Knowledge (XXG)

Abdominal pigmentation in Drosophila melanogaster

Source 📝

485:
female's tergites have only a narrow pigment stripe. This sexually dimorphic pigmentation pattern is controlled by a genetic regulatory circuit involving the Hox gene Abd-B. Loss-of-function mutations of Abd-B cause the loss of male-specific pigmentation, while gain-of-function alleles, such as Abd-BMcp, cause the expansion of pigmentation to the A4 segment or even to the
25: 492:
Pigmentation of the posterior male abdomen is a trait found in many members of the melanogaster species group but not in several other major groups. The dimorphic regulation of bab expression is closely correlated with dimorphic pigmentation as well other pigmentation patterns. It is not known,
484:
Hox genes have been implicated in the evolution of many animal body patterns. Hox protein directly activates expression of the yellow pigmentation gene in posterior segments. In D. melanogaster, the male has fully pigmented tergites in the fifth and sixth abdominal segments (A5 and A6), whereas the
357:
with a higher efficiency than Dopamine-chrome. Some authors have proposed that the black pigment in abdominal cuticle was Dopa-melanin produced from Dopa. Incubation of abdominal cuticles or wings of unpigmented pharates with Dopamine is sufficient to produce black pigment, which suggests that this
316:
over-expression induces dark pigmentation in the anterior region of the tergites. However, careful examination revealed that this ectopic pigmentation was not as dark as the normal pigmentation in the posterior region of the tergites. This was more visible in A4 and A5 segments. By contrast, when
374:
females is darker when they develop at low temperature. This is particularly pronounced in posterior abdominal segment. Plasticity of abdominal pigmentation is likely to have functional consequences as abdominal pigmentation has been linked to thermoregulation and resistance to UV,
444:
In stage A pharates, two cells at the base of bristles expressed y. This expression had a similar intensity when pharates were raised at 18 °C and at 29 °C. These two cells are likely to be the socket and the shaft, the only pigmented cells of the bristle organ. In addition,
440:
expression (A, B and C) based on the degree of maturation of abdominal bristles . These stages correspond approximately to a transition from stage P11(i) to stage P12(ii) as described by Bainbridge and Bownes with morphological markers at 25 °C.
431:
expression is modulated by temperature in the epidermis of abdominal segments A5, A6 and A7 in female pharates (1.97 fold more expressed at 18 °C than at 29 °C). In order to analyse the spatial expression of y, many researchers performed
475:
was no longer expressed at the base of bristles and the bristles were almost fully pigmented. Furthermore, its overall expression in tergites was reduced compared to stage B and more similar between pharates grown at 18 °C and 29 °C.
402:
abdominal pigmentation are relatively well known, in particular those encoding the enzymes required for the synthesis of cuticle pigments. It has been reported recently that the thermal plasticity of female abdominal pigmentation in
183:
and sclerotin. By mapping the genetic basis of natural variation in body pigmentation, new genes affecting pigment biosynthesis as well as regulatory regions that determine when and where pigmentation will develop were discovered.
178:
pigmentation do not form part of this pathway or any parallel pathway. Furthermore, the genes that lead to natural variation in body pigmentation are not necessarily the same genes that are directly involved in the biosynthesis of
1518:
Walter MF, Zeineh LL, Black BC, McIvor WE, Wright TR, Biessmann H (1996). "Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster".
1413:
Wittkopp PJ, Stewart EE, Arnold LL, Neidert AH, Haerum BK, Thompson EM, et al. (October 2009). "Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila".
285:
is sufficient to explain the black pigmentation observed at 18 °C, the researcher increased their expression in abdominal epidermis at 29 °C to mimic the effect of lower temperature.
1318:
Gompel N, Prud'homme B, Wittkopp PJ, Kassner VA, Carroll SB (February 2005). "Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila".
449:
was expressed in the posterior region of each tergite in segments A2 to A6. This expression was much broader and stronger in pharates grown at 18 °C compared to 29 °C. In A6,
43: 358:
black pigment is produced from Dopamine and is therefore Dopamine-melanin. It is also known that Ddc down-regulation leads to a complete loss of black and brown pigments.
1556:"Direct and correlated responses to laboratory selection for body melanisation in Drosophila melanogaster: support for the melanisation-desiccation resistance hypothesis" 565:
Wittkopp PJ, Beldade P (February 2009). "Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy".
