Knowledge (XXG)

Aberration-Corrected Transmission Electron Microscopy

Source đź“ť

2007: 22: 277:
reduced voltages. Researchers found that by carefully designing these electrostatic elements, they could correct some of the spherical and chromatic aberrations that plagued early electron microscopes. These early correctors were crucial in understanding the behavior of electron optics and provided a stepping stone toward more sophisticated correction techniques.
2019: 270:. He investigated the need for a brighter electron source in the microscope, positing that cold field emission guns would be feasible. Through this and other iterations, Crewe was able to improve the resolution of the STEM from 30 Ă…ngstroms (Ă…) down to 2.5 Ă…. Crewe's work made it possible to visualize individual atoms for the first time. 246:"Chromatic and spherical aberration are unavoidable errors of the space charge-free electron lens. In principle, distortion (strain and twist) and (all types of) coma can be eliminated. Due to the inevitability of spherical aberration, there is a practical, but not a fundamental, limit to the resolving power of the electron microscope." 439:
resolution is a companion improvement in the mechanical stability. Exploiting these improvements, significantly better identification of chemical contents of materials has become possible, as well as their atomic structure. This has had a major impact on our understanding across multiple fields of study.
250:
The resolution limit provided by Scherzer's theorem can be overcome by breaking one of the above-mentioned three conditions. Giving up rotational symmetry in electronic lenses helps in correcting spherical aberrations. A correction of the chromatic aberration can be achieved with time-dependent, i.e.
438:
In their modern state, resolutions of about 0.1 nm are fairly routine in microscopes around the world. This is true for both standard higher-voltage electron microscopes as well as a few ones specially designed to operate at lower electron energies. An important offshoot of the improved optical
276:
In the early efforts to correct aberrations, low voltage electrostatic correctors were explored. These correctors used electrostatic lenses to manipulate the electron beam. The advantage of low voltage systems was their reduced chromatic aberration, as the energy spread of the electrons was lower at
472:
Aberration correction have yet to be significantly used in the life sciences, due to generally low atomic weight contrast in biological systems and also the increased radiation damage. However, the side benefits such as improved mechanical stability and detectors have significantly improved data
142:
were far enough apart. Theoretical methods of correcting the aberrations existed for some time, but could not be implemented in practice. Around the turn of the century the electron optical components were coupled with computer control of the lenses and their alignment; this was the breakthrough
447:
There is a significant difference in the usage of AC-TEM across various fields. Despite aberration correction for electron microscopes existing in the case of STEMs, the amount of electrons needed to form useful images is far greater than biological samples can handle before being destroyed by
305:
and Niklas Dellby in 1999 using a quadrupole/octupole corrector. As the electron optic resolution improved, it became apparent that there also needed to be improvements to the mechanical stability of the microscopes to keep pace. Many aberration corrected microscopes heavily employ sound and
901: 240:
He showed that under these conditions the aberrations that emerge degrade the resolution of an electron microscope up to one hundred times the wavelength of the electron. He concluded that the aberrations cannot be fixed with a combination of rotationally symmetrical lenses.
882: 337:
The approach to aberration correction used by Rose and Haider formed the basis of the company CEOS. They produced modular correctors which could be incorporated into microscopes produced by other vendors, which led to commercial products from
405:
in California, and concluded in 2009. Both the TEAM microscopes are S/TEMs (they can be used in both TEM mode and STEM mode) that correct for both spherical aberration and chromatic aberration. The TEAM microscopes are managed by the
137:
of images. Historically electron microscopes had quite severe aberrations, and until about the start of the 21st century the resolution was quite limited, at best able to image the atomic structure of materials so long as the
39: 359: 426:
Several other aberration correctors have been designed and used in electron microscopes such as one by Takanayagi. Similar correctors have also been used at much lower energies such as for
1272:
Sawada, H.; Hosokawa, F.; Kaneyama, T.; Tomita, T.; Kondo, Y.; Tanaka, T.; Oshima, Y.; Tanishiro, Y.; Yamamoto, N. (2008), Luysberg, Martina; Tillmann, Karsten; Weirich, Thomas (eds.),
258:
Scherzer himself experimented with space charges (e.g. with charged foils), dynamic lenses, and combinations of lenses and mirrors to minimize aberrations in electron microscopes.
