287:frequency standard 1264: 1206: 1143: 1108:telecommunications 1100: 1088: 1060:general relativity 987: 984:Chajnantor Plateau 950:aperture synthesis 946: 818:optical resonators 814:special relativity 806: 723:, on the order of 698: 646: 549: 443:homodyne detection 190: 177: 55:superimposed waves 42: 5929:Media related to 5848:(6515): 595–598. 5809:10.1038/nphys3734 5748:(6607): 335–338. 5726:10.1063/1.1516611 5711:(17): 3287–3289. 5674:10.1063/1.1292471 5580:10.1117/1.2102767 5495:10.1117/12.231361 5414:(5035): 1178–81. 5385:978-1-4614-0889-5 5153:978-0-486-40193-5 5016:(23): 1864–1866. 4876:978-0-470-13597-6 4802:978-0-470-13597-6 4563:(13): 2107–2115. 4447:10.1117/12.140770 4415:"Frequency Combs" 4343:978-0-8493-7219-3 4240:10.1117/12.857816 4202:10.1117/1.2203366 3979:978-0-470-13597-6 3946:978-0-470-13597-6 3892:Atmos. Meas. Tech 3841:(42003): 042003. 3778:978-3-540-64555-9 3653:(35): 14696–700. 3438:(1794): 969–986. 3230:Physical Review B 3162:Physical Review A 3127:Ristić, Slavica. 2961:on 10 August 2010 2794:Physical Review D 2556:978-1-4614-0889-5 2496:10.7907/D0V1-MJ80 2390:978-0-534-49143-7 2337:978-3-540-20201-1 2309:10.1119/1.1987592 2163:10.1364/OE.409185 2122:978-81-8356-114-3 2095:978-0-470-13597-6 1914:978-3-0348-9717-4 1821:978-0-12-373589-8 1767:978-0-618-22123-3 1729:Zero spacing flux 1582:Toxoplasma gondii 1551: 1550: 1493:geodetic networks 1370:surface metrology 1003:This linked video 859: 858: 730:The heart of the 598:Fresnel's biprism 447:carrier frequency 408:, while visiting 94:quantum mechanics 16:(Redirected from 6022: 5987: 5986: 5975: 5974: 5963: 5962: 5961: 5951: 5950: 5949: 5942: 5928: 5917: 5916: 5880: 5874: 5873: 5862:10.1038/373595a0 5837: 5831: 5830: 5820: 5780: 5774: 5773: 5762:10.1038/384335a0 5737: 5731: 5730: 5728: 5696: 5687: 5686: 5676: 5644: 5638: 5637: 5608: 5602: 5601: 5591: 5554: 5548: 5547: 5545: 5543: 5537: 5528: 5522: 5521: 5519: 5517: 5511: 5505:. Archived from 5472: 5463: 5457: 5456: 5454: 5452: 5439: 5405: 5396: 5390: 5389: 5363: 5357: 5356: 5354: 5352: 5342: 5333: 5327: 5326: 5324: 5322: 5317: 5299: 5290: 5284: 5283: 5273: 5264: 5258: 5257: 5229: 5223: 5220: 5214: 5213: 5211: 5209: 5204:. NASA/JPL. 1999 5198: 5192: 5191: 5189: 5178: 5169: 5158: 5157: 5137: 5131: 5130: 5128: 5126: 5115: 5109: 5108: 5106: 5104: 5093: 5087: 5086: 5084: 5082: 5067: 5061: 5057: 5051: 5048: 5042: 5041: 5005: 4999: 4998: 4956: 4947: 4941: 4940: 4938: 4936: 4922: 4913: 4907: 4906: 4904: 4902: 4887: 4881: 4880: 4854: 4848: 4845: 4839: 4838: 4836: 4834: 4822: 4816: 4813: 4807: 4806: 4780: 4769: 4768: 4766: 4764: 4753: 4744: 4743: 4741: 4739: 4724: 4715: 4714: 4686: 4680: 4679: 4677: 4675: 4669: 4660: 4649: 4648: 4620: 4614: 4613: 4611: 4609: 4603: 4597:. Archived from 4588: 4554: 4545: 4536: 4535:Standardization. 4532: 4526: 4525: 4523: 4521: 4516:on 10 March 2020 4515: 4509:. Archived from 4500: 4474: 4465: 4459: 4458: 4433: 4427: 4426: 4424: 4422: 4410: 4404: 4403: 4401: 4399: 4384: 4378: 4377: 4375: 4373: 4361: 4355: 4354: 4352: 4350: 4327: 4321: 4320: 4318: 4316: 4287: 4278: 4272: 4271: 4265: 4261: 4259: 4251: 4221: 4212: 4206: 4205: 4177: 4171: 4170: 4136: 4134:cond-mat/0512691 4116: 4110: 4109: 4099: 4071: 4065: 4064: 4062: 4060: 4049: 4043: 4042: 4032: 4022: 3990: 3984: 3983: 3957: 3951: 3950: 3924: 3918: 3917: 3915: 3883: 3877: 3876: 3850: 3830: 3824: 3823: 3821: 3798:Europhysics News 3789: 3783: 3782: 3762: 3756: 3755: 3711: 3705: 3704: 3662: 3642: 3636: 3635: 3609: 3589: 3583: 3582: 3572: 3532: 3526: 3525: 3499: 3478: 3472: 3471: 3427: 3421: 3420: 3394: 3392:astro-ph/9907031 3374: 3368: 3367: 3365: 3363: 3349: 3343: 3342: 3308: 3306:astro-ph/0307036 3290: 3281: 3272: 3271: 3245: 3225: 3219: 3218: 3216: 3214: 3208: 3202:. Archived from 3177: 3175:quant-ph/9811078 3168:(2): 1615–1621. 3159: 3150: 3144: 3143: 3141: 3139: 3133: 3124: 3118: 3117: 3089: 3083: 3082: 3080: 3078: 3047: 3041: 3040: 3038: 3036: 3025: 3019: 3018: 3016: 3014: 3009:on 23 April 2014 2999: 2993: 2992: 2990: 2988: 2977: 2971: 2970: 2968: 2966: 2960: 2953: 2944: 2938: 2937: 2935: 2933: 2928: 2894: 2885: 2879: 2878: 2853:(1–2): 129–188. 2842: 2836: 2835: 2809: 2789: 2783: 2782: 2738: 2732: 2731: 2697: 2677: 2671: 2670: 2631: 2625: 2624: 2622: 2621: 2615: 2609:. Archived from 2585:(203): 333–345. 