1371:"The expansion of body coloration involves coordinated evolution in cis and trans within the pigmentation regulatory network of Drosophila prostipennis" 2011: 453:
was expressed in the whole tergite at 18 °C, and only in the posterior region of the tergite at 29 °C. In A7, at 18 °C, the whole tergite expressed
174:
The melanin/sclerotin biosynthetic pathway and its underlying genetic basis have been well studied. However, many of the genes known to affect
1831: 1230: 1954:
Gompel N, Carroll SB (August 2003). "Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies".
1714:
Kopp A, Duncan I, Godt D, Carroll SB (November 2000). "Genetic control and evolution of sexually dimorphic characters in Drosophila".
212:
is sex-specifically regulated in the posterior abdomen. Furthermore, the evolution of wing or abdominal pigmentation patterns between
1011:
Wittkopp PJ, Carroll SB, Kopp A (September 2003). "Evolution in black and white: genetic control of pigment patterns in Drosophila".
1532: 61: 337:
combined over-expression at 29 °C is necessary and sufficient to reproduce the pigmentation phenotype observed at low temperature.
521: 1213:
Wright TR (1987). "The Genetics of Biogenic Amine Metabolism, Sclerotization, and Melanization in Drosophila Melanogaster".
1867:"Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster" 239:
is known to be required but not sufficient for black melanin production. Studies have indicated that the black melanin is
251:
at 29 °C is necessary and sufficient to reproduce the black phenotype observed at 18°C. Thus, the stronger expression of
493:
however, which regulatory interactions among Abd-B, bab, dsx, and pigmentation genes are direct and which are indirect.
1814:
Massey JH, Wittkopp PJ (2016). "The Genetic Basis of Pigmentation Differences within and Between Drosophila Species".
104:
shows enormous phenotypic variation between species, populations, and individuals, and even within individuals during
489:. The sexually dimorphic pigment pattern depends upon regulatory interactions among the Abd-B, bab, and dsx genes. 415:
is seven times more expressed at 18 °C than at 29 °C in the posterior abdominal epidermis of young adult females.
124:. Changes in pigmentation are often adaptive and vital to the fitness of the organism. Much is known about the 808:"Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation" 1466:"The evolution of gene regulation underlies a morphological difference between two Drosophila sister species" 117: 90: 464:
expression was reduced in the socket and the shaft, while the bristle began to be pigmented. Furthermore,
1654:"An Experimental Evolution Test of the Relationship between Melanism and Desiccation Survival in Insects" 366:
Abdominal pigmentation in Drosophilids represents an appropriate model to dissect the molecular bases of
1143:
Moussian B (May 2010). "Recent advances in understanding mechanisms of insect cuticle differentiation".
433: 367: 256: 953:"The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila" 277:
up-regulation to induce a fully black pigmentation. In order to test whether the strong expression of
143:
but it is also a relatively simple and easily measured phenotype to study the genetic architecture of
1963: 1723: 1665: 1422: 1327: 1274: 1152: 1109: 912: 847:
Lande R (March 1980). "Sexual Dimorphism, Sexual Selection, and Adaptation in Polygenic Characters".
721: 353:. Yellow is related to two other enzymes, Yellow-f and Yellow-f2, which can be used as substrate for 94:.  It has been used as a model for understanding the development and evolution of morphological 81: 394:. Furthermore, as abdominal pigmentation is highly evolvable, it has been investigated to study the 1987: 1796: 1747: 1634: 1585: 1495: 1446: 1351: 1300: 1077: 872: 661:"The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry" 85: 610:
Lindgren J, Moyer A, Schweitzer MH, Sjövall P, Uvdal P, Nilsson DE, et al. (August 2015).
468:
was still more expressed in the abdominal epidermis of pharates grown at 18 °C than at 29 °C.
1979: 1936: 1919:
Bainbridge SP, Bownes M (January 1988). "Ecdysteroid titers during Drosophila metamorphosis".