1089: 735:"Scanning Electron Microscopes: Is High Resolution Possible?: Use of a field-emission electron source may make it possible to overcome existing limitations on resolution" 936:
Ribet, Stephanie M; Zeltmann, Steven E; Bustillo, Karen C; Dhall, Rohan; Denes, Peter; Minor, Andrew M; dos Reis, Roberto; Dravid, Vinayak P; Ophus, Colin (2023-12-21).
329:. Their first products were correctors of spherical and chromatic aberration correctors for existing STEMs. Later on, they designed an ACTEM from scratch, UltraSTEM 1. 1060: 1634: 1629: 86: 1778: 1481: 58: 1768: 1371: 1671: 1644: 65: 448:
radiation damage. Life science studies still heavily rely on conventional TEMs, which form a full image with their electron beam (similar to a conventional
1579: 72: 1639: 1783: 407: 381: 54: 1599: 1723: 1589: 1536: 1293: 880:, Crewe, Albert V. & Kopf, David A., "Sextupole system for the correction of spherical aberration", issued 1981-12-01 365: 266:
The benefit of the scanning transmission electron microscope (STEM) and its potentional for high-resolution imaging had been investigated by
1978: 1706: 1691: 1617: 1081: 899:, Crewe, Albert V., "Multiple sextupole system for the correction of third and higher order aberration", issued 1983-06-21 1728: 1561: 1414: 1364: 599: 559: 105: 79: 1716: 1711: 1609: 1584: 1551: 1788: 1773: 1753: 1222: 915:
Rose, Harald (1990-06-01). "Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope".
144: 1491: 1134: 1556: 1399: 1251: 1110: 1049: 415: 373: 43: 2023: 1733: 1696: 1541: 377: 1159:
Dahmen, Ulrich; Erni, Rolf; Radmilovic, Velimir; Ksielowski, Christian; Rossell, Marta-Dacil; Denes, Peter (2009-09-28).
2050: 2011: 1571: 1357: 398: 369: 1758: 1676: 151:
is standard in many commercial electron microscopes. They are extensively used in many different areas of science.
32: 2045: 1983: 1937: 1763: 1973: 285:
Phase plates were investigated as a spherical aberration corrector, specifically a programmable phase plate.
1686: 1622: 1496: 1455: 364:
The Transmission Electron Aberration-Corrected Microscope (TEAM) project was a collaborative effort between
197:, entail unavoidable imaging errors. These aberrations are of spherical and chromatic nature, that is, the 1876: 1881: 1701: 252: 460:
AC-TEM has been used extensively in physical sciences, in part due to the imperviousness of samples to
223: 165: 776: 1886: 1445: 1172: 1006: 835: 504: 209: 198: 148: 1161:"Background, status and future of the Transmission Electron Aberration-corrected Microscope project" 401:
in Illinois which had the first chromatic aberration corrector, then the TEAM 0.5 and TEAM I at the
325:
Ondrej Krivanek and Niklas Dellby founded Nion in the late 1990s, initially as a collaboration with
273:
Crewe filed patents for electron aberration correctors, but could never get functioning prototypes.
1851: 1836: 1743: 1738: 1681: 1546: 1528: 1460: 1450: 1394: 1380: 190: 171: 122: 1165:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1922: 1501: 1465: 1315: 949: 605: 576: 520: 449: 385: 175: 130: 1160: 1866: 1861: 1335: 1289: 1196: 1188: 1054: 1030: 1022: 975: 967: 859: 851: 804: 796: 754: 690:"Correction of Chromatic Aberration in Charged Particle Accelerators with Time-varying Fields" 595: 555: 411: 402: 298: 938:"Design of Electrostatic Aberration Correctors for Scanning Transmission Electron Microscopy" 174:. It states that there is a limit of resolution for electronic lenses because of unavoidable 1816: 1748: 1327: 1316:"A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design" 1281: 1180: 1014: 959: 843: 823: 788: 746: 587: 547: 512: 461: 134: 734: 1871: 917: 302: 937: 630: 1273: 1176: 1010: 839: 508: 1826: 1440: 1314:
Tromp, R.M.; Hannon, J.B.; Ellis, A.W.; Wan, W.; Berghaus, A.; Schaff, O. (June 2010).
320: 126: 551: 2039: 1902: 1846: 1506: 714:
Scherzer, Otto (1947). "Sphärische und chromatische Korrektur von Elektronenlinsen".
