Knowledge (XXG)

Orientation of a vector bundle

Source 📝

275:: an orientation of a differentiable manifold is an orientation of its tangent bundle. In particular, a differentiable manifold is orientable if and only if its tangent bundle is orientable as a vector bundle. (note: as a manifold, a tangent bundle is always orientable.) 668: 801: 146: 864: 334: 517: 439: 559: 567: 687: 947: 78: 915: 809: 975: 39: 297: 880: 462: 970: 268: 387: 220: 965: 261: 522: 942:, Annals of Mathematics Studies, vol. 76, Princeton University Press; University of Tokyo Press, 248:. The multiplication (that is, cup product) by the Euler class of an oriented bundle gives rise to a 168: 156: 885: 678: 345: 292: 359:, oriented bundles are classified by the infinite Grassmannian of oriented real vector spaces. 943: 911: 889: 373:
From the cohomological point of view, for any ring Λ, a Λ-orientation of a real vector bundle
674: 197: 866:. One can show, with some work, that the usual notion of an orientation coincides with a 663:{\displaystyle H^{*}(E;\Lambda )\to {\tilde {H}}^{*}(T(E);\Lambda ),x\mapsto x\smile u} 249: 959: 35: 796:{\displaystyle H^{*}(\pi ^{-1}(U);\Lambda )\to {\tilde {H}}^{*}(T(E|_{U});\Lambda )} 935: 356: 160: 181:), can be reduced to the subgroup consisting of those with positive determinant. 931: 245: 17: 903: 445: 368: 892:) - this is used to formulate the Thom isomorphism for non-oriented bundles. 72:
and one demands that each trivialization map (which is a bundle map)
159:. In more concise terms, this says that the structure group of the 141:{\displaystyle \phi _{U}:\pi ^{-1}(U)\to U\times \mathbf {R} ^{n}} 355:
Just as a real vector bundle is classified by the real infinite
237:. A vector bundle that can be given an orientation is called an 267:
The notion of an orientation of a vector bundle generalizes an
859:{\displaystyle \pi ^{-1}(U)\simeq U\times \mathbf {R} ^{n}} 233:
A vector bundle together with an orientation is called an
812: 690: 570: 525: 465: 390: 300: 196:
amounts to a reduction of the structure group to the
81: 858: 795: 662: 553: 511: 433: 329:{\displaystyle \operatorname {det} E=\wedge ^{n}E} 328: 140: 27:Generalization of an orientation of a vector space 244:The basic invariant of an oriented bundle is the 512:{\displaystyle {\tilde {H}}^{*}(T(E);\Lambda )} 283:To give an orientation to a real vector bundle 63:, there is an orientation of the vector space 8: 151:is fiberwise orientation-preserving, where 381:means a choice (and existence) of a class 850: 845: 817: 811: 775: 770: 751: 740: 739: 708: 695: 689: 612: 601: 600: 575: 569: 530: 524: 479: 468: 467: 464: 434:{\displaystyle u\in H^{n}(T(E);\Lambda )} 401: 389: 317: 299: 132: 127: 99: 86: 80: 908:Differential Forms in Algebraic Topology 291:is to give an orientation to the (real) 207:). In that situation, an orientation of 925:A Concise Course in Algebraic Topology. 340:. Similarly, to give an orientation to 42:; thus, given a real vector bundle π: 681:, that restricts to each isomorphism 7: 561:-module globally and locally: i.e., 927:University of Chicago Press, 1999. 