1898: 1847: 1827: 1788: 1739: 1693: 1626: 1577: 1536: 1487: 1438: 1392: 1343: 1292: 1236: 1226: 1168: 1125: 1069: 1028: 982: 928: 880: 864: 829: 788: 747: 690: 641: 592: 547: 391: 144: 113: 1971: 1928: 1888: 1878: 1837: 1819: 1778: 1731: 1683: 1673: 1616: 1567: 1528: 1477: 1430: 1382: 1335: 1282: 1218: 1195: 1160: 1117: 1059: 1048:"Genetics of a difference in pigmentation between Drosophila yakuba and Drosophila santomea" 1020: 972: 964: 920: 856: 819: 778: 737: 729: 680: 672: 631: 623: 582: 574: 537: 529: 350: 806:
Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, et al. (July 2012).
407:
involves transcriptional modulation of the pigmentation gene tan (t). This gene encodes a
88:
that often has adaptive significance.  Pigmentation has extensively been studied in
1967: 1727: 1669: 1426: 1331: 1278: 1156: 1113: 916: 903:
Kopp A (June 2006). "Basal relationships in the Drosophila melanogaster species group".
725: 501: 1893: 1866: 1842: 1767:"Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle" 1688: 1653: 1064: 1047: 977: 952: 783: 766: 742: 709: 685: 660: 636: 611: 542: 1287: 1262: 1222: 1024: 2005: 1932: 1081: 824: 807: 1818:. Current Topics in Developmental Biology. Vol. 119. Elsevier. pp. 27–61. 1800: 1589: 1499: 1355: 325:
were over-expressed in the dorsal region of the abdomen, the anterior region of the
116:. It also varies between species, contributing to species recognition, mate choice, 1991: 1638: 1450: 1304: 133: 1751: 1605:"Thermoregulatory strategy may shape immune investment in Drosophila melanogaster" 1883: 1678: 578: 436:
of female pharates grown at 18 °C or 29 °C and could distinguish three stages of
155:
generally has a stripe of dark coloration (melanin) on a lighter tan background (
1823: 1387: 1370: 924: 676: 109: 1482: 1465: 1199: 1164: 1121: 968: 951:
Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB (August 2008).
380: 354: 1940: 868: 370:
as it is sensitive to temperature in many species. Abdominal pigmentation of
1464:
Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll SB (March 2008).
1434: 612:"Interpreting melanin-based coloration through deep time: a critical review" 408: 168: 156: 95: 1983: 1902: 1851: 1792: 1743: 1697: 1630: 1581: 1491: 1442: 1396: 1347: 1296: 1172: 1129: 1073: 1032: 986: 932: 884: 833: 792: 751: 710:"Gene regulation networks generate diverse pigmentation patterns in plants" 694: 645: 627: 596: 551: 383:. Abdominal pigmentation is also associated to resistance to desiccation. 200:
gene is required for the production of black melanin and in the absence of
1540: 1240: 395: 376: 240: 164: 132:
and the genes that control the temporal and spatial distribution of this
105: 1975: 1339: 265:
is required but not sufficient for production of black pigment. Indeed,
220:
spatial expression. Temperature also controls the spatial expression of
1783: 1766: 1621: 1604: 1572: 1555: 1533:
10.1002/(sici)1520-6327(1996)31:2<219::aid-arch9>3.0.co;2-u
1100:
Andersen SO (March 2010). "Insect cuticular sclerotization: a review".
876: 587: 424: 398:
bases of morphological variation within species. The genes involved in
289: 225: 180: 160: 148: 121: 101: 1369:
Ordway AJ, Hancuch KN, Johnson W, Wiliams TM, Rebeiz M (August 2014).
733: 329:
was as black as the posterior border of the tergites. This shows that
1735: 1652:
Rajpurohit S, Peterson LM, Orr AJ, Marlon AJ, Gibbs AG (2016-09-22).
486: 390:
species and has been used as a model to dissect the genetic bases of
326: 235:
expression associated with bristles is not modulated by temperature.
1263:"Evolution of yellow gene regulation and pigmentation in Drosophila" 860: 386:
Abdominal pigmentation differs between males and females in several
1865:
Gibert JM, Mouchel-Vielh E, De Castro S, Peronnet F (August 2016).
1217:. Advances in Genetics. Vol. 24. Elsevier. pp. 127–222. 1186:
True JR (December 2003). "Insect melanism: the molecules matter".
533: 125: 522:"Quantifying Abdominal Pigmentation in Drosophila melanogaster" 243:-melanin and not Dopa-melanin. The combined over-expression of 18: 1603:
Kutch IC, Sevgili H, Wittman T, Fedorka KM (October 2014).