2576: 2567: 2561: 2560: 2532: 2526: 2525: 2523: 2521: 2515: 2509:Betzler, Klaus. 2506: 2500: 2499: 2481: 2475: 2474: 2472: 2470: 2464: 2455: 2449: 2448: 2446: 2444: 2433: 2427: 2426: 2424: 2422: 2416: 2409: 2401: 2395: 2394: 2374: 2368: 2367: 2365: 2363: 2357: 2351:Carroll, Brett. 2348: 2342: 2341: 2319: 2313: 2312: 2284: 2278: 2277: 2241: 2235: 2234: 2232: 2230: 2216: 2204: 2198: 2197: 2195: 2193: 2182: 2176: 2175: 2165: 2133: 2127: 2126: 2106: 2100: 2099: 2073: 2067: 2066: 2056: 2024: 2018: 2017: 2015: 2013: 2001: 1995: 1994: 1992: 1990: 1978: 1965: 1962: 1956: 1954: 1934: 1928: 1925: 1919: 1918: 1890: 1884: 1881: 1875: 1874: 1864: 1832: 1826: 1825: 1814:. Elsevier Inc. 1807: 1772: 1771: 1755: 1745: 1647:interferometry, 1593: 1577: 1565: 1547: 1537: 1527: 1523: 1516: 1434: 1422: 1237:cable television 1172:optical switches 1148:coherence length 1120:Dichroic filters 961:Very Large Array 923:visualizing flow 855: 847: 843: 836: 830: 823: 785:coherence length 771:Michelson-Morley 721:coherence length 602:zero-area Sagnac 474:local oscillator 418:Edward W. Morley 396:Hippolyte Fizeau 352: 342: 332: 301: 291: 277: 267: 250: 235:along the path. 233:refractive index 167:Basic principles 136:refractive index 102:particle physics 21: 6030: 6029: 6025: 6024: 6023: 6021: 6020: 6019: 5995: 5994: 5993: 5981: 5969: 5959: 5957: 5947: 5945: 5937: 5921: 5920: 5885:Nature Medicine 5882: 5881: 5877: 5839: 5838: 5834: 5782: 5781: 5777: 5739: 5738: 5734: 5698: 5697: 5690: 5646: 5645: 5641: 5610: 5609: 5605: 5556: 5555: 5551: 5541: 5539: 5535: 5530: 5529: 5525: 5515: 5513: 5509: 5470: 5465: 5464: 5460: 5450: 5448: 5403: 5398: 5397: 5393: 5386: 5365: 5364: 5360: 5350: 5348: 5340: 5335: 5334: 5330: 5320: 5318: 5297: 5292: 5291: 5287: 5271: 5266: 5265: 5261: 5231: 5230: 5226: 5221: 5217: 5207: 5205: 5200: 5199: 5195: 5187: 5176: 5171: 5170: 5161: 5154: 5139: 5138: 5134: 5124: 5122: 5121:. Oquagen. 2008 5117: 5116: 5112: 5102: 5100: 5095: 5094: 5090: 5080: 5078: 5069: 5068: 5064: 5058: 5054: 5049: 5045: 5007: 5006: 5002: 4954: 4949: 4948: 4944: 4934: 4932: 4920: 4915: 4914: 4910: 4900: 4898: 4897:on 9 April 2012 4889: 4888: 4884: 4877: 4861:. p. 667. 4856: 4855: 4851: 4846: 4842: 4832: 4830: 4824: 4823: 4819: 4814: 4810: 4803: 4787:. p. 547. 4782: 4781: 4772: 4762: 4760: 4755: 4754: 4747: 4737: 4735: 4726: 4725: 4718: 4688: 4687: 4683: 4673: 4671: 4667: 4662: 4661: 4652: 4622: 4621: 4617: 4607: 4605: 4604:on 25 July 2010 4601: 4552: 4547: 4546: 4539: 4533: 4529: 4519: 4517: 4513: 4498:10.1.1.190.4728 4472: 4467: 4466: 4462: 4435: 4434: 4430: 4420: 4418: 4412: 4411: 4407: 4397: 4395: 4394:on 5 March 2012 4386: 4385: 4381: 4371: 4369: 4363: 4362: 4358: 4348: 4346: 4344: 4329: 4328: 4324: 4314: 4312: 4310:10.1119/1.17656 4296:(11): 975–985. 4285: 4280: 4279: 4275: 4262: 4252: 4219: 4214: 4213: 4209: 4179: 4178: 4174: 4118: 4117: 4113: 4097:10.1.1.556.5526 4073: 4072: 4068: 4058: 4056: 4051: 4050: 4046: 3992: 3991: 3987: 3980: 3959: 3958: 3954: 3947: 3926: 3925: 3921: 3885: 3884: 3880: 3832: 3831: 3827: 3791: 3790: 3786: 3779: 3764: 3763: 3759: 3713: 3712: 3708: 3644: 3643: 3639: 3591: 3590: 3586: 3534: 3533: 3529: 3480: 3479: 3475: 3429: 3428: 3424: 3376: 3375: 3371: 3361: 3359: 3351: 3350: 3346: 3288: 3283: 3282: 3275: 3227: 3226: 3222: 3212: 3210: 3206: 3157: 3152: 3151: 3147: 3137: 3135: 3131: 3126: 3125: 3121: 3091: 3090: 3086: 3076: 3074: 3049: 3048: 3044: 3034: 3032: 3027: 3026: 3022: 3012: 3010: 3001: 3000: 2996: 2986: 2984: 2979: 2978: 2974: 2964: 2962: 2958: 2951: 2946: 2945: 2941: 2931: 2929: 2897:Physics Letters 2892: 2887: 2886: 2882: 2844: 2843: 2839: 2791: 2790: 2786: 2740: 2739: 2735: 2695:physics/0305117 2682:Phys. Rev. Lett 2679: 2678: 2674: 2633: 2632: 2628: 2619: 2617: 2613: 2574: 2569: 2568: 2564: 2557: 2534: 2533: 2529: 2519: 2517: 2513: 2508: 2507: 2503: 2483: 2482: 2478: 2468: 2466: 2462: 2457: 2456: 2452: 2442: 2440: 2435: 2434: 2430: 2420: 2418: 2414: 2407: 2403: 2402: 2398: 2391: 2376: 2375: 2371: 2361: 2359: 2355: 2350: 2349: 2345: 2338: 2321: 2320: 2316: 2286: 2285: 2281: 2243: 2242: 2238: 2228: 2226: 2214: 2206: 2205: 2201: 2191: 2189: 2184: 2183: 2179: 2135: 2134: 2130: 2123: 2108: 2107: 2103: 2096: 2075: 2074: 2070: 2026: 2025: 2021: 2011: 2009: 2003: 2002: 1998: 1988: 1986: 1980: 1979: 1968: 1963: 1959: 1951: 1936: 1935: 1931: 1926: 1922: 1915: 1892: 1891: 1887: 1882: 1878: 1834: 1833: 1829: 1822: 1809: 1808: 1775: 1768: 1747: 1746: 1742: 1737: 1669: 1659:x-ray sources, 1597: 1594: 1585: 1578: 1569: 1566: 1545: 1539: 1538: 1525: 1524: 1505: 1438: 1435: 1426: 1423: 1278:frequency combs 1086:curved surface. 