787: 729: 636: 590: 545: 503: 425: 25: 554:{\displaystyle H^{*}(E;\Lambda )} 344:is to give an orientation to the 846: 264:is oriented in a canonical way. 188:is a real vector bundle of rank 128: 832: 826: 806:induced by the trivialization 790: 781: 771: 763: 757: 745: 735: 732: 723: 717: 701: 673:is an isomorphism (called the 648: 639: 630: 624: 618: 606: 596: 593: 581: 548: 536: 506: 497: 491: 485: 473: 444:in the cohomology ring of the 428: 419: 413: 407: 117: 114: 108: 1: 192:, then a choice of metric on 40:orientation of a vector space 211:amounts to a reduction from 881:integration along the fiber 992: 366: 38:is a generalization of an 239:orientable vector bundle 221:special orthogonal group 677:), where "tilde" means 976:Orientation (geometry) 940:Characteristic classes 910:, New York: Springer, 860: 797: 664: 555: 513: 435: 330: 142: 54:means: for each fiber 906:; Tu, Loring (1982), 861: 798: 665: 556: 514: 436: 331: 262:complex vector bundle 143: 932:Milnor, John Willard 810: 688: 568: 523: 463: 388: 298: 169:general linear group 167:, which is the real 157:standard orientation 79: 50:, an orientation of 30:In mathematics, an 936:Stasheff, James D. 886:Orientation bundle 856: 793: 679:reduced cohomology 660: 551: 509: 431: 346:unit sphere bundle 326: 293:determinant bundle 138: 971:Analytic geometry 949:978-0-691-08122-9 890:orientation sheaf 748: 609: 476: 269:orientation of a 16:(Redirected from 983: 952: 920: 865: 863: 862: 857: 855: 854: 849: 825: 824: 802: 800: 799: 794: 780: 779: 774: 756: 755: 750: 749: 741: 716: 715: 700: 699: 675:Thom isomorphism 669: 667: 666: 661: 617: 616: 611: 610: 602: 580: 579: 560: 558: 557: 552: 535: 534: 518: 516: 515: 510: 484: 483: 478: 477: 469: 440: 438: 437: 432: 406: 405: 335: 333: 332: 327: 322: 321: 198:orthogonal group 147: 145: 144: 139: 137: 136: 131: 107: 106: 91: 90: 21: 991: 990: 986: 985: 984: 982: 981: 980: 956: 955: 950: 930: 918: 902: 899: 876: 844: 813: 808: 807: 769: 738: 704: 691: 686: 685: 599: 571: 566: 565: 526: 521: 520: 466: 461: 460: 397: 386: 385: 371: 365: 313: 296: 295: 281: 258: 235:oriented bundle 176: 126: 95: 82: 77: 76: 71: 62: 28: 23: 22: 18:Oriented bundle 15: 12: 11: 5: 989: 987: 979: 978: 973: 968: 966:Linear algebra 958: 957: 954: 953: 948: 928: 921: 916: 898: 895: 894: 893: 883: 875: 872: 870:-orientation. 853: 848: 843: 840: 837: 834: 831: 828: 823: 820: 816: 804: 803: 792: 789: 786: 783: 778: 773: 768: 765: 762: 759: 754: 747: 744: 737: 734: 731: 728: 725: 722: 719: 714: 711: 707: 703: 698: 694: 671: 670: 659: 656: 653: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 620: 615: 608: 605: 598: 595: 592: 589: 586: 583: 578: 574: 550: 547: 544: 541: 538: 533: 529: 508: 505: 502: 499: 496: 493: 490: 487: 482: 475: 472: 442: 441: 430: 427: 424: 421: 418: 415: 412: 409: 404: 400: 396: 393: 367:Main article: 364: 361: 325: 320: 316: 312: 309: 306: 303: 280: 277: 271:differentiable 257: 254: 250:Gysin sequence 174: 149: 148: 135: 130: 125: 122: 119: 116: 113: 110: 105: 102: 98: 94: 89: 85: 67: 58: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 988: 977: 