1046:
Llopart A, Elwyn S, Lachaise D, Coyne JA (November 2002).
767:"Origin, development, and evolution of butterfly eyespots" 292:
of wild-type females and females over-expressing either
139:
Not only is body pigmentation ecologically relevant in
128:
that regulate the biochemical synthesis of pigments in
39: 457:
at a high level, whereas it was much weaker at 29 °C.
1261:
Wittkopp PJ, Vaccaro K, Carroll SB (September 2002).
1052:
Evolution; International Journal of Organic Evolution
312:
over-expression does not change pigmentation whereas
163:, the epidermal cells underlying the cuticle secrete 1554:
Ramniwas S, Kajla B, Dev K, Parkash R (April 2013).
34:
may be too technical for most readers to understand
1914: 1912: 204:, black melanin is replaced by brown melanin. In 1408: 1406: 1256: 1254: 1252: 1250: 1095: 1093: 1091: 1006: 1004: 1002: 1000: 998: 996: 946: 944: 942: 708:Albert NW, Davies KM, Schwinn KE (2014-06-13). 1521:Archives of Insect Biochemistry and Physiology 1513: 1511: 1509: 349:Yellow gene is required for the production of 167:-derived catecholamines into the cuticle for 120:, protection (warning signals), mimicry, and 8: 1765:Riedel F, Vorkel D, Eaton S (January 2011). 1709: 1707: 567:Seminars in Cell & Developmental Biology 520:Saleh Ziabari O, Shingleton AW (June 2017). 898: 896: 894: 1892: 1882: 1841: 1782: 1687: 1677: 1620: 1571: 1481: 1386: 1286: 1145:Insect Biochemistry and Molecular Biology 1102:Insect Biochemistry and Molecular Biology 1063: 976: 823: 782: 741: 684: 635: 586: 541: 411:implicated in the production of melanin. 216:species correlates with modifications of 62:Learn how and when to remove this message 46:, without removing the technical details. 308:(UAS-t/+; UAS-y/pnr-Gal4) at 29 °C. The 512: 341:Production of dopamine-melanin by the 269:gain- of-function must be combined to 108:. It gives rise to natural variation, 905:Molecular Phylogenetics and Evolution 44:make it understandable to non-experts 7: 812:Pigment Cell & Melanoma Research 1609:The Journal of Experimental Biology 1560:The Journal of Experimental Biology 1065:10.1111/j.0014-3820.2002.tb00150.x 784:10.1146/annurev-ento-010814-020942 259:of female abdominal pigmentation. 14: 1215:Molecular Genetics of Development 1188:Trends in Ecology & Evolution 659:Kronforst MR, Papa R (May 2015). 526:Journal of Visualized Experiments 2012:Drosophila melanogaster genetics 825:10.1111/j.1755-148x.2012.01014.x 616:Proceedings. Biological Sciences 23: 714:Plant Signaling & Behavior 300:(UAS-t/+; pnr-Gal4/+) or both 224:in the abdominal epidermis of 1: 1288:10.1016/s0960-9822(02)01113-2 1223:10.1016/S0065-2660(08)60008-5 1025:10.1016/s0168-9525(03)00194-x 1933:10.1016/0020-1790(88)90023-6 1884:10.1371/journal.pgen.1006218 1679:10.1371/journal.pone.0163414 579:10.1016/j.semcdb.2008.10.002 255:at 18°C also contributes to 1824:10.1016/bs.ctdb.2016.03.004 1388:10.1016/j.ydbio.2014.05.023 925:10.1016/j.ympev.2006.01.029 771:Annual Review of Entomology 765:Monteiro A (January 2015). 