1072: 957:radio telescope 940:Figure 11. The 853: 851: 850: 845: 844: 834: 832: 831: 798: 793: 773: 678: 619: 614: 541: 535: 513:radio frequency 491: 487: 483: 479: 471: 463: 439: 431: 372: 356: 350: 346: 340: 336: 330: 326: 318: 312: 305: 299: 295: 289: 281: 275: 271: 265: 261: 254: 248: 244: 196: 169: 132:Interferometers 28: 23: 22: 15: 12: 11: 5: 6028: 6026: 6018: 6017: 6012: 6007: 6005:Interferometry 5997: 5996: 5992: 5991: 5979: 5967: 5955: 5935: 5934: 5931:Interferometry 5919: 5918: 5891:(4): 473–475. 5875: 5832: 5795:(9): 830–834. 5789:Nature Physics 5775: 5732: 5688: 5639: 5620:(3): 487–491. 5603: 5549: 5531:Lang, Walter. 5523: 5481:(2): 157–173. 5458: 5391: 5384: 5358: 5328: 5308:(2): 225–229. 5285: 5259: 5240:(4): 277–279. 5224: 5215: 5193: 5190:on 2012-11-07. 5159: 5152: 5132: 5110: 5088: 5062: 5052: 5043: 5010:Optics Letters 5000: 4959:Optics Letters 4942: 4908: 4882: 4875: 4849: 4840: 4817: 4808: 4801: 4770: 4745: 4716: 4697:(2): 389–401. 4681: 4650: 4615: 4557:Applied Optics 4537: 4527: 4483:(4): 832–843. 4460: 4428: 4417:. RP Photonics 4405: 4379: 4368:. RP Photonics 4356: 4342: 4322: 4273: 4264:|journal= 4207: 4172: 4111: 4082:(3): 209–217. 4066: 4044: 4005:(7): 210–212. 3985: 3978: 3952: 3945: 3919: 3898:(2): 329–344. 3878: 3825: 3784: 3777: 3757: 3706: 3637: 3600:(1): 157–173. 3584: 3527: 3514:10.1086/592146 3473: 3422: 3369: 3344: 3299:(5): 789–857. 3273: 3236:(15): 155303. 3220: 3145: 3119: 3084: 3042: 3020: 2994: 2972: 2939: 2903:(3): 272–274. 2880: 2837: 2800:(10): 105011. 2784: 2733: 2672: 2642:(3): 203–242. 2626: 2562: 2555: 2527: 2501: 2476: 2450: 2428: 2396: 2389: 2369: 2343: 2336: 2314: 2279: 2252:(4): 454–474. 2236: 2199: 2177: 2142:Optics Express 2128: 2121: 2101: 2094: 2080:. p. 97. 2068: 2033:Optics Express 2019: 1996: 1966: 1957: 1950:978-0192869760 1949: 1929: 1920: 1913: 1885: 1876: 1841:Optics Express 1827: 1820: 1773: 1766: 1739: 1738: 1736: 1733: 1732: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1686: 1680: 1675: 1668: 1665: 1602:Phase contrast 1599: 1598: 1595: 1588: 1586: 1579: 1572: 1570: 1567: 1560: 1549: 1548: 1531: 1528: 1504: 1501: 1489:metrologically 1451:remote sensing 1440: 1439: 1436: 1429: 1427: 1424: 1417: 1191:null corrector 1181:, such as the 1170:to sensors to 1132:optical cavity 1082:flat surface, 1071: 1068: 944:interferometer 857: 856: 848: 837: 797: 794: 792: 789: 772: 769: 677: 674: 669:Lloyd's mirror 631:Lloyd's mirror 618: 615: 613: 610: 534: 531: 489: 488: âˆ’ f 485: 481: 480: + f 477: 469: 461: 438: 435: 430: 427: 388:Francois Arago 371: 368: 354: 344: 334: 324: 316: 310: 303: 293: 279: 269: 259: 252: 242: 186:sodium D lines 168: 165: 106:plasma physics 45:Interferometry 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6027: 6016: 6013: 6011: 6008: 6006: 6003: 6002: 6000: 5990: 5985: 5980: 5978: 5973: 5968: 5966: 5956: 5954: 5944: 5940: 5932: 5927: 5923: 5922: 5914: 5910: 5906: 5902: 5898: 5894: 5890: 5886: 5879: 5876: 5871: 5867: 5863: 5859: 5855: 5851: 5847: 5843: 5836: 5833: 5828: 5824: 5819: 5814: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5779: 5776: 5771: 5767: 5763: 5759: 5755: 5751: 5747: 5743: 5736: 5733: 5727: 5722: 5718: 5714: 5710: 5706: 5702: 5695: 5693: 5689: 5684: 5680: 5675: 5670: 5666: 5662: 5658: 5654: 5653:Physics Today 5650: 5643: 5640: 5635: 5631: 5627: 5623: 5619: 5615: 5607: 5604: 5599: 5595: 5590: 5585: 5581: 5577: 5573: 5569: 5566:(5): 051604. 5565: 5561: 5553: 5550: 5534: 5527: 5524: 5508: 5504: 5500: 5496: 5492: 5488: 5484: 5480: 5476: 5469: 5462: 5459: 5447: 5443: 5438: 5433: 5429: 5425: 5421: 5417: 5413: 5409: 5402: 5395: 5392: 5387: 5381: 5377: 5373: 5369: 5362: 5359: 5346: 5339: 5332: 5329: 5316: 5311: 5307: 5303: 5302:Egypt. J. Sol 5296: 5289: 5286: 5282:(1/2): 37–44. 