609: 524: 388:
0.05 nanometers, smooth sample translation and tilt, while allowing for a variety of
194: 186: 182: 1953: 1214: 1963: 1927: 1821: 1811: 1486: 1435: 1331: 1138: 792: 267: 1243: 896: 877: 847: 1285: 750: 293:
The first demonstration of aberration correction in TEM mode was demonstrated by
1907: 1841: 1831: 339: 294: 21: 1988: 1409: 1404: 1278:
EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany
994: 1192: 1026: 971: 963: 855: 800: 758: 689: 591: 1856: 1511: 495:
Scherzer, Otto (September 1936). "Ăśber einige Fehler von Elektronenlinsen".
397:
The TEAM project resulted in several microscopes, the first was the ACAT at
306:
temperature insulation, usually in an enclosure surrounding the microscope.
1339: 1200: 1184: 1034: 979: 863: 808: 538:
Schönhense, G. (2006). "Time-Resolved Photoemission Electron Microscopy".
1958: 1424: 777:"Seeing the atoms more clearly: STEM imaging from the Crewe era to today" 1018: 1968: 1912: 1594: 516: 390: 347: 1349: 1932: 995:"Sub-ĂĄngstrom resolution using aberration corrected electron optics" 954: 464:. This has ranged across chemistry, materials science and physics. 1280:, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 47–48, 226:
for electromagnetic potentials assuming the following conditions:
1274:"Performance of R005 Microscope and Aberration Correction System" 143:
which led to significant improvements both in resolution and the
1917: 427: 343: 147:
of the images. As of 2024 both correction of optical as well as
139: 1353: 326: 119:
Aberration-Corrected Transmission Electron Microscopy (AC-TEM)
15: 360:
Transmission Electron Aberration-corrected Microscope Project
1082:"Kirkland microscopes can examine matter one atom at a time" 993:
Batson, P. E.; Dellby, N.; Krivanek, O. L. (2002-08-08).
301:
in 1998 using a hexapole corrector, and in STEM mode by
584:
Proceedings of the 2005 Particle Accelerator Conference
55:"Aberration-Corrected Transmission Electron Microscopy" 677:. Springer Science & Business Media. p. 237. 675:
High-Resolution Imaging and Spectrometry of Materials
631:"Otto Scherzer. The father of aberration correction" 1946: 1895: 1804: 1797: 1664: 1608: 1570: 1527: 1520: 1474: 1423: 1387: 822:Crewe, A. V.; Wall, J.; Langmore, J. (1970-06-12). 251:non-static, electromagnetic fields (for example in 46:. Unsourced material may be challenged and removed. 230:electromagnetic fields are rotationally symmetric, 1135:"The TEAM Project: What is the TEAM microscope?" 170:Scherzer's theorem is a theorem in the field of 1050:"Nion: The company that transformed microscopy" 1779:Serial block-face scanning electron microscopy 1482:Detectors for transmission electron microscopy 577:"Aberration Correction in Electron Microscopy" 1365: 8: 244:In his original paper, Scherzer summarized: 1801: 1524: 1372: 1358: 1350: 694:Practical Electron Microscopy and Database 953: 106:Learn how and when to remove this message 540:Advances in Imaging and Electron Physics 129:components are introduced to reduce the 482: 408:National Center for Electron Microscopy 382:University of Illinois, Urbana-Chamaign 783:. Albert Victor Crewe Memorial Issue. 770: 768: 366:Lawrence Berkeley National Laboratory 7: 2018: 490: 488: 486: 384:with the technical goal of reaching 44:adding citations to reliable sources 660:Handbook of Charged Particle Optics 233:electromagnetic fields are static, 14: 1415:Timeline of microscope technology 2017: 2006: 2005: 133:that would otherwise reduce the 20: 1774:Precession electron diffraction 1254:from the original on 2024-03-10 1225:from the original on 2024-05-12 1092:from the original on 2016-03-25 1063:from the original on 2024-05-24 775:Pennycook, S. J. (2012-12-01). 