677:10.1534/genetics.114.172387 84:simple but highly variable 16:Genetic trait in Drosophila 2028: 1483:10.1016/j.cell.2008.01.014 1200:10.1016/j.tree.2003.09.006 1165:10.1016/j.ibmb.2010.03.003 1122:10.1016/j.ibmb.2009.10.007 969:10.1016/j.cell.2008.06.052 480:Regulation of pigmentation 75:Abdominal pigmentation in 147:in complex traits. Each 1435:10.1126/science.1176980 405:Drosophila melanogaster 372:Drosophila melanogaster 206:Drosophila melanogaster 159:). During pre-and post- 91:Drosophila melanogaster 77:Drosophila melanogaster 628:10.1098/rspb.2015.0614 419:Temperature modulation 1375:Developmental Biology 471:In stage C pharates, 460:In stage B pharates, 434:in-situ hybridization 368:phenotypic plasticity 362:Effect of temperature 502:ectopic pigmentation 1976:10.1038/nature01787 1968:2003Natur.424..931G 1921:Insect Biochemistry 1816:Genes and Evolution 1728:2000Natur.408..553K 1670:2016PLoSO..1163414R 1427:2009Sci...326..540W 1340:10.1038/nature03235 1332:2005Natur.433..481G 1279:2002CBio...12.1547W 1157:2010IBMB...40..363M 1114:2010IBMB...40..166A 917:2006MolPE..39..787K 726:2014PlSiB...9E9526A 273:down-regulation or 171:and melanisation. 1784:10.1242/dev.056309 1622:10.1242/jeb.106294 1573:10.1242/jeb.076166 1013:Trends in Genetics 622:(1813): 20150614. 296:(pnr-Gal4/UAS-y), 257:thermal plasticity 1833:978-0-12-417194-7 1615:(Pt 20): 3664–9. 1566:(Pt 7): 1244–54. 1232:978-0-12-017624-3 734:10.4161/psb.29526 392:sexual dimorphism 288:On comparing the 145:natural variation 114:sexual dimorphism 72: 71: 64: 2019: 1996: 1995: 1951: 1945: 1944: 1916: 1907: 1906: 1896: 1886: 1862: 1856: 1855: 1845: 1811: 1805: 1804: 1786: 1762: 1756: 1755: 1736:10.1038/35046017 1711: 1702: 1701: 1691: 1681: 1649: 1643: 1642: 1624: 1600: 1594: 1593: 1575: 1551: 1545: 1544: 1515: 1504: 1503: 1485: 1461: 1455: 1454: 1410: 1401: 1400: 1390: 1366: 1360: 1359: 1315: 1309: 1308: 1290: 1258: 1245: 1244: 1210: 1204: 1203: 1183: 1177: 1176: 1140: 1134: 1133: 1097: 1086: 1085: 1067: 1043: 1037: 1036: 1008: 991: 990: 980: 948: 937: 936: 900: 889: 888: 844: 838: 837: 827: 803: 797: 796: 786: 762: 756: 755: 745: 705: 699: 698: 688: 656: 650: 649: 639: 607: 601: 600: 590: 562: 556: 555: 545: 517: 351:Dopamine-melanin 169:sclerotinization 118:thermoregulation 67: 60: 56: 53: 47: 27: 26: 19: 2027: 2026: 2022: 2021: 2020: 2018: 2017: 2016: 2002: 2001: 2000: 1999: 1962:(6951): 931–5. 1953: 1952: 1948: 1918: 1917: 1910: 1877:(8): e1006218. 1864: 1863: 1859: 1834: 1813: 1812: 1808: 1764: 1763: 1759: 1722:(6812): 553–9. 1713: 1712: 1705: 1664:(9): e0163414. 1651: 1650: 1646: 1602: 1601: 1597: 1553: 1552: 1548: 1517: 1516: 1507: 1463: 1462: 1458: 1421:(5952): 540–4. 1412: 1411: 1404: 1368: 1367: 1363: 1326:(7025): 481–7. 1317: 1316: 1312: 1273:(18): 1547–56. 1267:Current Biology 1260: 1259: 1248: 1233: 1212: 1211: 1207: 1194:(12): 640–647. 1185: 1184: 1180: 1142: 1141: 1137: 1099: 1098: 1089: 1058:(11): 2262–77. 1045: 1044: 1040: 1010: 1009: 994: 950: 949: 940: 902: 901: 892: 861:10.2307/2407393 846: 845: 841: 805: 804: 800: 764: 763: 759: 707: 706: 702: 658: 657: 653: 609: 608: 604: 564: 563: 559: 519: 518: 514: 509: 499: 482: 423:It is shown by 421: 364: 347: 194: 176:D. melanogaster 153:D. melanogaster 130:D. melanogaster 82:morphologically 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 2025: 2023: 2015: 2014: 2004: 2003: 1998: 1997: 1946: 1927:(2): 185–197. 