5281: 5277: 5270: 5263: 5260: 5255: 5251: 5247: 5243: 5239: 5235: 5228: 5225: 5219: 5216: 5203: 5197: 5194: 5186: 5182: 5175: 5168: 5166: 5164: 5160: 5155: 5149: 5145: 5144: 5136: 5133: 5120: 5114: 5111: 5098: 5092: 5089: 5076: 5072: 5066: 5063: 5056: 5053: 5047: 5044: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5011: 5004: 5001: 4996: 4992: 4988: 4984: 4980: 4976: 4972: 4968: 4964: 4960: 4953: 4946: 4943: 4930: 4926: 4919: 4912: 4909: 4896: 4892: 4886: 4883: 4878: 4872: 4868: 4864: 4860: 4853: 4850: 4844: 4841: 4828: 4821: 4818: 4812: 4809: 4804: 4798: 4794: 4790: 4786: 4779: 4777: 4775: 4771: 4758: 4752: 4750: 4746: 4733: 4729: 4723: 4721: 4717: 4712: 4708: 4704: 4700: 4696: 4692: 4685: 4682: 4666: 4659: 4657: 4655: 4651: 4646: 4642: 4638: 4634: 4630: 4626: 4619: 4616: 4600: 4596: 4592: 4587: 4582: 4578: 4574: 4570: 4566: 4562: 4558: 4551: 4544: 4542: 4538: 4531: 4528: 4512: 4508: 4504: 4499: 4494: 4490: 4486: 4482: 4478: 4471: 4464: 4461: 4456: 4452: 4448: 4444: 4440: 4432: 4429: 4416: 4409: 4406: 4393: 4389: 4383: 4380: 4367: 4360: 4357: 4345: 4339: 4335: 4334: 4326: 4323: 4311: 4307: 4303: 4299: 4295: 4291: 4284: 4277: 4274: 4269: 4257: 4249: 4245: 4241: 4237: 4233: 4229: 4225: 4218: 4211: 4208: 4203: 4199: 4195: 4191: 4188:(2): 023009. 4187: 4183: 4176: 4173: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4140: 4135: 4130: 4126: 4122: 4115: 4112: 4107: 4103: 4098: 4093: 4089: 4085: 4081: 4077: 4070: 4067: 4054: 4048: 4045: 4040: 4036: 4031: 4026: 4021: 4016: 4012: 4008: 4004: 4000: 3996: 3989: 3986: 3981: 3975: 3971: 3967: 3963: 3956: 3953: 3948: 3942: 3938: 3934: 3931:. p. 1. 3930: 3923: 3920: 3914: 3909: 3905: 3901: 3897: 3893: 3889: 3882: 3879: 3874: 3870: 3866: 3862: 3858: 3854: 3849: 3844: 3840: 3836: 3829: 3826: 3820: 3815: 3811: 3807: 3803: 3799: 3795: 3788: 3785: 3780: 3774: 3770: 3769: 3761: 3758: 3753: 3749: 3745: 3741: 3737: 3733: 3729: 3725: 3722:(6): 447–66. 3721: 3717: 3710: 3707: 3702: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3670: 3666: 3661: 3656: 3652: 3648: 3641: 3638: 3633: 3629: 3625: 3621: 3617: 3613: 3608: 3603: 3599: 3595: 3588: 3585: 3580: 3576: 3571: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3531: 3528: 3523: 3519: 3515: 3511: 3507: 3503: 3498: 3493: 3489: 3485: 3477: 3474: 3469: 3465: 3461: 3457: 3453: 3449: 3445: 3441: 3437: 3433: 3426: 3423: 3418: 3414: 3410: 3406: 3402: 3398: 3393: 3388: 3384: 3380: 3373: 3370: 3358: 3354: 3348: 3345: 3340: 3336: 3332: 3331:2027.42/48845 3328: 3324: 3320: 3316: 3312: 3307: 3302: 3298: 3294: 3287: 3280: 3278: 3274: 3269: 3265: 3261: 3257: 3253: 3249: 3244: 3239: 3235: 3231: 3224: 3221: 3205: 3201: 3197: 3193: 3189: 3185: 3181: 3176: 3171: 3167: 3163: 3156: 3149: 3146: 3130: 3123: 3120: 3115: 3111: 3107: 3103: 3099: 3095: 3088: 3085: 3073: 3069: 3065: 3061: 3057: 3053: 3046: 3043: 3031:. Caltech/MIT 3030: 3024: 3021: 3008: 3004: 2998: 2995: 2982: 2976: 2973: 2957: 2950: 2943: 2940: 2927: 2926:2027.42/32013 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2891: 2884: 2881: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2847:Solar Physics 2841: 2838: 2833: 2829: 2825: 2821: 2817: 2813: 2808: 2803: 2799: 2795: 2788: 2785: 2780: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2749:(9): 090401. 2748: 2744: 2737: 2734: 2729: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2696: 2691: 2688:(2): 020401. 2687: 2683: 2676: 2673: 2669: 2665: 2661: 2657: 2653: 2649: 2645: 2641: 2637: 2630: 2627: 2616:on 2016-03-07 2612: 2608: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2566: 2563: 2558: 2552: 2548: 2544: 2540: 2539: 2531: 2528: 2512: 2505: 2502: 2497: 2493: 2489: 2488: 2480: 2477: 2461: 2454: 2451: 2438: 2432: 2429: 2413: 2406: 2400: 2397: 2392: 2386: 2382: 2381: 2373: 2370: 2354: 2347: 2344: 2339: 2333: 2329: 2325: 2318: 2315: 2310: 2306: 2302: 2298: 2294: 2290: 2283: 2280: 2275: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2240: 2237: 2224: 2220: 2213: 2209: 2203: 2200: 2187: 2181: 2178: 2173: 2169: 2164: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2129: 2124: 2118: 2114: 2113: 2105: 2102: 2097: 2091: 2087: 2083: 2079: 2072: 2069: 2064: 2060: 2055: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2020: 2007: 2000: 1997: 1984: 1977: 1975: 1973: 1971: 1967: 1961: 1958: 