974: 972: 969: 967: 964: 963: 961: 951: 945: 941: 937: 933: 929: 926: 922: 919: 917:0-387-90613-4 913: 909: 905: 901: 900: 896: 891: 887: 884: 882: 878: 877: 873: 871: 869: 851: 841: 838: 835: 829: 821: 818: 814: 784: 776: 766: 760: 752: 742: 726: 720: 712: 709: 705: 696: 692: 684: 683: 682: 680: 676: 657: 654: 651: 645: 642: 633: 627: 621: 613: 603: 587: 584: 576: 572: 564: 563: 562: 542: 539: 531: 527: 500: 494: 488: 480: 470: 458: 454: 450: 447: 422: 416: 410: 402: 398: 394: 391: 384: 383: 382: 380: 376: 370: 362: 360: 358: 353: 351: 347: 343: 339: 323: 318: 314: 310: 307: 304: 301: 294: 290: 286: 278: 276: 274: 272: 265: 263: 255: 253: 251: 247: 242: 240: 236: 231: 229: 225: 222: 218: 214: 210: 206: 202: 199: 195: 191: 187: 182: 180: 173: 170: 166: 162: 158: 155:is given the 154: 133: 123: 120: 111: 103: 100: 96: 92: 87: 83: 75: 74: 73: 70: 66: 61: 57: 53: 49: 45: 41: 37: 36:vector bundle 33: 19: 939: 924: 907: 867: 805: 672: 456: 455:) such that 452: 448: 443: 378: 374: 372: 357:Grassmannian 354: 349: 341: 337: 288: 284: 282: 270: 266: 259: 243: 238: 234: 232: 227: 223: 216: 212: 208: 204: 200: 193: 189: 185: 183: 178: 171: 164: 161:frame bundle 152: 150: 68: 64: 59: 55: 51: 47: 43: 31: 29: 904:Bott, Raoul 246:Euler class 32:orientation 960:Categories 923:J.P. May, 897:References 519:as a free 459:generates 446:Thom space 369:Thom space 363:Thom space 279:Operations 34:of a real 842:× 836:≃ 819:− 815:π 788:Λ 753:∗ 746:~ 736:→ 730:Λ 710:− 706:π 697:∗ 655:⌣ 649:↦ 637:Λ 614:∗ 607:~ 597:→ 591:Λ 577:∗ 546:Λ 532:∗ 504:Λ 481:∗ 474:~ 426:Λ 395:∈ 315:∧ 305:⁡ 219:) to the 124:× 118:→ 101:− 97:π 84:ϕ 938:(1974), 874:See also 377:of rank 287:of rank 273:manifold 256:Examples 946:  914:  944:ISBN 912:ISBN 888:(or 879:The 348:of 336:of 302:det 230:). 184:If 163:of 962:: 934:; 352:. 260:A 252:. 241:. 224:SO 172:GL 868:Z 852:n 847:R 839:U 833:) 830:U 827:( 822:1 791:) 785:; 782:) 777:U 772:| 767:E 764:( 761:T 758:( 743:H 733:) 727:; 724:) 721:U 718:( 713:1 702:( 693:H 658:u 652:x 646:x 643:, 640:) 634:; 631:) 628:E 625:( 622:T 619:( 604:H 594:) 588:; 585:E 582:( 573:H 549:) 543:; 540:E 537:( 528:H 507:) 501:; 498:) 495:E 492:( 489:T 486:( 471:H 457:u 453:E 451:( 449:T 429:) 423:; 420:) 417:E 414:( 411:T 408:( 403:n 399:H 392:u 379:n 375:E 350:E 342:E 338:E 324:E 319:n 311:= 308:E 289:n 285:E 228:n 226:( 217:n 215:( 213:O 209:E 205:n 203:( 201:O 194:E 190:n 186:E 179:R 177:( 175:n 165:E 153:R 134:n 129:R 121:U 115:) 112:U 109:( 104:1 93:: 88:U 69:x 65:E 60:x 56:E 52:E 48:B 46:→ 44:E 20:)

Index

Oriented bundle
vector bundle
orientation of a vector space
standard orientation
frame bundle
general linear group
orthogonal group
special orthogonal group
Euler class
Gysin sequence
complex vector bundle
orientation of a differentiable manifold
determinant bundle
unit sphere bundle
Grassmannian
Thom space
Thom space
Thom isomorphism
reduced cohomology
integration along the fiber
Orientation bundle
orientation sheaf
Bott, Raoul
ISBN
0-387-90613-4
Milnor, John Willard
Stasheff, James D.
ISBN
978-0-691-08122-9
Categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.