733:Crewe, Albert V. (1966-11-11). 31:needs additional citations for 1332:10.1016/j.ultramic.2010.03.005 1111:"The TEAM Project: When/Where" 793:10.1016/j.ultramic.2012.05.005 416:Center for Nanoscale Materials 374:Brookhaven National Laboratory 222:Scherzer solved the system of 121:is the general term for using 1: 848:10.1126/science.168.3937.1338 673:Ernst, Frank (January 2003). 638:Microscopy Society of America 552:10.1016/S1076-5670(05)42003-0 378:Oak Ridge National Laboratory 281:Phase plate and similar ideas 1286:10.1007/978-3-540-85156-1_24 1137:. 2011-02-11. Archived from 1048:Pool, Rebecca (2022-11-21). 942:Microscopy and Microanalysis 824:"Visibility of Single Atoms" 751:10.1126/science.154.3750.729 399:Argonne National Laboratory 370:Argonne National Laboratory 236:there are no space charges. 2067: 1759:Immune electron microscopy 1677:Annular dark-field imaging 1492:Everhart–Thornley detector 357: 318: 163: 2001: 1913:Hitachi High-Technologies 662:. CRC Press. p. 234. 658:Orloff, Jon (June 1997). 414:at LBNL, and ACAT by the 310:Early Commercial Products 1938:Thermo Fisher Scientific 1764:Geometric phase analysis 1652:Aberration-Corrected TEM 592:10.1109/PAC.2005.1590354 1687:Charge contrast imaging 1497:Field electron emission 185:found in 1936 that the 1877:Thomas Eugene Everhart 1185:10.1098/rsta.2009.0094 964:10.1093/micmic/ozad111 497:Zeitschrift fĂĽr Physik 187:electromagnetic lenses 160:Early Theoretical Work 1882:Vernon Ellis Cosslett 1702:Dark-field microscopy 253:particle accelerators 219:are always positive. 149:chromatic aberrations 1887:Vladimir K. Zworykin 1537:Correlative light EM 1446:Electron diffraction 473:collection quality. 410:, a facility of the 289:First demonstrations 210:chromatic aberration 199:spherical aberration 191:electron microscopes 189:, which are used in 123:electron microscopes 40:improve this article 2051:Electron microscopy 1852:Manfred von Ardenne 1837:Gerasimos Danilatos 1744:Electron tomography 1739:Electron holography 1682:Cathodoluminescence 1461:Secondary electrons 1451:Electron scattering 1395:Electron microscopy 1381:Electron microscopy 1177:2009RSPTA.367.3795D 1171:(1903): 3795–3808. 1019:10.1038/nature00972 1011:2002Natur.418..617B 840:1970Sci...168.1338C 834:(3937): 1338–1340. 509:1936ZPhy..101..593S 172:electron microscopy 1974:Digital Micrograph 1580:Environmental SEM 1502:Field emission gun 1466:X-ray fluorescence 1057:Analytical Science 586:. pp. 44–48. 517:10.1007/BF01349606 386:spatial resolution 166:Scherzer's theorem 2033: 2032: 1997: 1996: 1867:Nestor J. Zaluzec 1862:Maximilian Haider 1660: 1659: 1295:978-3-540-85154-7 1086:The Seattle Times 1005:(6898): 617–620. 745:(3750): 729–738. 575:Rose, H. (2005). 503:(9–10): 593–603. 456:Physical Sciences 412:Molecular Foundry 403:Molecular Foundry 299:Maximilian Haider 224:Laplace equations 181:German physicist 116: 115: 108: 90: 2058: 2021: 2020: 2009: 2008: 1817:Bodo von Borries 1802: 1562:Photoemission EM 1525: 1374: 1367: 1360: 1351: 1344: 1343: 1311: 1305: 1304: 1303: 1302: 1269: 1263: 1262: 1260: 1259: 1240: 1234: 1233: 1231: 1230: 1211: 1205: 1204: 1156: 1150: 1149: 1147: 1146: 1131: 1125: 1124: 1122: 1121: 1107: 1101: 1100: 1098: 1097: 1078: 1072: 1071: 1069: 1068: 1045: 1039: 1038: 990: 984: 983: 957: 948:(6): 1950–1960. 