1952: 1946: 1942: 1941: 1933: 1930: 1924: 1921: 1916: 1910: 1906: 1902: 1898: 1897: 1889: 1886: 1880: 1877: 1872: 1868: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1817: 1813: 1806: 1804: 1802: 1800: 1798: 1796: 1794: 1792: 1790: 1788: 1786: 1784: 1782: 1780: 1778: 1774: 1769: 1763: 1759: 1754: 1753: 1744: 1741: 1734: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1684: 1681: 1679: 1676: 1674: 1671: 1670: 1666: 1664: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1633: 1630: 1626: 1622: 1620: 1615: 1611: 1607: 1603: 1592: 1587: 1583: 1576: 1571: 1564: 1559: 1557: 1555: 1544:,imaged using 1543: 1536: 1532: 1529: 1522: 1518: 1517: 1514: 1511: 1502: 1500: 1496: 1494: 1490: 1486: 1482: 1477: 1475: 1470: 1469:laser speckle 1465: 1463: 1459: 1456: 1452: 1448: 1444: 1433: 1428: 1421: 1416: 1414: 1411: 1407: 1403: 1401: 1395: 1391: 1388: 1384: 1380: 1378: 1373: 1371: 1367: 1362: 1358: 1349: 1342: 1341: 1335: 1331: 1329: 1324: 1319: 1311: 1307: 1304: 1300: 1296: 1290: 1288: 1284: 1279: 1274: 1270: 1259: 1255: 1253: 1249: 1248:Doppler lidar 1244: 1242: 1241:doppler radar 1238: 1234: 1233:coaxial cable 1230: 1225: 1222: 1221:optical fiber 1218: 1217:Sagnac effect 1214: 1210: 1202: 1198: 1196: 1192: 1188: 1184: 1180: 1175: 1173: 1169: 1168:RF modulators 1164: 1160: 1156: 1151: 1149: 1139: 1135: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1104: 1097: 1092: 1085: 1081: 1076: 1069: 1067: 1063: 1061: 1056: 1054: 1050: 1046: 1041: 1038: 1034: 1032: 1028: 1024: 1020: 1015: 1012: 1008: 1004: 1000: 996: 991: 985: 981: 977: 973: 971: 967: 962: 958: 953: 951: 943: 938: 934: 932: 927: 924: 919: 917: 913: 909: 905: 900: 898: 894: 890: 885: 881: 877: 875: 871: 866: 864: 849: 842: 838: 829: 825: 824: 821: 819: 815: 811: 802: 795: 790: 788: 786: 782: 778: 770: 768: 766: 762: 758: 753: 751: 747: 742: 737: 733: 728: 726: 722: 717: 712: 710: 706: 701: 695: 691: 687: 682: 675: 673: 670: 666: 664: 660: 655: 651: 642: 638: 636: 632: 628: 624: 616: 611: 609: 607: 603: 599: 595: 591: 587: 583: 579: 575: 574: 568: 566: 562: 558: 554: 545: 540: 532: 530: 528: 524: 522: 518: 514: 510: 506: 502: 497: 495: 475: 467: 459: 455: 450: 448: 444: 436: 434: 428: 426: 423: 419: 415: 411: 407: 403: 399: 397: 393: 392:Leon Foucault 389: 385: 380: 377: 369: 367: 365: 359: 353: 343: 333: 323: 319: 309: 302: 292: 285: 278: 268: 258: 251: 241: 236: 234: 230: 226: 225:beam splitter 222: 217: 215: 211: 206: 202: 195: 187: 181: 173: 166: 164: 161: 157: 153: 149: 145: 141: 140:optical paths 137: 133: 129: 127: 124:, and making 123: 119: 115: 114:microfluidics 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 72: 68: 64: 60: 56: 52: 51: 46: 39: 34: 30: 19: 5888: 5884: 5878: 5845: 5841: 5835: 5792: 5788: 5778: 5745: 5741: 5735: 5708: 5704: 5659:(7): 23–26. 5656: 5652: 5642: 5617: 5613: 5606: 5589:1721.1/87657 5563: 5559: 5552: 5540:. Retrieved 5526: 5514:. Retrieved 5507:the original 5478: 5474: 5461: 5449:. Retrieved 5411: 5407: 5394: 5370:. Springer. 5367: 5361: 5349:. Retrieved 5344: 5331: 5319:. Retrieved 5305: 5301: 5288: 5279: 5275: 5262: 5237: 5233: 5227: 5218: 5206:. Retrieved 5196: 5185:the original 5180: 5142: 5135: 5123:. Retrieved 5113: 5101:. Retrieved 5091: 5079:. Retrieved 5075:the original 5065: 5055: 5046: 5013: 5009: 5003: 4965:(2): 77–79. 4962: 4958: 4945: 4933:. Retrieved 4931:(2): 155–172 4928: 4924: 4911: 4899:. Retrieved 4895:the original 4885: 4858: 4852: 4843: 4831:. Retrieved 4820: 4811: 4784: 4761:. Retrieved 4736:. Retrieved 4732:the original 4694: 4690: 4684: 4672:. Retrieved 4628: 4624: 4618: 4606:. Retrieved 4599:the original 4586:10150/289148 4560: 4556: 4530: 4518:. Retrieved 4511:the original 4480: 4476: 4463: 4438: 4431: 4419:. Retrieved 4408: 4396:. Retrieved 4392:the original 4382: 4370:. Retrieved 4359: 4347:. Retrieved 4332: 4325: 4313:. Retrieved 4293: 4289: 4276: 4223: 4210: 4185: 4181: 4175: 4124: 4120: 4114: 4079: 4075: 4069: 4057:. Retrieved 4047: 4002: 3998: 3988: 3961: 3955: 3928: 3922: 3895: 3891: 3881: 3838: 3835:Phys. Rev. D 3834: 3828: 3804:(6): 24–26. 