1908: 1857: 1832: 1806: 1757: 1703: 1644: 1595: 1546: 1505: 1456: 1402: 1361: 1310: 1246: 1231: 1205: 1178: 1135: 1087: 1038: 1019:(9): 495–504. 992: 938: 890: 855:(2): 292–305. 839: 798: 757: 700: 651: 602: 557: 528:(124): 55732. 511: 510: 508: 505: 498: 497:External links 495: 481: 478: 420: 417: 363: 360: 346: 339: 193: 186: 70: 69: 52:September 2020 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2024: 2013: 2010: 2009: 2007: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1950: 1947: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1913: 1909: 1904: 1900: 1895: 1890: 1885: 1880: 1876: 1872: 1871:PLOS Genetics 1868: 1861: 1858: 1853: 1849: 1844: 1839: 1835: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1798: 1794: 1790: 1785: 1780: 1777:(1): 149–58. 1776: 1772: 1768: 1761: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1708: 1704: 1699: 1695: 1690: 1685: 1680: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1645: 1640: 1636: 1632: 1628: 1623: 1618: 1614: 1610: 1606: 1599: 1596: 1591: 1587: 1583: 1579: 1574: 1569: 1565: 1561: 1557: 1550: 1547: 1542: 1538: 1534: 1530: 1527:(2): 219–33. 1526: 1522: 1514: 1512: 1510: 1506: 1501: 1497: 1493: 1489: 1484: 1479: 1476:(5): 783–93. 1475: 1471: 1467: 1460: 1457: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1409: 1407: 1403: 1398: 1394: 1389: 1384: 1381:(2): 431–40. 1380: 1376: 1372: 1365: 1362: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1314: 1311: 1306: 1302: 1298: 1294: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1255: 1253: 1251: 1247: 1242: 1238: 1234: 1228: 1224: 1220: 1216: 1209: 1206: 1201: 1197: 1193: 1189: 1182: 1179: 1174: 1170: 1166: 1162: 1158: 1154: 1151:(5): 363–75. 1150: 1146: 1139: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1108:(3): 166–78. 1107: 1103: 1096: 1094: 1092: 1088: 1083: 1079: 1075: 1071: 1066: 1061: 1057: 1053: 1049: 1042: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1007: 1005: 1003: 1001: 999: 997: 993: 988: 984: 979: 974: 970: 966: 963:(4): 610–23. 962: 958: 954: 947: 945: 943: 939: 934: 930: 926: 922: 918: 914: 911:(3): 787–98. 910: 906: 899: 897: 895: 891: 886: 882: 878: 874: 870: 866: 862: 858: 854: 850: 843: 840: 835: 831: 826: 821: 818:(4): 411–33. 817: 813: 809: 802: 799: 794: 790: 785: 780: 777:(1): 253–71. 776: 772: 768: 761: 758: 753: 749: 744: 739: 735: 731: 727: 723: 720:(9): e29526. 719: 715: 711: 704: 701: 696: 692: 687: 682: 678: 674: 670: 666: 662: 655: 652: 647: 643: 638: 633: 629: 625: 621: 617: 613: 606: 603: 598: 594: 589: 584: 580: 576: 572: 568: 561: 558: 553: 549: 544: 539: 535: 534:10.3791/55732 531: 527: 523: 516: 513: 506: 504: 503: 496: 494: 490: 488: 479: 477: 474: 469: 467: 463: 458: 456: 452: 448: 442: 439: 435: 430: 426: 418: 416: 414: 410: 406: 401: 397: 393: 389: 384: 382: 378: 373: 369: 361: 359: 356: 352: 344: 340: 338: 336: 332: 328: 324: 