933: 927: 926: 912: 906: 905: 904: 900: 893: 887: 886: 885: 881: 874: 868: 867: 819: 813: 812: 772: 763: 762: 730: 724: 723: 711: 705: 704: 702: 700: 685: 679: 678: 670: 664: 663: 655: 649: 648: 646: 644: 635: 627: 621: 620: 618: 616: 581: 572: 566: 565: 535: 529: 528: 492: 462:radiation damage 450:light microscope 111: 104: 100: 97: 91: 89: 48: 24: 16: 2066: 2065: 2061: 2060: 2059: 2057: 2056: 2055: 2046:Crystallography 2036: 2035: 2034: 2029: 1993: 1942: 1891: 1872:Ondrej Krivanek 1793: 1656: 1604: 1566: 1552:Liquid-Phase EM 1516: 1475:Instrumentation 1470: 1428: 1419: 1383: 1378: 1348: 1347: 1320:Ultramicroscopy 1313: 1312: 1308: 1300: 1298: 1296: 1271: 1270: 1266: 1257: 1255: 1248:foundry.lbl.gov 1242: 1241: 1237: 1228: 1226: 1219:foundry.lbl.gov 1213: 1212: 1208: 1158: 1157: 1153: 1144: 1142: 1133: 1132: 1128: 1119: 1117: 1115:web.archive.org 1109: 1108: 1104: 1095: 1093: 1080: 1079: 1075: 1066: 1064: 1047: 1046: 1042: 992: 991: 987: 935: 934: 930: 914: 913: 909: 902: 895: 894: 890: 883: 876: 875: 871: 821: 820: 816: 781:Ultramicroscopy 774: 773: 766: 732: 731: 727: 713: 712: 708: 698: 696: 687: 686: 682: 672: 671: 667: 657: 656: 652: 642: 640: 633: 629: 628: 624: 614: 612: 602: 579: 574: 573: 569: 562: 537: 536: 532: 494: 493: 484: 479: 470: 458: 445: 436: 424: 362: 356: 335: 323: 317: 312: 303:Ondrej Krivanek 291: 283: 264: 217: 206: 168: 162: 157: 127:electro optical 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 2064: 2062: 2054: 2053: 2048: 2038: 2037: 2031: 2030: 2028: 2027: 2015: 2002: 1999: 1998: 1995: 1994: 1992: 1991: 1986: 1981: 1979:Direct methods 1976: 1971: 1966: 1961: 1956: 1950: 1948: 1944: 1943: 1941: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1899: 1897: 1893: 1892: 1890: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1829: 1827:Ernst G. Bauer 1824: 1819: 1814: 1808: 1806: 1799: 1795: 1794: 1792: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1720: 1719: 1709: 1704: 1699: 1694: 1689: 1684: 1679: 1674: 1668: 1666: 1662: 1661: 1658: 1657: 1655: 1654: 1649: 1648: 1647: 1637: 1632: 1627: 1626: 1625: 1614: 1612: 1606: 1605: 1603: 1602: 1597: 1592: 1587: 1582: 1576: 1574: 1568: 1567: 1565: 1564: 1559: 1554: 1549: 1544: 1539: 1533: 1531: 1522: 1518: 1517: 1515: 1514: 1509: 1504: 1499: 1494: 1489: 1484: 1478: 1476: 1472: 1471: 1469: 1468: 1463: 1458: 1453: 1448: 1443: 1441:Bremsstrahlung 1438: 1432: 1430: 1421: 1420: 1418: 1417: 1412: 1407: 1402: 1397: 1391: 1389: 1385: 1384: 1379: 1377: 1376: 1369: 1362: 1354: 1346: 1345: 1326:(7): 852–861. 1306: 1294: 1264: 1235: 1206: 1151: 1126: 1102: 1088:. 2010-09-05. 1073: 1040: 985: 928: 907: 888: 869: 814: 764: 725: 706: 688:Liao, Yougui. 680: 665: 650: 622: 600: 567: 560: 530: 481: 480: 478: 475: 469: 466: 457: 454: 444: 441: 435: 432: 423: 420: 358:Main article: 355: 352: 334: 331: 321:Nion (company) 319:Main article: 316: 313: 311: 308: 290: 287: 282: 279: 263: 260: 238: 237: 234: 231: 215: 204: 164:Main article: 161: 158: 156: 153: 114: 113: 96:September 2024 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 2063: 2052: 2049: 2047: 2044: 2043: 2041: 2026: 2025: 2016: 2014: 2013: 2004: 2003: 2000: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1951: 1949: 1945: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1903:Carl Zeiss AG 1901: 1900: 1898: 1896:Manufacturers 1894: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1847:James