3801: 3797: 3787: 3767: 3760: 3719: 3715: 3709: 3650: 3646: 3640: 3597: 3593: 3587: 3544: 3540: 3530: 3487: 3483: 3476: 3435: 3431: 3425: 3382: 3378: 3372: 3360:. Retrieved 3356: 3347: 3296: 3292: 3233: 3229: 3223: 3211:. Retrieved 3204:the original 3165: 3161: 3148: 3136:. Retrieved 3122: 3097: 3093: 3087: 3075:. Retrieved 3055: 3045: 3033:. Retrieved 3023: 3011:. Retrieved 3007:the original 2997: 2985:. Retrieved 2975: 2963:. Retrieved 2956:the original 2942: 2930:. Retrieved 2900: 2896: 2883: 2850: 2846: 2840: 2797: 2793: 2787: 2746: 2742: 2736: 2685: 2681: 2675: 2667: 2639: 2635: 2629: 2618:. Retrieved 2611:the original 2582: 2578: 2565: 2537: 2530: 2518:. Retrieved 2504: 2486: 2479: 2467:. Retrieved 2453: 2441:. Retrieved 2431: 2419:. Retrieved 2412:the original 2399: 2379: 2372: 2360:. Retrieved 2346: 2327: 2317: 2292: 2288: 2282: 2249: 2245: 2239: 2227:. Retrieved 2222: 2218: 2202: 2190:. Retrieved 2180: 2145: 2141: 2131: 2111: 2104: 2077: 2071: 2036: 2032: 2022: 2010:. Retrieved 2004:Poole, Ian. 1999: 1987:. Retrieved 1960: 1939: 1932: 1923: 1895: 1888: 1879: 1844: 1840: 1830: 1811: 1751: 1743: 1661:x-ray optics 1634: 1623: 1600: 1581: 1552: 1510:nanoparticle 1506: 1497: 1485:Yrjö VĂ€isĂ€lĂ€ 1478: 1473: 1466: 1460: 1453:. Satellite 1441: 1412: 1408: 1404: 1396: 1392: 1381: 1374: 1354: 1338: 1320: 1316: 1291: 1265: 1245: 1226: 1207: 1176: 1152: 1144: 1116:spectroscopy 1105: 1101: 1083: 1079: 1064: 1057: 1042: 1035: 1016: 988: 965: 954: 947: 928: 920: 901: 891:line or the 886: 882: 878: 874:Lyot filters 867: 860: 807: 791:Applications 774: 761:Twyman–Green 754: 749: 735: 729: 713: 709:optical flat 702: 699: 690:Mach–Zehnder 667: 647: 622: 620: 571: 569: 552: 550: 525: 498: 493: 451: 440: 432: 422:Case College 400: 381: 376:Thomas Young 373: 360: 348: 338: 328: 321: 314: 307: 297: 287: 283: 273: 263: 256: 246: 239: 237: 218: 197: 131: 130: 86:spectroscopy 78:oceanography 67:fiber optics 50:interference 48: 44: 43: 29: 4631:(1): 1–65. 4290:Am. J. Phys 3385:: 135–145. 3357:www.eso.org 3077:11 February 3056:Nature News 2295:(1): 4–11. 2112:Wave Optics 1653:synchrotron 1580:Figure 25. 1540:Figure 23. 1211:(RLGs) and 1011:CHARA array 741:focal plane 725:micrometers 694:Fabry PĂ©rot 509:Lucien LĂ©vy 494:heterodynes 402:Jules Jamin 229:path length 118:velocimetry 71:engineering 5999:Categories 5989:Technology 5081:28 October 3490:(2): L95. 3362:10 October 3100:(8): 703. 2620:2012-04-09 1955:pp. 99-108 1735:References 1689:Holography 1657:microfocus 1387:holography 1235:used by a 1096:wavelength 1007:Beta Lyrae 604:, and the 588:, and the 563:, and the 537:See also: 454:heterodyne 429:Categories 255:of mirror 144:incoherent 82:seismology 5953:Astronomy 5683:121322301 4493:CiteSeerX 4266:ignored ( 4256:cite book 4092:CiteSeerX 3873:119273854 3848:0802.4098 3685:1463-9084 3660:1310.8343 3607:1109.5937 3497:0808.0932 3268:119261326 3243:1005.3976 3072:182916902 2875:189848134 2832:118346408 2807:1002.1284 2607:124333204 2274:121659705 2229:2 January 1673:Coherence 1303:coherence 1163:modulated 1159:waveguide 1124:thin-film 757:Michelson 659:buckyball 648:In 1803, 201:frequency 126:holograms 122:optometry 90:chemistry 74:metrology 63:astronomy 5965:Medicine 5913:23523144 5827:27746823 5634:17321252 5598:16292952 5542:10 April 5516:10 April 5503:23014682 5451:10 April 5038:18059719 4987:18007717 4670:. Bruker 4595:18345114 4455:62679510 4315:30 March 4248:49323922 4167:46509116 4159:16282527 4039:16576300 3752:37980394 3744:12533207 3693:23900710 3632:55687641 3579:21468015 3547:: 263–. 3522:17510817 3468:21317560 3460:12804289 3417:15342344 3200:13963928 2965:29 April 2779:33875626 2771:19792767 2728:15770750 2720:12906465 2210:(1909). 2172:33379604 2063:22109482 1871:25401860 1667:See also 1614:staining 1481:geodetic 1283:sideband 1185:and the 1049:fermions 746:Q factor 521:detector 221:coherent 5977:Science 5939:Portals 5905:8597962 5870:4287341 5850:Bibcode 5818:5063246 5797:Bibcode 5770:4273199 5750:Bibcode 5713:Bibcode 5661:Bibcode 5568:Bibcode 5483:Bibcode 5446:1957169 5437:4638169 5416:Bibcode 5408:Science 5372:Bibcode 5351:9 April 5242:Bibcode 5208:17 June 5103:25 June 5060:323–325 5018:Bibcode 4995:9524638 4967:Bibcode 4935:8 April 4699:Bibcode 4674:1 April 4633:Bibcode 4565:Bibcode 4520:1 April 4485:Bibcode 4421:23 June 4398:23 June 4372:22 June 4349:27 June 4298:Bibcode 4228:Bibcode 4190:Bibcode 4139:Bibcode 4121:Science 