320: 315: 311: 307: 303: 299: 295: 291: 286: 284: 280: 276: 272: 268: 264: 260: 258: 254: 250: 246: 242: 238: 234: 231:By contrast, 229: 227: 223: 219: 215: 211: 207: 203: 199: 191: 187: 185: 182: 177: 172: 170: 166: 162: 158: 154: 150: 146: 142: 137: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 97: 93: 92: 87: 83: 79: 78: 66: 63: 55: 45: 41: 35: 32:This article 30: 21: 20: 1959: 1955: 1949: 1924: 1920: 1874: 1870: 1860: 1815: 1809: 1774: 1770: 1760: 1719: 1715: 1661: 1657: 1647: 1612: 1608: 1598: 1563: 1559: 1549: 1524: 1520: 1473: 1469: 1459: 1418: 1414: 1378: 1374: 1364: 1323: 1319: 1313: 1270: 1266: 1214: 1208: 1191: 1187: 1181: 1148: 1144: 1138: 1105: 1101: 1055: 1051: 1041: 1016: 1012: 960: 956: 908: 904: 852: 848: 842: 815: 811: 801: 774: 770: 760: 717: 713: 703: 668: 664: 654: 619: 615: 605: 573:(1): 65–71. 570: 566: 560: 525: 515: 500: 491: 483: 472: 470: 465: 461: 459: 454: 450: 446: 443: 437: 428: 422: 412: 404: 399: 387: 385: 371: 365: 348: 342: 334: 330: 322: 318: 313: 309: 305: 301: 297: 293: 287: 282: 278: 274: 270: 266: 262: 261: 252: 248: 244: 236: 232: 230: 221: 217: 213: 209: 205: 201: 197: 195: 189: 175: 173: 152: 140: 138: 134:biosynthesis 129: 102:Pigmentation 100: 89: 76: 74: 73: 58: 49: 33: 1771:Development 671:(1): 1–19. 588:10400.7/197 110:polyphenism 507:References 400:Drosophila 388:Drosophila 355:Dopachrome 228:females. 214:Drosophila 151:of female 141:Drosophila 96:phenotypes 1941:0020-1790 1082:221733289 869:0014-3820 849:Evolution 409:hydrolase 396:molecular 381:parasites 377:pathogens 157:sclerotin 2006:Category 1984:12931186 1903:27508387 1852:27282023 1801:29017593 1793:21138977 1744:11117736 1698:27658246 1658:PLOS ONE 1631:25147243 1590:22483971 1582:23239892 1500:15447569 1492:18329365 1443:19900891 1397:24907418 1356:16422483 1348:15690032 1297:12372246 1173:20347980 1130:19932179 1074:12487356 1033:12957543 987:18724934 933:16527496 885:28563426 834:22578174 793:25341098 752:25763693 695:25953905 665:Genetics 646:26290071 597:18977308 552:28605370 327:tergites 290:cuticles 241:Dopamine 165:tyrosine 106:ontogeny 1992:4415001 1964:Bibcode 1894:4980059 1843:5002358 1724:Bibcode 1689:5033579 1666:Bibcode 1639:6798309 1541:8580497 1451:6796236 1423:Bibcode 1415:Science 1328:Bibcode 1305:2301246 1275:Bibcode 1241:3124532 1153:Bibcode 1110:Bibcode 978:2597198 913:Bibcode 877:2407393 743:4205132 722:Bibcode 686:4423356 637:4632609 543:5608185 425:RT-qPCR 226:pharate 181:melanin 161:ecdysis 149:tergite 122:crypsis 38:Please 1990:  1982:  1956:Nature 1939:  1901:  1891:  1850:  1840:  1830:  1799:  1791:  1752:261526 1750:  1742:  1716:Nature 1696:  1686:  1637:  1629:  1588:  1580:  1539:  1498:  1490:  1449:  1441:  1395:  1354:  1346:  1320:Nature 1303:  1295:  1239:  1229:  1171:  1128:  1080:  1072:  1031:  985:  975:  931:  883:  875:  867:  832:  791:  750:  740:  693:  683:  644:  634:  595:  550:  540:  487:thorax 473:yellow 466:yellow 462:yellow 455:yellow 451:yellow 447:yellow 438:yellow 429:yellow 343:yellow 331:yellow 319:yellow 310:yellow 302:yellow 294:yellow 279:yellow 267:yellow 