Hillier 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1809: 1807: 1803: 1800: 1796: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1718: 1715: 1714: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1669: 1667: 1663: 1653: 1650: 1646: 1643: 1642: 1641: 1638: 1636: 1633: 1631: 1628: 1624: 1621: 1620: 1619: 1616: 1615: 1613: 1611: 1607: 1601: 1600:Ultrafast SEM 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1577: 1575: 1573: 1569: 1563: 1560: 1558: 1557:Low-energy EM 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1534: 1532: 1530: 1526: 1523: 1519: 1513: 1510: 1508: 1507:Magnetic lens 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1479: 1477: 1473: 1467: 1464: 1462: 1459: 1457: 1456:Kikuchi lines 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1433: 1431: 1426: 1422: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1392: 1390: 1386: 1382: 1375: 1370: 1368: 1363: 1361: 1356: 1355: 1352: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1310: 1307: 1297: 1291: 1287: 1283: 1279: 1275: 1268: 1265: 1253: 1249: 1245: 1239: 1236: 1224: 1220: 1216: 1210: 1207: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1152: 1141:on 2011-02-11 1140: 1136: 1130: 1127: 1116: 1112: 1106: 1103: 1091: 1087: 1083: 1077: 1074: 1062: 1058: 1056: 1051: 1044: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 996: 989: 986: 981: 977: 973: 969: 965: 961: 956: 951: 947: 943: 939: 932: 929: 924: 920: 919: 911: 908: 898: 892: 889: 879: 873: 870: 865: 861: 857: 853: 849: 845: 841: 837: 833: 829: 825: 818: 815: 810: 806: 802: 798: 794: 790: 786: 782: 778: 771: 769: 765: 760: 756: 752: 748: 744: 740: 736: 729: 726: 721: 717: 710: 707: 695: 691: 684: 681: 676: 669: 666: 661: 654: 651: 639: 632: 626: 623: 611: 607: 603: 601:0-7803-8859-3 597: 593: 589: 585: 578: 571: 568: 563: 561:9780120147847 557: 553: 549: 545: 541: 534: 531: 526: 522: 518: 514: 510: 506: 502: 498: 491: 489: 487: 483: 476: 474: 468:Life Sciences 467: 465: 463: 455: 453: 451: 442: 440: 434:Present State 433: 431: 430:instruments. 429: 421: 419: 417: 413: 409: 404: 400: 395: 394:experiments. 393: 392: 387: 383: 379: 375: 371: 367: 361: 353: 351: 349: 345: 341: 332: 330: 328: 322: 314: 309: 307: 304: 300: 296: 288: 286: 280: 278: 274: 271: 269: 261: 259: 256: 254: 248: 247: 242: 235: 232: 229: 228: 227: 225: 220: 218: 211: 207: 200: 196: 195:electron beam 193:to focus the 192: 188: 184: 183:Otto Scherzer 179: 177: 173: 167: 159: 154: 152: 150: 146: 141: 136: 132: 128: 124: 120: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: â€“  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 2022: 2010: 1964:EM Data Bank 1928:Nion Company 1822:Dennis Gabor 1812:Albert Crewe 1651: 1590:Confocal SEM 1487:Electron gun 1436:Auger effect 1323: 1319: 1309: 1299:, retrieved 1277: 1267: 1256:. Retrieved 1247: 1238: 1227:. Retrieved 1218: 1209: 1168: 1164: 1154: 1143:. Retrieved 1139:the original 1129: 1118:. Retrieved 1114: 1105: 1094:. Retrieved 1085: 1076: 1065:. Retrieved 1053: 1043: 1002: 998: 988: 945: 941: 931: 922: 916: 910: 891: 872: 831: 827: 817: 784: 780: 742: 738: 728: 719: 715: 709: 697:. Retrieved 693: 683: 674: 668: 659: 653: 641:. Retrieved 637: 625: 613:. Retrieved 583: 570: 543: 539: 533: 500: 496: 471: 459: 446: 443:Applications 437: 425: 396: 389: 363: 354:TEAM Project 336: 324: 292: 284: 275: 272: 268:Albert Crewe 265: 257: 249: 245: 243: 239: 221: 213: 212:coefficient 202: 201:coefficient 180: 169: 118: 117: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 1908:FEI Company 1842:Harald Rose 1832:Ernst Ruska 1521:Microscopes 1429:with matter 1427:interaction 546:: 159–323. 