4084:Bibcode 4059:4 April 4030:1091444 4007:Bibcode 3900:Bibcode 3853:Bibcode 3806:Bibcode 3724:Bibcode 3701:3944699 3665:Bibcode 3612:Bibcode 3570:3104521 3549:Bibcode 3502:Bibcode 3440:Bibcode 3397:Bibcode 3311:Bibcode 3248:Bibcode 3213:2 April 3180:Bibcode 3138:6 April 3102:Bibcode 3035:4 April 3013:20 June 2987:3 April 2932:2 April 2905:Bibcode 2855:Bibcode 2812:Bibcode 2751:Bibcode 2700:Bibcode 2664:4119615 2644:Bibcode 2587:Bibcode 2543:Bibcode 2520:8 April 2469:8 April 2443:8 April 2421:8 April 2362:5 April 2297:Bibcode 2254:Bibcode 2192:1 April 2150:Bibcode 2041:Bibcode 2012:22 June 1989:1 April 1849:Bibcode 1447:geodesy 1084:(right) 889:H-alpha 472:from a 370:History 98:nuclear 5911:  5903:  5868:  5842:Nature 5825:  5815:  5768:  5742:Nature 5681:  5632:  5596:  5501:  5444:  5434:  5382:  5321:22 May 5150:  5125:22 May 5036:  4993:  4985:  4901:21 May 4873:  4833:26 May 4829:. SPIE 4799:  4763:12 May 4738:12 May 4608:21 May 4593:  4495:  4453:  4340:  4246:  4165:  4157:  4094:  4037:  4027:  3976:  3943:  3871:  3775:  3750:  3742:  3699:  3691:  3683:  3630:  3577:  3567:  3520:  3466:  3458:  3415:  3339:887574 3337:  3266:  3198:  3070:  2873:  2830:  2777:  2769:  2726:  2718:  2662:  2605:  2553:  2387:  2334:  2272:  2170:  2119:  2092:  2061:  1947:  1911:  1869:  1818:  1764:  1645:Talbot 1474:versus 1112:lasers 1080:(left) 955:Early 750:versus 736:etalon 692:, and 686:Fizeau 600:, the 584:, the 580:, the 559:, the 5909:S2CID 5866:S2CID 5766:S2CID 5679:S2CID 5536:(PDF) 5510:(PDF) 5471:(PDF) 5404:(PDF) 5341:(PDF) 5298:(PDF) 5272:(PDF) 5188:(PDF) 5177:(PDF) 4991:S2CID 4955:(PDF) 4921:(PDF) 4668:(PDF) 4602:(PDF) 4553:(PDF) 4514:(PDF) 4473:(PDF) 4451:S2CID 4286:(PDF) 4244:S2CID 4220:(PDF) 4163:S2CID 4129:arXiv 3869:S2CID 3843:arXiv 3748:S2CID 3697:S2CID 3655:arXiv 3628:S2CID 3602:arXiv 3518:S2CID 3492:arXiv 3464:S2CID 3413:S2CID 3387:arXiv 3335:S2CID 3301:arXiv 3289:(PDF) 3264:S2CID 3238:arXiv 3207:(PDF) 3196:S2CID 3170:arXiv 3158:(PDF) 3132:(PDF) 3068:S2CID 2959:(PDF) 2952:(PDF) 2893:(PDF) 2871:S2CID 2828:S2CID 2802:arXiv 2775:S2CID 2724:S2CID 2690:arXiv 2660:S2CID 2614:(PDF) 2603:S2CID 2575:(PDF) 2514:(PDF) 2463:(PDF) 2415:(PDF) 2408:(PDF) 2356:(PDF) 2270:S2CID 2225:: 114 2215:(PDF) 1649:MoirĂ© 466:mixed 458:mixer 210:light 205:phase 5901:PMID 5823:PMID 5630:PMID 5594:PMID 5544:2012 5518:2012 5499:PMID 5453:2012 5442:PMID 5380:ISBN 5353:2012 5323:2012 5210:2012 5148:ISBN 5127:2012 5105:2012 5083:2013 5034:PMID 4983:PMID 4937:2012 4903:2012 4871:ISBN 4835:2012 4797:ISBN 4765:2012 4740:2012 4676:2012 4610:2012 4591:PMID 4522:2012 4423:2012 4400:2012 4374:2012 4351:2012 4338:ISBN 4317:2012 4268:help 4155:PMID 4061:2012 4035:PMID 3974:ISBN 3941:ISBN 3773:ISBN 3740:PMID 3689:PMID 3681:ISSN 3575:PMID 3456:PMID 3364:2016 3215:2012 3140:2012 3079:2016 3037:2012 3015:2012 2989:2012 2967:2012 2934:2012 2767:PMID 2716:PMID 2551:ISBN 2522:2012 2471:2012 2445:2012 2423:2012 2385:ISBN 2364:2012 2332:ISBN 2231:2013 2194:2012 2168:PMID 2117:ISBN 2090:ISBN 2059:PMID 2014:2012 1991:2012 1945:ISBN 1909:ISBN 1867:PMID 1816:ISBN 1762:ISBN 1629:cell 1604:and 1449:and 1114:and 1017:The 980:ALMA 902:The 893:Ca-K 714:The 703:The 629:and 623:i.e. 452:The 347:and 327:and 313:and 296:and 272:and 100:and 5893:doi 5858:doi 5846:373 5813:PMC 5805:doi 5758:doi 5746:384 5721:doi 5669:doi 5622:doi 5584:hdl 5576:doi 5491:doi 5432:PMC 5424:doi 5412:254 5310:doi 5250:doi 5026:doi 4975:doi 4863:doi 4789:doi 4707:doi 4641:doi 4581:hdl 4573:doi 4503:doi 4443:doi 4306:doi 4236:doi 4198:doi 4147:doi 4125:310 4102:doi 4025:PMC 4015:doi 3966:doi 3933:doi 3908:doi 3861:doi 3814:doi 3732:doi 3673:doi 3620:doi 3565:PMC 3557:doi 3510:doi 3488:684 3448:doi 3436:360 3405:doi 3383:138 3327:hdl 3319:doi 3256:doi 3188:doi 3110:doi 3060:doi 2921:hdl 2913:doi 2863:doi 2851:162 2820:doi 2759:doi 2747:103 2708:doi 2652:doi 2595:doi 2492:doi 2305:doi 2262:doi 2250:161 2158:doi 2082:doi 2049:doi 1901:doi 1857:doi 1758:695 1655:or 1355:In 1323:CCD 942:VLA 872:or 464:is 441:In 420:at 92:), 53:of 6001:: 5907:. 5899:. 5887:. 5864:. 5856:. 5844:. 5821:. 5811:. 5803:. 5793:12 5791:. 5787:. 5764:. 5756:. 5744:. 5719:. 5709:81 5707:. 5703:. 5691:^ 5677:. 5667:. 5657:53 5655:. 5651:. 5628:. 