263:yellow 253:yellow 245:yellow 237:yellow 233:yellow 222:yellow 218:yellow 210:yellow 202:yellow 198:yellow 190:yellow 1988:S2CID 1797:S2CID 1748:S2CID 1635:S2CID 1586:S2CID 1496:S2CID 1447:S2CID 1352:S2CID 1301:S2CID 1078:S2CID 873:JSTOR 427:that 317:both 271:ebony 126:genes 86:trait 80:is a 1980:PMID 1937:ISSN 1899:PMID 1848:PMID 1828:ISBN 1789:PMID 1740:PMID 1694:PMID 1627:PMID 1578:PMID 1537:PMID 1488:PMID 1470:Cell 1439:PMID 1393:PMID 1344:PMID 1293:PMID 1237:PMID 1227:ISBN 1169:PMID 1126:PMID 1070:PMID 1029:PMID 983:PMID 957:Cell 929:PMID 881:PMID 865:ISSN 830:PMID 789:PMID 748:PMID 691:PMID 642:PMID 593:PMID 548:PMID 345:gene 333:and 321:and 304:and 281:and 247:and 196:The 192:gene 188:The 112:and 1972:doi 1960:424 1929:doi 1889:PMC 1879:doi 1838:PMC 1820:doi 1779:doi 1775:138 1732:doi 1720:408 1684:PMC 1674:doi 1617:doi 1613:217 1568:doi 1564:216 1529:doi 1478:doi 1474:132 1431:doi 1419:326 1383:doi 1379:392 1336:doi 1324:433 1283:doi 1219:doi 1196:doi 1161:doi 1118:doi 1060:doi 1021:doi 973:PMC 965:doi 961:134 921:doi 857:doi 820:doi 779:doi 738:PMC 730:doi 681:PMC 673:doi 669:200 632:PMC 624:doi 620:282 583:hdl 575:doi 538:PMC 530:doi 413:tan 379:or 335:tan 323:tan 314:tan 306:tan 298:tan 283:tan 275:tan 249:tan 98:. 42:to 2008:: 1986:. 1978:. 1970:. 1958:. 1935:. 1925:18 1923:. 1911:^ 1897:. 1887:. 1875:12 1873:. 1869:. 1846:. 1836:. 1826:. 1795:. 1787:. 1773:. 1769:. 1746:. 1738:. 1730:. 1718:. 1706:^ 1692:. 1682:. 1672:. 1662:11 1660:. 1656:. 1633:. 1625:. 1611:. 1607:. 1584:. 1576:. 1562:. 1558:. 1535:. 1525:31 1523:. 1508:^ 1494:. 1486:. 1472:. 1468:. 1445:. 1437:. 1429:. 1417:. 1405:^ 1391:. 1377:. 1373:. 1350:. 1342:. 1334:. 1322:. 1299:. 1291:. 1281:. 1271:12 1269:. 1265:. 1249:^ 1235:. 1225:. 1192:18 1190:. 1167:. 1159:. 1149:40 1147:. 1124:. 1116:. 1106:40 1104:. 1090:^ 1076:. 1068:. 1056:56 1054:. 1050:. 1027:. 1017:19 1015:. 995:^ 981:. 971:. 959:. 955:. 941:^ 927:. 919:. 909:39 907:. 893:^ 879:. 871:. 863:. 853:34 851:. 828:. 816:25 814:. 810:. 787:. 775:60 773:. 769:. 746:. 736:. 728:. 716:. 712:. 689:. 679:. 667:. 663:. 640:. 630:. 618:. 614:. 591:. 581:. 571:20 569:. 546:. 536:. 524:. 208:, 136:. 1994:. 1974:: 1966:: 1943:. 1931:: 1905:. 1881:: 1854:. 1822:: 1803:. 1781:: 1754:. 1734:: 1726:: 1700:. 1676:: 1668:: 1641:. 1619:: 1592:. 1570:: 1543:. 1531:: 1502:. 1480:: 1453:. 1433:: 1425:: 1399:. 1385:: 1358:. 1338:: 1330:: 1307:. 1285:: 1277:: 1243:. 1221:: 1202:. 1198:: 1175:. 1163:: 1155:: 1132:. 1120:: 1112:: 1084:. 1062:: 1035:. 1023:: 989:. 967:: 935:. 923:: 915:: 887:. 859:: 836:. 822:: 795:. 781:: 754:. 732:: 724:: 718:9 697:. 675:: 648:. 626:: 599:. 585:: 577:: 554:. 532:: 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
morphologically
trait
Drosophila melanogaster
phenotypes
Pigmentation
ontogeny
polyphenism
sexual dimorphism
thermoregulation
crypsis
genes
biosynthesis
natural variation
tergite
sclerotin
ecdysis
tyrosine
sclerotinization
melanin
pharate
Dopamine
thermal plasticity
cuticles
tergites
Dopamine-melanin
Dopachrome
phenotypic plasticity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.