295:Harald Rose 176:aberrations 131:aberrations 2040:Categories 1989:Multislice 1805:Developers 1665:Techniques 1410:Microscope 1405:Micrograph 1301:2024-09-01 1258:2024-05-27 1229:2024-05-27 1215:"TEAM 0.5" 1145:2024-05-27 1120:2024-05-27 1096:2024-05-25 1067:2024-05-24 955:2303.09693 897:US4389571A 878:US4303864A 722:: 114–132. 477:References 380:, and the 262:Prototypes 135:resolution 66:newspapers 1857:Max Knoll 1512:Stigmator 1193:1364-503X 1027:0028-0836 972:1431-9276 856:0036-8075 801:0304-3991 787:: 28–37. 759:0036-8075 610:122693745 525:120073021 2012:Category 1959:CrysTBox 1947:Software 1618:Cryo-TEM 1425:Electron 1340:20395048 1252:Archived 1244:"TEAM I" 1223:Archived 1201:19687066 1090:Archived 1061:Archived 1035:12167855 980:37851063 864:17731040 809:22727567 418:at ANL. 368:(LBNL), 208:and the 2024:Commons 1672:4D STEM 1645:4D STEM 1623:Cryo-ET 1595:SEM-XRF 1585:CryoSEM 1542:Cryo-EM 1400:History 1173:Bibcode 1007:Bibcode 836:Bibcode 828:Science 739:Science 699:5 April 643:5 April 615:5 April 505:Bibcode 391:in-situ 372:(ANL), 348:Hitachi 155:History 145:clarity 80:scholar 1969:EMsoft 1954:CASINO 1933:TESCAN 1798:Others 1697:cryoEM 1388:Basics 1338:  1292:  1199:  1191:  1033:  1025:  999:Nature 978:  970:  903:  884:  862:  854:  807:  799:  757:  608:  598:  558:  523:  346:, and 125:where 82:  75:  68:  61:  53:  1923:Leica 1769:PINEM 1635:HRTEM 1630:EFTEM 1055:Wiley 950:arXiv 918:Optik 716:Optik 634:(PDF) 606:S2CID 580:(PDF) 521:S2CID 422:Other 140:atoms 87:JSTOR 73:books 1984:IUCr 1918:JEOL 1789:WBDF 1784:WDXS 1734:EBIC 1729:EELS 1724:ECCI 1712:EBSD 1692:CBED 1640:STEM 1336:PMID 1290:ISBN 1197:PMID 1189:ISSN 1031:PMID 1023:ISSN 976:PMID 968:ISSN 925:(1). 860:PMID 852:ISSN 805:PMID 797:ISSN 755:ISSN 701:2020 645:2020 617:2020 596:ISBN 556:ISBN 428:LEEM 344:JEOL 333:CEOS 315:Nion 297:and 59:news 1754:FEM 1749:FIB 1717:TKD 1707:EDS 1610:TEM 1572:SEM 1547:EMP 1328:doi 1324:110 1282:doi 1181:doi 1169:367 1015:doi 1003:418 960:doi 844:doi 832:168 789:doi 785:123 747:doi 743:154 588:doi 548:doi 544:142 513:doi 501:101 452:). 340:FEI 327:IBM 255:). 42:by 2042:: 1529:EM 1334:. 1322:. 1318:. 1288:, 1276:, 1250:. 1246:. 1221:. 1217:. 1195:. 1187:. 1179:. 1167:. 1163:. 1113:. 1084:. 1059:. 1052:. 1029:. 1021:. 1013:. 1001:. 997:. 974:. 966:. 958:. 946:29 944:. 940:. 923:85 921:. 858:. 850:. 842:. 830:. 826:. 803:. 795:. 779:. 767:^ 753:. 741:. 737:. 718:. 692:. 636:. 604:. 594:. 582:. 554:. 542:. 519:. 511:. 499:. 485:^ 376:, 350:. 342:, 178:. 1373:e 1366:t 1359:v 1342:. 1330:: 1284:: 1261:. 1232:. 1203:. 1183:: 1175:: 1148:. 1123:. 1099:. 1070:. 1037:. 1017:: 1009:: 982:. 962:: 952:: 866:. 846:: 838:: 811:. 791:: 761:. 749:: 720:2 703:. 647:. 619:. 590:: 564:. 550:: 527:. 515:: 507:: 216:c 214:C 205:s 203:C 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Aberration-Corrected Transmission Electron Microscopy"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
electron microscopes
electro optical
aberrations
resolution
atoms
clarity
chromatic aberrations
Scherzer's theorem
electron microscopy
aberrations
Otto Scherzer
electromagnetic lenses
electron microscopes
electron beam
spherical aberration
chromatic aberration
Laplace equations
particle accelerators
Albert Crewe

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