5618:65 5616:. 5592:. 5582:. 5574:. 5564:10 5562:. 5497:. 5489:. 5477:. 5473:. 5440:. 5430:. 5422:. 5410:. 5406:. 5378:. 5343:. 5306:26 5304:. 5300:. 5280:14 5278:. 5274:. 5248:. 5236:. 5179:. 5162:^ 5032:. 5024:. 5014:26 5012:. 4989:. 4981:. 4973:. 4963:27 4961:. 4957:. 4929:56 4927:. 4923:. 4869:. 4795:. 4773:^ 4748:^ 4719:^ 4705:. 4695:42 4693:. 4653:^ 4639:. 4627:. 4589:. 4579:. 4571:. 4561:39 4559:. 4555:. 4540:^ 4501:. 4491:. 4481:13 4479:. 4475:. 4449:. 4304:. 4294:62 4292:. 4288:. 4260:: 4258:}} 4254:{{ 4242:. 4234:. 4222:. 4196:. 4184:. 4161:. 4153:. 4145:. 4137:. 4123:. 4100:. 4090:. 4080:10 4078:. 4033:. 4023:. 4013:. 4001:. 3997:. 3972:. 3939:. 3906:. 3894:. 3890:. 3867:. 3859:. 3851:. 3839:78 3837:. 3812:. 3802:40 3800:. 3796:. 3746:. 3738:. 3730:. 3718:. 3695:. 3687:. 3679:. 3671:. 3663:. 3651:15 3649:. 3626:. 3618:. 3610:. 3598:84 3596:. 3573:. 3563:. 3555:. 3543:. 3539:. 3516:. 3508:. 3500:. 3486:. 3462:. 3454:. 3446:. 3434:. 3411:. 3403:. 3395:. 3381:. 3355:. 3333:. 3325:. 3317:. 3309:. 3297:66 3295:. 3291:. 3276:^ 3262:. 3254:. 3246:. 3234:82 3232:. 3194:. 3186:. 3178:. 3166:59 3164:. 3160:. 3108:. 3098:47 3096:. 3066:. 3058:. 3054:. 2919:. 2911:. 2901:16 2899:. 2895:. 2869:. 2861:. 2849:. 2826:. 2818:. 2810:. 2798:80 2796:. 2773:. 2765:. 2757:. 2745:. 2722:. 2714:. 2706:. 2698:. 2686:91 2684:. 2666:. 2658:. 2650:. 2638:. 2601:. 2593:. 2583:34 2581:. 2577:. 2549:. 2303:. 2291:. 2268:. 2260:. 2248:. 2223:15 2221:. 2217:. 2166:. 2156:. 2146:28 2144:. 2140:. 2088:. 2057:. 2047:. 2037:19 2035:. 2031:. 1969:^ 1907:. 1899:. 1865:. 1855:. 1845:22 1843:. 1839:. 1776:^ 1760:. 1621:. 1174:. 1110:, 1062:. 972:. 933:. 865:. 767:. 759:, 688:, 665:. 637:. 608:. 596:, 570:A 551:A 315:M' 216:. 128:. 120:, 108:, 104:, 96:, 84:, 80:, 69:, 65:, 5941:: 5915:. 5895:: 5889:2 5872:. 5860:: 5852:: 5829:. 5807:: 5799:: 5772:. 5760:: 5752:: 5729:. 5723:: 5715:: 5685:. 5671:: 5663:: 5636:. 5624:: 5600:. 5586:: 5578:: 5570:: 5546:. 5520:. 5493:: 5485:: 5479:1 5455:. 5426:: 5418:: 5388:. 5374:: 5355:. 5325:. 5312:: 5256:. 5252:: 5244:: 5238:4 5212:. 5156:. 5129:. 5107:. 5085:. 5040:. 5028:: 5020:: 4997:. 4977:: 4969:: 4939:. 4905:. 4879:. 4865:: 4837:. 4805:. 4791:: 4767:. 4742:. 4713:. 4709:: 4701:: 4678:. 4647:. 4643:: 4635:: 4629:7 4612:. 4583:: 4575:: 4567:: 4524:. 4505:: 4487:: 4457:. 4445:: 4425:. 4402:. 4376:. 4353:. 4319:. 4308:: 4300:: 4270:) 4250:. 4238:: 4230:: 4204:. 4200:: 4192:: 4186:5 4169:. 4149:: 4141:: 4131:: 4108:. 4104:: 4086:: 4063:. 4041:. 4017:: 4009:: 4003:4 3982:. 3968:: 3949:. 3935:: 3916:. 3910:: 3902:: 3896:5 3875:. 3863:: 3855:: 3845:: 3822:. 3816:: 3808:: 3781:. 3754:. 3734:: 3726:: 3720:8 3703:. 3675:: 3667:: 3657:: 3634:. 3622:: 3614:: 3604:: 3581:. 3559:: 3551:: 3545:2 3524:. 3512:: 3504:: 3494:: 3470:. 3450:: 3442:: 3419:. 3407:: 3399:: 3389:: 3366:. 3341:. 3329:: 3321:: 3313:: 3303:: 3270:. 3258:: 3250:: 3240:: 3217:. 3190:: 3182:: 3172:: 3142:. 3116:. 3112:: 3104:: 3081:. 3062:: 3039:. 3017:. 2991:. 2969:. 2936:. 2923:: 2915:: 2907:: 2877:. 2865:: 2857:: 2834:. 2822:: 2814:: 2804:: 2781:. 2761:: 2753:: 2730:. 2710:: 2702:: 2692:: 2654:: 2646:: 2640:5 2623:. 2597:: 2589:: 2559:. 2545:: 2524:. 2498:. 2494:: 2473:. 2447:. 2425:. 2393:. 2366:. 2340:. 2311:. 2307:: 2299:: 2293:4 2276:. 2264:: 2256:: 2233:. 2196:. 2174:. 2160:: 2152:: 2125:. 2098:. 2084:: 2065:. 2051:: 2043:: 2016:. 1993:. 1953:. 1917:. 1903:: 1873:. 1859:: 1851:: 1824:. 1770:. 696:. 490:2 486:1 482:2 478:1 470:2 462:1 355:2 351:â€Č 349:M 345:1 341:â€Č 339:M 335:2 331:â€Č 329:M 325:1 322:M 317:2 311:1 308:M 304:2 300:â€Č 298:S 294:1 290:â€Č 288:S 284:S 280:2 276:â€Č 274:S 270:1 266:â€Č 264:S 260:2 257:M 253:2 249:â€Č 247:M 243:1 240:M 188:) 20:)

Index

Optical interferometry

Michelson interferometer
interference
superimposed waves
electromagnetic waves
astronomy
fiber optics
engineering
metrology
oceanography
seismology
spectroscopy
chemistry
quantum mechanics
nuclear
particle physics
plasma physics
biomolecular interactions
microfluidics
velocimetry
optometry
holograms
refractive index
optical paths
incoherent
interference fringes
optical path lengths
Fourier transform spectroscopy
astronomical interferometer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